Skip to main content
. 2020 Jun 22;20(12):3534. doi: 10.3390/s20123534
Algorithm 4 Identifying an estimate of acceptable uncertainty
Require: Data DN(t)={yωN(t),yaN(t)},t{1,,T}, number of Monte Carlo samples L, maximum acceptable uncertainty Emax, threshold for minimum number of sequential estimates with acceptable deviation nmin.
  • 1:

    n0

  • 2:

    fort{1,,T}do

  • 3:

        Obtain an estimate j^=j(x^) by solving the optimization problem (22) using the data DN(t) and Algorithm 1.

  • 4:

        Obtain j^(t) from (66).

  • 5:

        Compute the covariance matrix Px according to (57).

  • 6:

        Compute μz and Pz according to the Monte Carlo method (62)–(65).

  • 7:

        Compute SEQAD(t),t(tnmin+1,t) as in (67).

  • 8:

        if μz+2σ<Emax AND max{SEQAD(t)}<Emaxthen

  • 9:

            return j^(t).

  • 10:

        end if

  • 11:

    end for