
1

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports

Adaptive time scales in recurrent
neural networks
Silvan C. Quax1,2*, Michele D’Asaro1,2 & Marcel A. J. van Gerven1

Recent experiments have revealed a hierarchy of time scales in the visual cortex, where different
stages of the visual system process information at different time scales. Recurrent neural networks
are ideal models to gain insight in how information is processed by such a hierarchy of time scales and
have become widely used to model temporal dynamics both in machine learning and computational
neuroscience. However, in the derivation of such models as discrete time approximations of the firing
rate of a population of neurons, the time constants of the neuronal process are generally ignored.
Learning these time constants could inform us about the time scales underlying temporal processes in
the brain and enhance the expressive capacity of the network. To investigate the potential of adaptive
time constants, we compare the standard approximations to a more lenient one that accounts for
the time scales at which processes unfold. We show that such a model performs better on predicting
simulated neural data and allows recovery of the time scales at which the underlying processes unfold.
A hierarchy of time scales emerges when adapting to data with multiple underlying time scales,
underscoring the importance of such a hierarchy in processing complex temporal information.

Recurrent neural network (RNN) models have become widely used in computational neuroscience to model
the dynamics of neural populations as well as in machine learning applications to model data with temporal
dependencies. The different variants of RNNs commonly used in these scientific fields can be derived as discrete
time approximations of the instantaneous firing rate of a population of neurons1. Since such models can mimic
the dynamic properties of real neural populations, they are ideally suited to explain neuronal population
data such as extracellular multi-unit activity (MUA), functional magnetic resonance imaging (fMRI) or
magnetoencephalography (MEG) data. Similarly, it has turned out that these biologically inspired networks
enable machines to perform tasks depending on sequential data2,3. The interplay between both fields has led to
recent advances, enabling such RNNs to solve a wide variety of cognitive tasks4–6.

While RNNs have been successfully applied in both computational neuroscience and machine learning,
further improvements could be possible through more biologically inspired RNNs. A common assumption
that the popular discrete RNN definitions make, when derived from their continuous counterparts, is that of
ignoring certain time scales at which the population activity unfolds. The time scale at which processes unfold is
an important aspect of modelling dynamic neuronal activity. Some neural responses, like retinal responses to a
flashing head light, act at very short time scales, while others, like maintaining the concept of a car in mind, can
take very long. Understanding these time scales can give us valuable insights about the nature of the underlying
processes and the kind of information that is processed by a neuronal population.

An interesting example of this is the hierarchy of time scales found in the brain7–10. Much like the spatial
hierarchies found in the visual cortex that ensure an increase in receptive field size along the visual pathway11,
there is evidence for a hierarchy of time scales with lower visual areas responding at shorter time scales and
higher visual areas at longer time scales12. At the neural level, cell assemblies of strongly interconnected neurons
that serve as representations of static or dynamic events of different duration have been suggested to develop a
hierarchical temporal structure13,14.

A tempting explanation for the emergence of such a hierarchy is the hierarchical causal structure of the
outside world that shapes the representations of the brain8,15–17. For example, a car passing by leads to changes in
neuronal activity on a short time scale in the retina, where the amount of light reaching a receptor could suddenly
change, while on the other hand, neurons in V4 or IT, encoding the concept ‘car’ would change activity at a much
longer time scale. As for the spatial receptive field, one can define a property of the neurons (or of the coding
unit more in general, be it an artificial neuron or a population of neurons in a voxel) that defines the region of
time of interest for a stimulus to trigger its activity. The idea of such temporal receptive windows of a neuron that

OPEN

1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. 2These
authors contributed equally: Silvan C. Quax and Michele D’Asaro. *email: s.quax@donders.ru.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-68169-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

represents the length of time before a response during which sensory information may affect that response has
been suggested7, emphasizing the important role of time scales in the neural responses of different cortical areas.

While a hierarchy of time scales can thus be important for processing temporal information, there is no
specific time scale parameter in the RNNs commonly used for modelling. Often either one or multiple implicit
assumptions about the time scales at which the networks operate are made in the definition of the RNNs used.
In computational neuroscience models it is often assumed that either the firing rate closely tracks the intrinsic
current, or the intrinsic current closely tracks the firing rates. Models used for artificial intelligence problems
on the other hand, tend to ignore time scales both for the intrinsic currents and firing rates (see “Methods” for
further details).

By allowing our models to learn the time scales at which processes operate, a closer relation to the hierarchies
of time scales of our natural world could be achieved, allowing a model to perform better. At the same time this
would help in interpreting the role different neurons of the model perform by linking their time scales to the
underlying processes.

Here we investigate whether a more biologically plausible model with learnable intrinsic time parameters is
able to recover the time scales of the processes underlying a given dataset and whether the flexibility of learning
these time scales is beneficial for the performance of the model. We find an improvement in performance
compared to the commonly used approximations for RNN models and an increase in the memory capacity of
the RNN models. At the same time we can recover the time scales of the underlying processes from the data,
opening interesting opportunities to improve our understanding of hierarchies of time scales in the brain.

Methods
Synaptic coupling between neurons.  Deriving the equations governing the communication between
neurons requires specification of a mechanism for synaptic transmission, referring to how incoming spikes
generate synaptic currents through the release of neurotransmitters in the synaptic cleft1. That is, we need to
make explicit how the synaptic current I arises. Consider a presynaptic neuron indexed by k whose spike times
are given by {tk1 , . . . , t

k
N } , with N the number of spikes. Formally, this spike train is fully described by the neural

response function

where the idealized action potentials are given by Dirac δ functions. The total synaptic current received by a
neuron n is modeled as

where wnk is a measure of the efficacy of the synapse from neuron k to neuron n and K(·) determines how
presynaptic spikes are transformed into synaptic currents.

A common choice for K is simply K(s) = qδ(s) , where q is the charge injected via a synapse with strength
wnk = 1 . A more realistic choice for K is to assume that the synaptic current has a finite duration, as modeled
by the exponential kernel

where τs is the time constant. A detailed description of why this kernel function is a suitable approximation can
be found in18.

From spiking to rate‑based models.  An alternative to spiking neuron models is to assume that neural
coding is driven by the rate at which neurons fire, rather than the exact arrival times of individual spikes. A mean
firing rate over a temporal window of length T can simply be computed from individual spike times as

The use of mean firing rates to quantity neural responses dates back to the work of Adrian19, who showed that
the firing rate of muscular stretch receptors is related to the force applied to the muscle. However, a problem
associated with the use of mean firing rates is that it severely limits the speed at which information can be
processed given the requirement to integrate over time. This is unrealistic given the very rapid response times
observed in visual detection tasks20.

An alternative formulation is provided by assuming that the rate code captures a population average by
counting the number of spikes produced by a population consisting of M neurons over a short time interval �t .
That is, we interpret the firing rate as a population activity, given by21:

(1)ρk(τ) =
∑

i

δ

(

τ − tki

)

,

(2)In(t) =
∑

k

wnk

∑

ti<t

K(t − tki) =
∑

k

wnk

∫ t

−∞

dτK(t − τ)ρk(τ),

(3)K(s) =
q

τs
exp

(

−
s

τs

)

,

(4)ν =
1

T

∫ T

0

dτρ(τ) .

(5)r(t) =
1

�t

1

M

∫ t+�t

t
dτ

M
∑

m=1

∑

i

δ
(

τ − tmi
)

.

3

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

Under this interpretation, we view artificial neurons as models of neuronal populations that are influenced
by presynaptic populations in a homogeneous manner and collectively produce a firing rate as output. The
population activity may vary rapidly and can reflect changes in the stimulus conditions nearly instantaneously22.

To compute the postsynaptic current induced by the presynaptic firing rates, we replace the neural response
function in Eq. (2) by the firing rate, to obtain

Using an exponential kernel (3) with q = 1 and taking the time-derivative of Eq. (6) yields

where the Leibniz rule is applied to calculate the derivative of the integral (see Appendix S1 for a derivation).
Substituting the first term on the right hand side for Eq. (6) and using a compact vector notation this simplifies to

with wn = (wn1, . . . ,wnK)
⊤ and r = (r1, . . . , rK)

⊤ . The kernel time constant, τs , thus determines the time scale
of the differential process.

To complete the model, we assume that the synaptic input In directly influences the firing rate rn of a neuron.
Due to the membrane capacitance and resistance the firing rate does not follow the current instantaneously, but
with a delay determined by a time constant τr . That is,

where f is an activation function (a static nonlinearity) which translates currents into firing rates. Equations (8)
and (9) together define the firing-rate model.

Discrete approximation of the recurrent dynamics.  As mentioned before, firing-rate models
provide a biological counterpart for recurrent neural networks, where RNN units reflect the average activity of
a population of neurons. The equations for the standard RNN follow from the continuous equations through
discretization.

We use the forward Euler method to numerically approximate the solution to the differential equations (8)
and (9) and further generalize by assuming that at each point in time, the firing rates are influenced by sensory
inputs x . We obtain

where W and U are matrices whose values represent synaptic weights, �t indicates discrete time steps. We can
rewrite the last equations, defining αs = �t/τs and αr = �t/τr , as (In what follows, we will refer to αr , αs as
‘rate constants’, keeping in mind their relation to τs and τr . Rate constants expressed as α are just more practical
for our purpose.):

These are going to be the key equations of the model under investigation.

Time scale assumptions.  In literature, several variants of Eqs. (12) and (13) are commonly used to
model recurrent dynamics. These variants have implicitly different underlying time scale approximations.
Here we review the two approximations that are at the basis of commonly used rate-based RNN models in
computational neuroscience and artificial intelligence (AI), derived from our set of equations above. Typically,
either the process of integrating the presynaptic current, or the process of generating postsynaptic rate activity,
are modeled in literature as instantaneous; a choice which resides in the assumption that one of the two processes
is much faster than the other1. We will refer to these complexity reduction choices as extreme cases for the time
constants. Despite the popularity of such choices, it is often neglected in literature why this approximation is
made. Furthermore, the implicit time constants used in these models are typically not motivated.

The first approximation assumes that the time constant for the firing rate τr is much larger than that of the
current τs . In this case, the current closely tracks the firing rates and we can assume that, for the nth-neuron,
In(t) = w⊤

n r(t) . By using this substitution, generalizing to multiple neurons and adding the external input again,
the equations describing the dynamics at the network level are then given by

(6)In(t) =
∑

k

wnk

∫ t

−∞

dτK(t − τ)rk(τ) .

(7)
dIn

dt
= −

1

τs

∑

k

wnk

∫ t

−∞

dτ
e−

(t−τ)
τs

τs
rk(τ) +

1

τs

∑

k

wnkrk(t) ,

(8)τs
dIn

dt
= −In + w⊤

n r,

(9)τr
drn

dt
= −rn + f (In) ,

(10)It = It−1 + τ−1
s (−It−1 +Wrt−1 + Uxt)�t

(11)rt = rt−1 + τ−1
r (−rt−1 + f(It))�t,

(12)It = (1− αs)It−1 + αs(Wrt−1 + Uxt)

(13)rt = (1− αr)rt−1 + αrf(It) .

4

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

with W = [w1, . . . ,wK]
⊤ and f a vector-valued activation function.

The second approximation on the other hand, assumes that the time constant for the firing rate τr is much
smaller then that of the current τs . The firing rate then closely tracks the current and we can assume rn = f (In) .
The model is then fully described by Eq. (8). Generalizing to multiple neurons, we obtain

With respect to our discrete-time Eqs. (12) and (13), these two extreme cases correspond respectively to
the choices for the rate constants, αs = 1 (Eqs. (14) and (15)) and αr = 1 (Eqs. (16) and (17)). Studies in
computational neuroscience that implement RNNs as modeling tool often use the extreme case of Eqs. (16)
and (17)23–25.

Studies in AI, on the other hand, tend to ignore both processes, equivalent to assuming both τr = �t and
τs = �t . These models, referred to as Elman networks26, are determined by

Setting the rate constants αr = 1 and αs = 1 , as in Eqs. (18) and (19), means that the synaptic current and the
firing rate both follow instantaneously the presynaptic firing rates. Thus, every neuron acts as a non-linear filter
that carries no memory of its previous states internally. The activity of a neuron is influenced by the recent firing
rate history only through the recurrent weights.

Since rate constants ensure an easier notation for the network equations that will follow we will from now
on express everything in terms of the rate constants αr and αs , keeping in mind their direct relation with their
respective time constant.

Optimizing rate constants.  While deliberately disregarding one or both of the dynamical processes
simplifies the equations describing an RNN, such a simplification could prevent us from achieving optimal
performance and gaining valuable insight into the dynamics of the underlying process. We aim here to show
that, from a functional perspective such enrichment of the internal dynamics increases the performance of
RNNs commonly used in the literature. At the same time it could provide us with valuable insight into the
dynamics of the underlying data that the RNN tries to explain.

Previous works have experimented with manually setting the rate constants of the dynamic process to
enhance the expressiveness of RNNs25,27. While it is possible to come up with rate constant values deemed
biologically relevant, a much more interesting approach would be to optimize the rate constants to adapt to the
process at hand. The idea that rate constants can be inferred from the data and not set a priori, with the aim to
better describe the observed data, has been suggested previously in the continuous time regime28. Other work
has optimized networks with a single rate constant in the discrete approximation regime through numerical
integration29, though limited by the computationally intensive integration process.

Here, instead, we optimize the rate constants of the RNN using the backpropagation-through-time (BPTT)
algorithm, alongside the other parameters of the network.

Adaptive time scales recurrent neural network.  To investigate the potentially beneficial role rate
constants can play in the performance and interpretability of RNNs, we developed an RNN model which can
adapt the rate constants at which dynamic processes unfold. The model was developed using the Chainer
package for automatic differentiation30. The model consisted of an RNN with hidden units that generate a firing
rate according to Eqs. (12) and (13), referred to as adaptive recurrent units (ARUs) throughout the next sections
(Fig. 1). The output units transform the hidden units activity in a readout layer. All layers were fully connected.
The non-linear transformation of the synaptic currents into firing rate is modelled by a sigmoid function, unless
otherwise specified.

The complete model is then given by

where x is the input signal, y is the output, W,U,V weight matrices, I, r are the N-dimensional state variables
referring to the postsynaptic current and the firing rates, with N the number of hidden (recurrent) units, and f
a sigmoid function. The initial states of the synaptic current and firing rate were also learned through the BPTT
algorithm31. We always used an additional input with a fixed value of one as a bias term.

Simulations.  To investigate whether the explicit modelling of time scales benefits performance and leads to
recovery of the relevant time scales of the dynamics of the data, several simulations were performed. Artificial

(14)It = Wrt−1 + Uxt−1

(15)rt = rt−1 + αr(−rt−1 + f(It)),

(16)It = It−1 + αs(−It +Wrt−1 + Uxt))

(17)rt = f(It) .

(18)It = Wrt−1 + Uxt

(19)rt = f(It) .

(20)
It = (1− αs)It−1 + αs(Wrt−1 + Uxt))

rt = (1− αr)rt−1 + αr(f(It))

yt = f(Vrt),

5

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

training data was created that has temporal dynamics reflective of a certain time scale by using our previously
described model with a certain set of rate constants as a generative model to produce data. A random input
pattern that consisted of a two-valued signal was generated by drawing samples from a white noise distribution
between 0 and 1, and applying a smoothing Savitzky-Golay filter32.

The data consisted of a series of 500 samples (400 for training and 100 for validation sets) of input-output
pairs unfolding over 20 time steps. Target networks are structured as explained in Fig. 1, with two units in the
input layers, 10 units in the hidden layer and two units in the output layer (unless stated otherwise). The data
generated this way reflects the time scales of the underlying generating process, thus expressing slower dynamics
for αs , αr close to one and expressing fast dynamics for αs , αr close to zero.

In the simulations, this data was used to optimize networks to learn to produce the output data from the
input data. The mean-squared-error between the outputs of the network and the training data set was minimized
via BPTT. During training, the data was divided into minibatches. For optimization, the Adam33 optimizer was
used with a learning rate of 0.001.

Influence of rate constants.  We first ran a series of grid search experiments over the αs , αr parameter space, where
the rate constants of the trained network were fixed to a certain value, in order to visualize the loss landscape and
check the relevance of the rate constants for performance. To avoid confusion, the rate constants of the trained
network will from here on be indicated as α̂s , α̂r . During the grid search the α̂s , α̂r values tested ranged from 0.001 to
1.3 to cover a biologically plausible range (Values for α̂s , α̂r higher than one indicate a negative correlation between
subsequent time steps, which is not biologically plausible but were included out of exploratory interest.). For each
pair of rate constants (α̂s , α̂r) a network was trained over the generated data, minimizing the mean squared error
between the outputs of the network and the training data set. Six different combinations of rate constants were
used to generate data, that is ( αs ,αr) ∈ {(0.34, 0.68), (0.34, 1.0), (0.68, 0.34), (0.68, 0.68), (0.89, 0.89), (0.14, 0.14)}
.

Learning optimal rate constants.  Next, we investigated the idea of learning the best rate constants by BPTT
and check whether the rate constants are recovered correctly and lead to an improvement in performance. For
two combinations of rate constants ( αs = 0.34 , αr = 0.68 and αs = 0.68 , αr = 0.34 ) we trained 20 repetitions
of networks with optimizable rate constants. The performance was compared with the standard Elman network
with fixed rate constants of α̂s = 1 , α̂r = 1.

To investigate the influence of network size on the ability to recover the rate constants, networks with different
numbers of hidden units were trained (5, 10, 30 and 100 units). A grid search over fixed rate constants in
the range 0.001 to 1.3 was performed to identify the loss landscape. On top of that, networks with learnable
rate constants were trained, with 20 repetitions per network size to investigate the distribution of learned rate
constants.

The influence of the activation function was compared by performing simulations with networks using the
sigmoid and rectified linear unit activation functions.

Learning individual rate constants.  In the previous simulations we only used models with rate constants that
were shared across all units in the network. To investigate whether having individual rate constants per unit
can help in learning processes with a range of underlying time scales, data was generated with three different
distributions of rate constants. Rate constants were drawn from a Gaussian distribution truncated between 0

xt

rt-1

It-1

rt

It

- -

+

+

αs

αr

σ

Figure 1.   Diagram of the ARU implementation with internal state and rate constants as described by Eqs. (12)
and (13). Pink circles represent pointwise operators (plus and minus). Yellow rectangles represent layers (scaling
layer, αr and αs , or a sigmoid layer, σ ). Combining arrows represent a concatenation operation and splitting
arrows represent a copying operation.

6

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

and 1. The mean for all three distributions was 0.5, the standard deviation varied from 0.1 to 0.3. The networks
were extended with individual rate constants per unit and 20 repetitions were trained per data set. The standard
deviation of the learned rate constants was compared with the standard deviation of the rate constants used to
generate the data, to infer whether the original distribution was recovered. To investigate whether there was also
a benefit in performance the network with individual rate constants was compared with an Elman network and
a network with global rate constants.

Testing memory capacity.  The memory capacity of the resulting networks was investigated by generating white
noise data where the network had to remember the input N steps back, with N ∈ {5, 10, 20, 30, 40} . To generate
a data set with a common underlying data distribution, one data set was generated by low-pass filtering a white
noise process to 20 Hz. For every memory length sequences are generated by iterating through windows of 250
ms of data using time-step �t = 100/Nms . The Elman network, the network with global rate constants and the
network with individual rate constants were all trained for 20 repetitions on every memory length task.

Results
Optimal rate constants improve performance.  To investigate whether explicitly modelling rate
constants in an RNN benefits performance compared to the commonly used approximations (see “Methods”), we
performed several simulations. Artificial data with several combinations of rate constants, (αs ,αr) , was created
by using an RNN as generative model (see “Methods” for further details). A grid search for parameters ( ̂αs , α̂r )
over the range 0.001 to 1.3 was performed to identify the combination of rate constants resulting in the best
performance. In these simulations, we were interested in seeing whether a network trained with rate constants
matching those of the generating process improves performance. Alternatively, there could be a general optimal
choice for α̂s , α̂r that is independent of the time scale of the generated data, or the rate constants could be
completely irrelevant and compensated by the complex recurrent dynamics of the network.

The lowest loss is found for values of rate constants around the values that were used to generate the data
(Fig. 2). This region could differ strongly from the commonly used approximation where either one rate constant
is ignored (dashed lines) or both rate constants are ignored (blue circle). The shape of the loss landscapes
changed according to the values of the target rate constants, thus indicating that there is not a single choice of
rate constants that is optimal for any kind of data, irrespective of the underlying generative process.

These results show that the network can recover the rate constants of the underlying process that generated
certain data. Despite the rich dynamics that RNNs can develop, this is not able to fully compensate for a choice
of rate constants that is different from the optimal one. At the same time we do not find a symmetric solution
(symmetric in the sense that exchanging α̂s and α̂r results in the same performance after training), which means
that α̂r and α̂s themselves cannot compensate for each other. Both rate constants are thus important and an
approximation with a single rate constant will lead to sub-optimal solutions.

Learning optimal rate constants through backpropagation.  From the previous results it becomes
clear that choosing the right combination of rate constants is beneficial to the performance of an RNN. Most of
the time we do not know the underlying time scales of our data though. For this reason it could be useful to let
the model learn the rate constants via BPTT (We investigated whether these parameters can be inferred with
gradient descent algorithms. Similar results hold for Stochastic Gradient Descent and Adam optimizer33.).

The learning trajectories of the rate constants for two example choices of rate constants are shown in Fig. 3A,
where the learning trajectories of ( ̂αs , α̂r ) is plotted upon the loss landscape of the same simulations as in
Fig. 2 (top and middle left panels, i.e. ( αs = 0.34 , αr = 0.68 ) and ( αs = 0.68 , αr = 0.34 ). Independent of the
initialization of the rate constants, they clearly converge towards the region of lowest loss obtained from the grid
search experiment and recovers the the rate constants used in the generative process. Thus the rate constants are
identifiable and can be learned effectively through BPTT. This means that we can infer information about the
time scale of the data by training models to predict dynamic responses from a set of input stimuli. At the same
time, the adaptive rate constants significantly improved performance over the standard Elman units (Fig. 3B),
showing the importance of these rate constants.

Influence of network size on time scale recovery.  Simple Elman networks can be seen as universal
approximators when given enough hidden units34. Therefore, it is possible that a benefit in performance and
the recovery of the actual rate constants is less in larger networks. We tested networks with different numbers
of hidden units in the trained model, as shown in Fig. 4. From these results it is clear that more hidden units do
not make the rate constants less important with respect to model adaptability: the region of lower loss around
the optimal point does not expand as the number of hidden units increases. When learning the rate constants,
the precision of the recovery does not change with network size either (Fig. 4, blue crosses). Despite the fact
that larger networks could learn more complex dynamics, possibly overcoming a non-optimal choice of rate
constants, the ability to effectively recover rate constants of the underlying dynamical process remains. This
is promising for future applications on more complex dynamical problems requiring large-scale networks, for
example for explaining neural responses in the brain.

Time scale recovery depends on activation function.  A diverse set of activation functions can be
used for the nonlinearities in RNNs. Our previous simulations were done with the commonly used sigmoid
activation function. Since it is possible that the recovery of the correct rate constants depends on the choice of
activation function for the network, we also tested another commonly used activation functions, namely the
rectified linear unit (ReLU) (Fig. 5).

7

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

While the loss landscape clearly shows a region of lower loss around the rate constants used to generate the
data in the case of sigmoid activation functions, the loss landscape becomes more shallow and wider in the case
of ReLU activation functions, making it harder to identify a unique combination of rate constants that leads to the
lowest loss. The loss region also becomes more symmetric with respect to the diagonal α̂s = α̂r . An explanation
for this can be that a linear activation function (when in the linear regime) makes the two dynamical processes
of each unit (Eqs. 8, 9) reducible to one, in which we have new rate constants which are invariant for exchange
of α̂s , α̂r (see Appendix S2 for a derivation). When optimizing the rate constants with BPTT, we also find that
there is no good recovery of the original rate constants (Fig. 5, blue crosses). If our goal is thus to recover the rate
constants governing the data at hand, the ReLU activation function is not suitable and the sigmoid activation
function is a better option.

Learning a range of time scales.  In the previous sections, the learned rate constants were shared over
all neurons in the network. While this might be sufficient to describe processes with a single underlying pair of
rate constants, it might not be optimal to describe processes that are governed by a whole range of time scales.
To enhance the expressiveness of the network, we learn individual rate constants per neuron. Besides increasing
performance it could possibly provide insight in the range of time scales underlying the data, where data with a
single underlying time scale would lead to narrow range of learnt rate constants, and data with multiple different
underlying time scales would lead to a broad range of learned rate constants.

To test whether such a network that can learn individual rate constants per neuron is informative about
the range of time scales underlying a process, we generated data with different distributions of rate constants

αr

α s

αr

αr
αr

αr

α s
α s α s

α s α s

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

αr

Figure 2.   Grid search reveals optimal rate constants improve performance. Data were generated for six different
combinations of target rate constants. A grid search was performed for each of these target pairs, as shown in
the different panels (the target rate constants are marked by the green circle in every panel). The dashed lines
indicate the approximation where either α̂s = 1 or α̂r = 1 . The intersection of both dashed lines indicates the
Elman solution (blue circle). The region of lower loss for all generated data examples centers around the actual
values ( αs ,αr ) used to generate the data. This indicates that there is a performance benefit from choosing the
correct rate constants that is not compensated for by the recurrent interactions between neurons.

8

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

drawn from a truncated Gaussian distribution. Subsequently four different neural network models were trained.
A network with global adaptive rate constants and a network with local adaptive rate constants per unit were
compared against a standard Elman network and a network composed of the frequently used gated recurrent
units (GRU’s)35.

The learned distribution of rate constants was compared with the distribution of rate constants used to
generate the data. Figure 6A shows the standard deviation of the learned rate constants versus the standard
deviation of rate constants used to generate three different datasets. The network clearly learns to adjust its rate
constants to the underlying distribution of the data. The range of rate constants is recovered such that it can
inform us about the underlying rate constant distribution. At the same time the network with individual rate
constants outperforms the network without individual rate constants, the Elman network and the GRU network
(Fig. 6B). The largest performance difference is found for the dataset generated with the broadest range of rate
constants, demonstrating the benefit of learning individual rate constants on datasets with different underlying
processes. While the GRU network has three times as many parameters it performs worse than the network with
individual rate constants, showing the importance of a network that is architecturally similar to the process it
tries to model, making a case for such biologically plausible networks when modelling neural processes.

Adaptive time scales increase memory capacity.  Adaptive time scales can lead to slower dynamics
in a trained network. This should result in an enhanced capacity to retain memory over longer time scales. To
test this idea we designed a simple memory task where the memory length could be varied36. In this simple task
networks had to remember the input that the network received N time steps back, with N ∈ {5, 10, 20, 30, 40, 50} .
The longer back in time the network had to remember its input, the more difficult the task became, demanding
enhanced memory capacity. We compared the standard Elman network and GRU network, with a network with
a pair of global adaptive rate constants, and a network with local adaptive rate constants for every unit. Figure 7A
shows the performance of the networks on the different memory lengths. The standard Elman network is no
longer able to learn the task for retention periods beyond 10 steps, while both networks with adaptive rate
constants learn better than chance level until memory lengths of 40 steps. The memory capacity of the GRU

A B

Lo
g(
lo
ss
)

Lo
g(
lo
ss

)

αr

α s

αr

α s

Figure 3.   Optimizing rate constants through backpropagation. Instead of choosing the rate constants manually,
the BPTT algorithm was used to optimize them, along with the rest of the parameters of the network. (A) For
two combinations of target rate constants ( αs = 0.684 , αr = 0.34 , top panel) and ( αs = 0.34 , αr = 0.68 , bottom
panel) the optimization of the rate constants is plotted over the grid search results of Fig. 2. The target rate
constants are marked by a green circle. Different initializations of the rate constants were tested, as indicated by
the filled circles with different shades of green. The learned values after each epoch are marked by a cross of the
same color. The dashed lines indicate the approximation where either α̂s = 1 or α̂r = 1 . The intersection of both
dashed lines indicates the Elman solution (blue circle). Independent of initialization, the learned rate constants
all converge to the target rate constants, closely recovering the correct values. (B) The performance of the ARU
model with learnable rate constants was compared with the classical Elman model. The ARU model performed
significantly better than the Elman network (*p < 1 · 10−11 and * p < 1 · 10−6 for the top and bottom panels,
respectively) for both data sets (error bars represent standard error over 20 repetitions).

9

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

network is even larger, but this network uses three times as many parameters. To investigate how the adaptive
rate constants played a role in this increased memory capacity, we averaged the rate constants over successfully
trained models for the different memory lengths. The learned rate constants decreases for longer memory lengths
for both network models (Fig. 7B,C), indicating that the slower internal dynamics helped maintain memories
over longer time windows.

A hierarchy of time scales.  Recent findings have shown a hierarchy of time scales in the visual cortex with
lower visual areas responding at faster time scales to changes in visual input and higher visual areas responding
at slower time scales7. This raises the question whether such a hierarchy of time scales also emerges when we
stack multiple layers of ARU units, each able to adapt its own rate constant, on top of each other. To test this,
data with a combination of a fast (10 Hz) and slow (2 Hz) sinusoidal signal was generated. A two-layer recurrent
network was created consisting of ARU units with feedforward and feedback connections between both layers
(Fig. 8A). As a task, the first layer of the network had to predict the next time step of the signal given the current
time step of the signal. During learning the two layers of the network specialized their rate constants differently
to optimize the prediction of the signal (Fig. 8C). After successfully learning the task the network had developed
a hierarchy of rate constants, with the first layer having a faster rate constant responding to quick changes in the
signal and the second layer having a slower rate constant, responding to slower changes in the signal (Fig. 8B).

Discussion
Summary of results.  We showed that rate-based RNN models can improve performance by including
adaptive rate constants. In particular, we showed that a particular choice of the rate constants can in general
increase performance with respect to the commonly used approximations where αs , αr or both are set to 1.
Furthermore, we showed that these rate constants can be learned efficiently via the BPTT algorithm. The
learned rate constants recover the time scales underlying the original process, thus giving valuable insight in
the temporal structure of the data. The activation function plays an important role in recovering the time scales.
While a sigmoid activation function leads to recovery of both time scales, this is not the case for the ReLU
activation function. The recovery of the time scales is independent of the number of hidden units in the network.
Although a larger network is theoretically more flexible to compensate for suboptimal choices of rate constants,

N = 5

N = 30 N = 100

N = 10

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

αr

α s

αr

α s

αr

α s

αr

α s
Figure 4.   Effect of network size on recovering time parameters. The number of hidden units in the trained
model N was varied to test the effect on the loss landscape. The target model that generated the data of these
simulations was equipped with rate constants ( αs = 0.34 , αr = 0.68 ) as indicated with the green circle, and
10 hidden units. Networks with 5, 10, 30 and 100 hidden units were trained on the generated data. Both a
grid search over fixed rate constants was performed and networks with adaptive rate constants were trained
with their final learned rate constants indicated as blue crosses (20 repetitions). The dashed lines indicate the
approximation where either α̂s = 1 or α̂r = 1 . The intersection of both dashed lines indicates the Elman solution
(blue circle). A larger network size did not decrease the ability of the network to recover the underlying target
rate constants.

10

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

Sigmoid

Sigmoid ReLU

ReLU

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

Lo
g(
lo
ss
)

αr

α s

αr

α s

αr

α s

αr

α s
Figure 5.   Effect of activation function on recovering time parematers. Networks were either equipped with
a sigmoid activation function (left) or a ReLU activation function (right). For two combinations of target rate
constants ( αs = 0.68 , αr = 0.34 , upper panels) and ( αs = 0.34 , αr = 0.68 , lower panels) a grid search was
performed over fixed rate constants and networks with adaptive rate constants were trained with their final
learned rate constants indicated as blue crosses (40 repetitions). Target rate constants are indicated with a
green circle. The dashed lines indicate the approximation where either α̂s = 1 or α̂r = 1 . The intersection of
both dashed lines indicates the Elman solution (blue circle). The networks with a sigmoid activation function
have a region of lowest loss contained around the target values. However networks with an ReLU activation
function have a much wider basin of rate constants associated with minimal loss. Learned rate constants do not
recover the target rate constants for the ReLU activation function uniquely but form a band symmetric around
the diagonal αs = 0 , αr = 0 . The grid search loss region for the ReLU activation function is also symmetric
around the diagonal, indicating an interchangeability of rate constant α̂s and α̂r . This could be the result of the
interchangeability in the linear regime of the ReLU activation function (see Appendix S2).

A B

Figure 6.   Recovering a distribution of rate constants. Data was generated for three rate constant distributions
with increasing standard deviation (SD). Four different network models were tested, a standard Elman network,
a GRU network, a network with local adaptive rate constants and a network with global adaptive rate constants.
(A) Networks trained on this data adopted a range of rate constants with similar SD. (B) The model with local
rate constants performs best on the data, improving over the model with global rate constants, especially on data
generated from a distribution with high SD (error bars represent standard error over 20 repetitions).

11

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

this does not change the ability of the network to recover the correct values. When the dynamics of a data set are
governed by multiple time scales, the spread in rate constants is successfully recovered by a network where every
unit can learn an individual rate constant. Since slower rate constants can lead to longer memory retention, we
tested the ability of the networks to maintain memories over longer periods. The adaptive rate constants led to
an increased memory capacity compared to the standard Elman approximation. Two layers of ARU units were
stacked together to investigate whether a hierarchy of rate constants is learned from data composed of multiple
time scales. Indeed we find that the first layer of the network learned to respond at a fast time scale, while the
second layer learned to respond at a slow time scale, opening avenues to investigate such hierarchies of time
scales using RNNs.

Relation to previous work.  These results build on previous attempts to enhance RNNs by exploiting
the time scale of the dynamics of the data. Adaptive rate constants have been proposed in continuous neural
networks as a way to increase the expressiveness of an RNN28. In this work a purely theoretical derivation was
provided for learning rate constants and time delays of the continuous neural network units. Other work showed
that equipping neurons in a network with different fixed rate constants, could be beneficial on tasks having both
long-term and short-term temporal relations37. In this setting, however, rate constants could not be effectively
estimated through training. Similarly, different fixed rate constants improved performance for recurrent spiking
neural networks, approaching the performance of long short-term memory (LSTM) units38. More recent
work has shown that, by stacking multiple RNN layers with progressively slower fixed rate constants, better
performance was achieved on predicting motor patterns39. It has also been shown that adjusting rate constants
by numerical integration outperformed the adjustment of time delays in the context of a chaotic process29.
However, the computational cost of numerical integration hampered the extension to large-scale networks and
real world problems. More recent work has attempted to create modules in an RNN, each with its own fixed
temporal preference, to improve learning dynamical data with different temporal dependencies40. However,
these time scales are fixed by the architecture’s connections and can not be optimized during training. Here we
implemented the learning of rate constants using BPTT, with the benefit of easily extending the implementation
of such time scales to more complex network architectures.

A

B C

Figure 7.   Adaptive time scales increase memory capacity. Three different model variations were tested on
a memory capacity task. The number of time steps the input had to be remembered varied from 5 to 40. (A)
The model using standard Elman units had the lowest memory capacity, performing better than chance up
to memory lengths of 10 time steps. Both the model with global and local rate constants performed better
than chance up to memory lengths of 30 time steps (dashed line represents chance level, which is defined as
predicting the average over all time steps). (B, C) The models with adaptive rate constants learned slower rate
constants with increasing memory lengths, increasing the capacity to maintain memories over longer time scales
(error bars represent standard error over 20 repetitions).

12

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

Studies into the role of time scales in the brain have revealed a temporal hierarchy, much like the spatial
hierarchies found in the visual cortex7. Similar to the spatial hierarchy exhibited by the receptive fields of
neurons in the visual cortex, there is also a temporal hierarchy of neurons responding to fast stimulus changes
in early visual cortex, while neurons in higher visual cortex respond to slower changes. The possibility of
developing a hierarchical temporal structure has also been suggested in the context of cell assemblies; generic
densely interconnected groups of neurons that serve as representations of static or dynamic events of different
duration13,14. Such assemblies can be combined sequentially to represent events of complex temporal structure41,42.

A tempting explanation for the emergence of such a hierarchy is that the hierarchical causal structure of
the outside world shapes the representations of the brain8,15–17. Neural networks have been used to study the
emergence of a hierarchy of time scales in producing motor patterns39, showing a functional role of higher
layers with slow dynamics composing different motor primitives together in the lower layers with fast dynamics.
However, such hierarchies were partially imposed by fixing the time scales of subsequent layers to progressively
slower time scales. Here we show that when time scales are learned, such a hierarchy of time scales emerges
automatically from the data, without the need for imposing any architectural constraints. These results provide
promising avenues for investigating the emergence and functioning of a hierarchy of time scales in the brain.

Benefits of learning rate constants.  Learning rate constants can be useful when modeling neuroscientific
data. To gain deeper insight in the functional role of the hierarchy of time scales in the visual cortex, neural
networks with emerging hierarchies of time scales may be used as encoding models, similar to how spatial
hierarchies were successfully modelled by feedforward convolutional networks43. By training RNNs with
adaptive time scales to predict neural responses we can combine knowledge about the temporal structure of
the cortex with insight in the actual information that is processed by a neural population. Questions regarding
what properties of the data lead to the emergence of a hierarchy of time scales, and how task requirements can
influence the time scales which certain cortical areas are responsive to can be investigated through such models
and validated against experimental data.

Another example stems from the motor control literature. The motor patterns formed by the brain are thought
to be composed of smaller motor ‘primitives’25. These primitives can be combined in a temporal sequence by a
hierarchical process, where a slower process composes these primitives in meaningful motor patterns. Again,
our approach could gain insight in which parts of the motor cortex represent these slower processes and which
parts represent the faster primitives processes. Our approach can help us gain valuable insight in the functional
relevance of the many dynamical processes in the brain.

B C
xt

r(1)t-1

I(1)t-1

r(1)t

I(1)t

ARU

xt+1

r(1)t+1

I(1)t+1

ARU

r(2)t-1

I(2)t-1 I(2)t

ARU
I(2)t+1

ARU

r(2)t r(2)t+1

A

Layer 1

Layer 2

Figure 8.   Learning a hierarchy of time scales. (A) A two-layer recurrent neural network was created, consisting
of ARUs with a global rate constant per layer. Both layers were connected through feedfoward and feedback
connectivity. (B) A hierarchy of time scales emerged with the rate constants learned by the first supporting
much faster dynamics than the rate constants learned by the second layer (error bars represent standard error
over 20 repetitions). (C) Example of learning trajectory of rate constants in both layers over 100 training epochs
(trajectories for αr have been offset by 0.01 for visibility).

13

Vol.:(0123456789)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

Besides modeling neuroscientific data, learning rate constants can also be useful in machine learning
applications. Building intelligent models to learn complex dynamical tasks, could benefit from artificial neurons
that can learn and adapt to the time scales relevant for the problem at hand. Similar to the brain, artificial systems
are often trained on natural data, where processes evolve over different time scales and certain information
remains relevant over longer time scales while other information is only relevant for a very short period of
time. An interesting application is the generation of natural movements for robots. It has been shown that using
different time scales in a hierarchical model improves the learned motor patterns25,39,44. Similarly, the recognition
of actions performed by humans from video data has been shown to benefit from such an temporal hierarchical
structure45,46. However, setting such a hierarchy of time scales by hand is cumbersome and does not guarantee
optimal results. Including the learning of these time scales in the optimization of the network ensures automatic
optimization and could lead to the automatic emergence of models with relevant hierarchical time scales.

Future work.  Our approach enables researchers to build more expressive neural network models, and at the
same time recover relevant temporal information from the data. Building towards large-scale models to predict
brain responses over a large number of areas will gain us valuable insight in the dynamics of brain processes.
Extensions towards learning time delays between brain areas or learning rate constants that can be modulated by
the input are promising future steps. Keeping such complex models well-behaved during optimization, without
falling prey to local optima, is an important challenge for future work. On the other hand there is the challenge
of keeping networks interpretable by letting the network learn relevant biological parameters (such as rate
constants or time delays). Further work is needed to investigate how well such parameters can be recovered in
large and complex networks where such complex dynamics might emerge that learning the correct parameters
can be circumvented47.

Conclusions
We found that making standard RNN models more biologically plausible by introducing learnable rate constants
improves performance of the model and increases its memory capacity, while at the same time enabling us to
recover the time scales of the underlying processes from the data. Gaining explicit knowledge about the time
scales at which processes unfold can improve our understanding of hierarchical temporal dynamics in the
brain. At the same time, facilitate explicit time scales the creation of more expressive and interpretable machine
learning models, which shows that embracing principles of neural computation can help us to develop more
powerful AI systems48.

Received: 20 March 2020; Accepted: 16 June 2020

References
	 1.	 Dayan, P. & Abbott, L. F. Theoretical Neuroscience (MIT Press, Cambridge, 2001).
	 2.	 Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. In Advances in Neural Information

Processing Systems 3104–3112 (2014).
	 3.	 Mikolov, T., Yih, W. & Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 746–751
(2013).

	 4.	 Song, H. F., Yang, G. R. & Wang, X.-J. Reward-based training of recurrent neural networks for cognitive and value-based tasks.
eLife 6, e21492 (2017).

	 5.	 van Gerven, M. A. J. A primer on encoding models in sensory neuroscience. J. Math. Psychol. 76, 172–183 (2017).
	 6.	 Quax, S. C. & van Gerven, M. A. J. Emergent mechanisms of evidence integration in recurrent neural networks. PLoS ONE 13,

e0205676 (2018).
	 7.	 Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci.

28, 2539–2550 (2008).
	 8.	 Kiebel, S. J., Daunizeau, J. & Friston, K. J. A hierarchy of time-scales and the brain. PLoS Comput. Biol. 4 (2008).
	 9.	 Hari, R., Parkkonen, L. & Nangini, C. The brain in time: Insights from neuromagnetic recordings. Ann. N. Y. Acad. Sci. 1191, 89

(2010).
	10.	 Geerligs, L., van Gerven, M. A. J., Campbell, K. L. & Güçlü, U. Timescales and functional organization of neural event segmentation

in the human brain. Zenodo (2019).
	11.	 Hubel, D. H. & Wiesel, T. N. Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and

magnification factor. J. Comp. Neurol. 158, 295–305 (1974).
	12.	 Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721 (2017).
	13.	 Braitenberg, V. Cell assemblies in the cerebral cortex. In Theoretical Approaches to Complex Systems, 171–188 (Springer, Berlin,

1978).
	14.	 Palm, G. Neural Assemblies. An Alternative Approach to Artificial Intelligence (Springer, Berlin, 1982).
	15.	 Lerner, Y., Honey, C. J., Silbert, L. J. & Hasson, U. Topographic mapping of a hierarchy of temporal receptive windows using a

narrated story. J. Neurosci. 31, 2906–2915 (2011).
	16.	 Honey, C. J. et al. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).
	17.	 Diaconescu, A. O. et al. A computational hierarchy in human cortex. arXiv preprint arXiv​:1709.02323​ (2017).
	18.	 Abbott, L. Decoding neuronal firing and modelling neural networks. Quart. Rev. Biophys. 27, 291–331 (1994).
	19.	 Adrian, E. D. & Bronk, D. W. The discharge of impulses in motor nerve fibres. J. Physiol. 67, 9–151 (1929).
	20.	 Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520 (1996).
	21.	 Gerstner, W. & Kistler, W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press,

Cambridge, 2002).
	22.	 Gerstner, W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Comput. 12, 43–89

(2000).
	23.	 Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory recurrent neural networks for cognitive tasks: A simple and

flexible framework. PLoS Comput. Biol. 12, e1004792 (2016).

http://arxiv.org/abs/1709.02323

14

Vol:.(1234567890)

Scientific Reports | (2020) 10:11360 | https://doi.org/10.1038/s41598-020-68169-x

www.nature.com/scientificreports/

	24.	 Miconi, T. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive
tasks. eLife 6, e20899 (2017).

	25.	 Tani, J. Self-organization and compositionality in cognitive brains: A neurorobotics study. Proc. IEEE 102, 586–605 (2014).
	26.	 Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).
	27.	 Tani, J. Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-Organizing Dynamic Phenomena (Oxford University

Press, Oxford, 2016).
	28.	 Pearlmutter, B. A. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Netw. 6, 1212–1228

(1995).
	29.	 Draye, J. P., Pavisic, D., Cheron, G. & Libert, G. Adaptative time constants improve the prediction capability of recurrent neural

networks. Neural Process. Lett. 2, 12–16 (1995).
	30.	 Tokui, S., Oono, K., Hido, S. & Clayton, J. Chainer: a next-generation open source framework for deep learning. In Proceedings of

Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing
Systems (NIPS), Vol. 5 (2015).

	31.	 Le, Q. V., Jaitly, N. & Hinton, G. E. A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv​
:1504.00941​ (2015).

	32.	 Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639
(1964).

	33.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv​:1412.6980 (2014).
	34.	 Schäfer, A. M. & Zimmermann, H. G. Recurrent neural networks are universal approximators. In International Conference on

Artificial Neural Networks 632–640 (2006).
	35.	 Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv​:1409.1259 (2014).
	36.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
	37.	 Mozer, M. C. Induction of multiscale temporal structure. In Advances in Neural Information Processing Systems 275–282 (1992).
	38.	 Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long short-term memory and learning-to-learn in networks of

spiking neurons. Advances in Neural Information Processing Systems 787–797 (2018).
	39.	 Yamashita, Y. & Tani, J. Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot

experiment. PLoS Comput. Biol. 4, e1000220 (2008).
	40.	 Koutnik, J., Greff, K., Gomez, F. & Schmidhuber, J. A clockwork RNN. arXiv preprint arXiv​:1402.3511 (2014).
	41.	 Wennekers, T. Operational cell assemblies as a paradigm for brain-inspired future computing architectures. Neural Inform. Process.

Lett. Rev. 10, 135–145 (2006).
	42.	 Palm, G., Knoblauch, A., Hauser, F. & Schüz, A. Cell assemblies in the cerebral cortex. Biol. Cybern. 108, 559–572 (2014).
	43.	 Güçlü, U. & van Gerven, M. A. J. Deep neural networks reveal a gradient in the complexity of neural representations across the

ventral stream. J. Neurosci. 35, 10005–10014 (2015).
	44.	 Nishimoto, R. & Tani, J. Development of hierarchical structures for actions and motor imagery: A constructivist view from synthetic

neuro-robotics study. Psychol. Res. PRPF 73, 545–558 (2009).
	45.	 Jung, M., Hwang, J. & Tani, J. Self-organization of spatio-temporal hierarchy via learning of dynamic visual image patterns on

action sequences. PLoS ONE 10, e0131214 (2015).
	46.	 Lee, H., Minju, J. & Tani, J. Characteristics of visual categorization of long-concatenated and object-directed human actions by a

multiple spatio-temporal scales recurrent neural network model. arXiv preprint arXiv​:1602.01921​ (2015).
	47.	 Al-Falou, A. & Trummer, D. Identifiability of recurrent neural networks. Econom. Theory 19, 812–828 (2003).
	48.	 Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M. & Tolias, A. S. Engineering a less artificial intelligence. Neuron 103, 967–979 (2019).

Acknowledgements
This research was supported by VIDI grant number 639.072.513 of The Netherlands Organization for Scientific
Research (NWO).

Author contributions
S.C.Q., M.D. and M.A.J.G. wrote the main manuscript text. S.C.Q. and M.D. ran the simulations illustrated in
the manuscript and prepared the figures. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-68169​-x.

Correspondence and requests for materials should be addressed to S.C.Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1602.01921
https://doi.org/10.1038/s41598-020-68169-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Adaptive time scales in recurrent neural networks
	Anchor 2
	Anchor 3
	Methods
	Synaptic coupling between neurons.
	From spiking to rate-based models.
	Discrete approximation of the recurrent dynamics.
	Time scale assumptions.
	Optimizing rate constants.
	Adaptive time scales recurrent neural network.
	Simulations.
	Influence of rate constants.
	Learning optimal rate constants.
	Learning individual rate constants.
	Testing memory capacity.

	Results
	Optimal rate constants improve performance.
	Learning optimal rate constants through backpropagation.
	Influence of network size on time scale recovery.
	Time scale recovery depends on activation function.
	Learning a range of time scales.
	Adaptive time scales increase memory capacity.
	A hierarchy of time scales.

	Discussion
	Summary of results.
	Relation to previous work.
	Benefits of learning rate constants.
	Future work.

	Conclusions
	References
	Acknowledgements

