Skip to main content
. 2020 Jun 11;10(6):364. doi: 10.3390/brainsci10060364

Table 4.

Best-fitting models of age prediction and adjusted R2 for each class and each harmonization technique for the three regression algorithms SVR, Random Forest and Lasso.

Harmonization Technique Class SVR RF Lasso
No harmonization NC y^=0.02y2+1.6y3.25 y^=0.01y2+1.16y+1.3 y^=0.02y2+1.5y2.6
R2=0.80 R2=0.82 R2=0.79
ASD y^=0.02y2+1.54y2.3 y^=0.006y2+0.88y+3.8 y^=0.02y2+1.7y4.2
R2=0.79 R2=0.81 R2=0.78
Age covariate NC y^=0.01y2+1.4y2.5 y^=0.01y2+0.65y+4.3 y^=0.01y2+1.4y1.8
R2=0.80 R2=0.83 R2=0.80
ASD y^=0.01y2+1.4y2.7 y^=0.65y+5.7 y^=0.02y2+1.6y3.7
R2=0.83 R2=0.80 R2=0.79
No age covariate NC y^=0.01y2+0.93y+5.4 y^=0.01y2+1.22y+2.44 y^=0.01y2+0.82y+8.2
R2=0.48 R2=0.68 R2=0.40
ASD y^=0.0005y30.04y2+1.3y+5.6 y^=0.0003y30.03y2+1.4y+2.4 y^=0.0006y30.04y2+1.2y+6.9
R2=0.33 R2=0.66 R2=0.30