Skip to main content
. 2020 Jun 12;20(12):3348. doi: 10.3390/s20123348

Table 1.

Overall performance comparison. SAE–DNN: deep neural network with stacked autoencoders; LR: liner regression; RFR: random forest regression; SVR: support vector regression; DNNs: deep neural networks; CNNs: convolutional neural networks.

Method. (Stage1 + Stage2) MSE R2 Method (Stage1 + Stage2) MSE R2
LR + CNNs 77.59 0.59 SVR + ConvGRU 56.14 0.72
LR + ConvLSTM 72.39 0.61 SVR + ResNet 49.58 0.77
LR + ConvGRU 70.65 0.63 DNNs + CNNs 59.54 0.72
LR + ResNet 65.23 0.65 DNNs + ConvLSTM 54.28 0.78
RFR + CNNs 59.75 0.62 DNNs + ConvGRU 54.69 0.79
RFR + ConvLSTM 55.96 0.66 DNNs + ResNet 45.98 0.81
RFR + ConvGRU 54.29 0.68 SAE-DNNs + CNNs 50.87 0.79
RFR + ResNet 47.68 0.72 SAE-DNNs + ConvLSTM 48.85 0.83
SVR + CNNs 65.49 0.68 SAE-DNNs + ConvGRU 49.58 0.83
SVR + ConvLSTM 55.97 0.7 SAE-DNNs + ResNet 40.25 0.86

The bold denotes to the best performance.