Table 1.
Overall performance comparison. SAE–DNN: deep neural network with stacked autoencoders; LR: liner regression; RFR: random forest regression; SVR: support vector regression; DNNs: deep neural networks; CNNs: convolutional neural networks.
| Method. (Stage1 + Stage2) | MSE | Method (Stage1 + Stage2) | MSE | ||
|---|---|---|---|---|---|
| LR + CNNs | 77.59 | 0.59 | SVR + ConvGRU | 56.14 | 0.72 |
| LR + ConvLSTM | 72.39 | 0.61 | SVR + ResNet | 49.58 | 0.77 |
| LR + ConvGRU | 70.65 | 0.63 | DNNs + CNNs | 59.54 | 0.72 |
| LR + ResNet | 65.23 | 0.65 | DNNs + ConvLSTM | 54.28 | 0.78 |
| RFR + CNNs | 59.75 | 0.62 | DNNs + ConvGRU | 54.69 | 0.79 |
| RFR + ConvLSTM | 55.96 | 0.66 | DNNs + ResNet | 45.98 | 0.81 |
| RFR + ConvGRU | 54.29 | 0.68 | SAE-DNNs + CNNs | 50.87 | 0.79 |
| RFR + ResNet | 47.68 | 0.72 | SAE-DNNs + ConvLSTM | 48.85 | 0.83 |
| SVR + CNNs | 65.49 | 0.68 | SAE-DNNs + ConvGRU | 49.58 | 0.83 |
| SVR + ConvLSTM | 55.97 | 0.7 | SAE-DNNs + ResNet | 40.25 | 0.86 |
The bold denotes to the best performance.