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ABSTRACT: Ionic liquids (ILs) are a special category of molten salts solely composed of
ions with varied molecular symmetry and charge delocalization. The versatility in combining
varied cation−anion moieties and in functionalizing ions with different atoms and molecular
groups contributes to their peculiar interactions ranging from weak isotropic associations to
strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular
interactions facilitates the formation of heterogeneous microstructures and liquid
morphologies, which further contributes to their striking dynamical properties. Micro-
structural and dynamical heterogeneities of ILs lead to their multifaceted properties
described by an inherent designer feature, which makes ILs important candidates for novel
solvents, electrolytes, and functional materials in academia and industrial applications. Due
to a massive number of combinations of ion pairs with ion species having distinct molecular
structures and IL mixtures containing varied molecular solvents, a comprehensive
understanding of their hierarchical structural and dynamical quantities is of great significance
for a rational selection of ILs with appropriate properties and thereafter advancing their
macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate
interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding
heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
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1. INTRODUCTION

Ionic liquids (ILs) are liquid molten salts, typically composed
of bulky and asymmetrical organic cations and organic or
inorganic anions with their melting points below 100 °C. The
history of ILs generally credits the German chemist Paul
Walden with the first documented salt material at ambient
temperature in 1914.1 He synthesized an ionic salt, ethyl-
ammonium nitrate (EAN), which displays a melting point of
12 °C and a rather low viscosity. Unfortunately, apart from a
brief mention of this work in a study of parachor and chemical
constitutions of some fused metals and salts in 1929,2 this early
report did not receive much consideration from various
scientific communities, and it was not anticipated that such salt
materials would become of widespread interest in the future.
Nearly 40 years later, Hurley and Wier recognized the

potential benefit of decreasing melting points of molten salt
materials via synthesis of organic chloroaluminates by mixing
aluminum compounds with alkylpyridinium chloride salts. The
obtained organic chloroaluminates are now considered as the
first generation of ILs.3 However, these haloaluminate ILs
suffer from their high sensitivity to atmospheric moisture and
thus require handling under strict anhydrous conditions to
avoid their hydrolysis. In addition, it is not feasible to regulate
their acidity and basicity.3 More specific investigations of these
haloaluminate compounds started in the 1970s.4,5 In the
1980s, ILs were proposed as solvents for organic synthesis, and
scientific interest in ILs began to spread and the range of
investigations began to broaden. A significant contribution
from Wilkes and Zaworotko on “Air and water stable 1-ethyl-3-
methylimidazolium based ionic liquids” in 1992 is seen by most
researchers as ushering a new stage for the development of
ILs,5,6 even though some ILs had been predicted previously7

and other air- and moisture-stable ILs have been used in
laboratory settings.8 Unlike haloaluminate salts, this new
generation of ILs can be obtained, handled, and stored outside
a glovebox. By a careful selection of cation−anion combina-
tions, it is possible to prepare a large variety of ILs. These
pioneering works and significant breakthroughs in IL
communities opened up avenues for a surge of research on
ILs and initiated paramount research activities across areas of
physics, chemistry, biology, materials science and engineering,
and environmental science, which are subjects of numerous
reviews,9−34 special themed issues in prestigious journals,35−42

and book chapters.43−49

ILs have multifaceted and remarkable physicochemical
characteristics, such as negligible volatilities, reasonable

conductivity−viscosity properties, extended liquid-state tem-
perature ranges, wide electrochemical windows, high thermal-
and chemical-oxidative stabilities, as well as excellent
capabilities to dissolve liquid and solid solute molecules having
distinct polarities.25,50 An additional fascinating character of
ILs is that these physicochemical quantities related to
hydrophobicity, polarity, and solvent power as well as their
microstructural organization can be widely tuned by
combinations of different cations and anions, by introducing
a controllable amount of solutes in IL matrixes, and by
mutating specific atoms in constituent ions.25,50 Therefore, ILs
are always referred to tunable, tailorable, task-specific, and
designer solvents. These striking features render ILs as
dependable candidates and benign alternatives to conventional
molecular solvents in material synthesis to control precise
structures and patterns of nanomaterials;23,24 valuable reaction
media in catalytic chemistry to provide optimized chemical
enantioselectivity;24,51 promising working fluids in separation
technology via absorption of specific gas molecules;29,52 unique
tunable platforms to design task-specific advanced materials to
dissolve celluloses and proteins;23,29 reliable solvent electro-
lytes in electrochemical devices with tunable electrochemical
windows and ion conductivities;14,19,53−57 and useful lubricants
and lubricant additives in tribology to reduce frictions between
solid sliding contacts under harsh conditions.22,30,58 As a result
of enormous number of promising applications, the playing
field for additional applications and related investigations for
physicists, chemists, biologists, materials scientists, and
engineers is vast and has yet to see its limitation.
The rapid upswing and wide applications of ILs in academia

and industrial communities stem from a direct consequence of
peculiar intra- and intermolecular interactions among con-
stituent ions. These molecular interactions range from weak,
isotropic, and nonspecific forces (e.g., solvophobic, van der
Waals (vdW), dispersion forces, etc.) to strong (Coulombic),
anisotropic, and specific forces (e.g., charge, dipole, and
multiple interactions as well as hydrogen bonding (HB)
interactions, etc.). Favorable vdW and dispersion associations
among apolar moieties and decisive Coulombic interactions
among polar moieties in constituent ions are key driving forces
to construct remarkable liquid structures in IL matrixes.18,30 In
addition, Coulombic interactions among ion species are
isotropic, which enables a substantial assortment of secondary
directional interactions, such as dipole−dipole, dipole−
induced dipole, multipoles, and possible π−π stacking
interactions as well as HB coordinations between ion species
having heteroaromatic rings with delocalized charges.17,59−61

These delicate interactions have considerable entropic
contribution, facilitate additional stabilization, and direct the
formation of remarkable ion clusters, paving the road for
complex, higher order self-assembled liquid structures of ILs in
bulk liquids and in confined environments.15,18,30,62,63

Moreover, not all but a vast number of ILs can be
categorized as having polar and apolar components, and
therefore can be regarded as nanosegregated fluids with polar
(apolar) networks permeated by apolar (polar) domains. A
subtle balance of intermolecular interactions between con-
stituent ions and associations between polar and apolar
components defines their peculiar transport properties
including thermal conductivities (for heat transfer), liquid
viscosities (for momentum transfer), and diffusion coefficients
(for mass transfer). In addition, ion (electrical) conductivities
of ILs are significant64,65 as ILs are solely composed of ions.
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These properties play central roles in electrochemical
applications.
ILs are generally much more viscous than their neutral

binary mixture counterparts,66−68 and some ILs become less
viscous when ion charges are more homogeneously distributed
over molecular frameworks or with addition of molecular
solutes to IL matrixes. These aspects are expected to weaken
Coulombic interactions among constituent ions and thereafter
influence their dynamic properties. ILs exhibit slow dynamics
that are typically characterized by subdiffusivities and
nonexponential relaxations. The overall nonexponential
dynamics of ILs are ascribed to a superposition of exponential
relaxations of constituent ions with different relaxation
times,66,69 which is in accordance with relaxations of glass
forming liquids,70 colloids, and polymer melts71 that exhibit
distinct structural and dynamical heterogeneities at extended
spatiotemporal scales.
Microstructural and dynamical heterogeneities are hallmark

features of striking properties that ILs can possess. To date,
almost all known physical chemistry techniques have been
adopted to study these heterogeneities of ILs. Spectroscopic
experiments (two-dimensional infrared (2D IR) spectrosco-
py,72−75 dielectric spectroscopy,76,77 direct recoil spectroscopy
(DRS),78,79 Fourier transform-infrared (FT-IR) spectrosco-
py,80−82 light scattering spectroscopy,83,84 nuclear magnetic
resonance (NMR) spectroscopy,85−88 optical-heterodyne-
detected optical Kerr effect (OHD-OKE) spectroscopy,89−95

sum frequency generation (SFG) vibrational spectrosco-
py,96−101 ultrafast infrared spectroscopy,91−93,102 neutron
diffraction,103,104 reflectivity105−107 and scattering spectros-
copies,108−113 X-ray photoelectron spectroscopy (XPS),114−116

X-ray diffraction (XRD),117,118 X-ray reflectivity (XRR),119−122

and X-ray scattering spectroscopies,123−126 etc.), atomic force
microscopy (AFM),127−130 scanning tunneling microscopy
(STM),131−134 surface force techniques (surface force
apparatus (SFA),135,136 and surface force balance
(SFB)137−140), polarization sensitive pump−probe (PSPP)
measurements,75,141 and computer simulations (density func-
tional theory (DFT) calculations,142−151 ab initio,152−154

atomistic,75,150,155−181 and coarse-grained (CG) molecular

dynamics (MD) simulations55,66−68,133,182−185) have provided
tremendous insights into heterogeneous microstructures and
dynamics of ILs in bulk liquids, in mixtures with cosolvents,
and in interfacial regions.
The purpose of this review is to trace recent advances in

understanding striking and complex phase behaviors of ILs and
to describe how delicate interplay of strong interactions and
weak associations underpins their complex physicochemical
properties with a particular emphasis on microstructural and
dynamical heterogeneities of ILs at varied conditions. The
versatility in combining different cations and anions with
varied charge delocalization, and the flexibility in mutating
specific atoms in constituent ions indicate that a huge number
of ILs with distinct physicochemical and structural properties is
accessible for applications. It is predicted that there are ∼106
pure ILs that can be easily prepared in laboratory, leading to a
possibility of 1012 binary combinations and 1018 ternary IL
mixtures potentially available.9 These numbers are still growing
exponentially due to advanced synthetic procedures and
technologies. It is difficult to coordinate microstructural and
dynamical heterogeneities of all possible ILs. Therefore, in this
contribution, we mainly focus on four IL families consisting of
imidazolium, pyrrolidinium, (tetra)alkylammonium, and tet-
raalkylphosphonium cations due to their extensive usage in
industrial applications. The anions of interest are the most
popular ones, which can be either inorganic or organic entities
including halides, nitrate ([NO3]), tetrafluoroborate ([BF4]),
hexafluorophosphate ([PF6]), acetate ([OAc]), alkylphos-
phate, alkylsulfonate, alkylsulfate ([CnSO4]), trifluoromethyl-
sulfonate ([TFO]), bis(trifluoromethanesulfonyl)imide
([NTF2]), and orthoborates. A nonexhaustive list of ion
species discussed in this review is provided in Figure 1.

2. PURE IONIC LIQUIDS

In IL community, ILs were originally assumed to fall within a
conventional scheme of molecular liquids as coherent,
irregular, and essentially homogeneous systems.4,17,18 Bulk
ILs were widely treated as similar to high-temperature molten
salts (like NaCl) or highly concentrated salt solutions.
However, more recently it has been determined that ILs

Figure 1. Chemical structures of typical cations and anions. Cations: dialkylimidazolium ([CnCmIM]), trialkylimidazolium, dialkylpyrrolidinium
([CnCmPYRR]), 1-alkyl-methylpiperidinium ([CnMPIP]), N-alkylpyridinium ([CnPYRI]), alkylammonium, tetraalkylammonium ([Ni,j,k,l]),
tetraalkylphosphonium ([Pi,j,k,l]), 2-hydroxyethyl-trimethylammonium (cholinium, [CH]), and di-imidazolium ([Cn(MIM)2]). Anions: halides,
nitrate, tetrafluoroborate, hexafluorophosphate, acetate, thiocyanate, dicyanamide, tricyanomethanide, tetracyanoborate, methylsulfate,
trifluoromethanesulfonates, bis(trifluoromethylsulfonyl)imide, bis(oxalato)borate, and bis(mandelato)borate. Adapted with permission from ref
13. Copyright 2017 American Chemical Society.
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present diverse ordering structures compared to conventional
molecular liquids driven by a combination of short-range HB,
vdW, and solvophobic interactions and long-range Coulombic
associations among constituent ions. Generally, ion inter-
actions impose a degree of short-range ordering structures (ion
pairs, ion clusters, etc.) and result in distinct mesoscopic
organization (HB networks, amphiphilic combinations of polar
and apolar components, micelle-like and bicontinuous liquid
morphologies) in IL matrixes. ILs exhibit structural hetero-
geneities at multiple length scales, which is one of the most
distinctive properties of ILs, and therefore it is feasible to fine-
tune ILs’ physicochemical and structural properties with
desirable macroscopic functionalities for promising applica-
tions.

2.1. IL Crystal Structures

IL crystal structures provide clues to their liquid structures
especially for local intermolecular interactions. Alkylammo-
nium nitrate ILs are the most studied ILs since they are the
first ILs ever synthesized in laboratory.1 Bodo et al. reported
crystal structure of methylammonium nitrate (MAN) using
experimental techniques and DFT calculations.186 A solid
phase existing at high temperatures is a polymorph and has a
high degree of disorder, corresponding to an ionic plastic phase
where both cations and anions retain a more or less fixed
reticular position. [NO3] anions are asymmetrically coordi-
nated with MA cations via HB interactions, that is, a given
[NO3] anion is not engaged in three equally strong HBs;
instead, one HB is significantly weaker than the other two
(Figure 2A). Such an asymmetric HB structure was also
observed in theoretical calculations of MAN ion clusters.187,188

It should be noted that there is no nanoscale apolar segregation
in MAN as methyl groups are too small. For alkylammonium
cations with alkyl chains longer than C1, the corresponding
nitrate ILs present some long-range ordering structures over a
nanometer length scale, which stem from self-assembly of
hydrophobic alkyl chains within polar networks.108,189−195

The crystal structure of ethanolammonium nitrate (EtAN)
consists of two lamellar-like layers composed of EtA cations
taking vertical configurations (Figure 2B).196 Half of [NO3]
anions are located between neighboring ammonium moieties
forming polar domains, and the other [NO3] anions are
interspersed between ethyl chains. Lengthening alkyl chains in
alkylammonium cations leads to distinct structures as observed
in propylammonium nitrate (PAN) (Figure 2C) and
butylammonium nitrate (BAN) ILs (Figure 2D).188,198

Raman spectra revealed that PA cations exhibit trans
conformations in low temperature crystalline phase and
undertake a crystal polymorphism transition with increasing
temperatures to a phase in which PA cations are characterized
by gauche conformations. Such a structural rearrangement

takes place both in polar domains, in which there is a
dominance of Coulombic and HB interactions between
ammonium groups and [NO3] anions and in apolar domains,
where there are strong vdW interactions among alkyl groups.
The distorted cation−anion structures remain in the liquid
phase at high temperatures but can be arrested in isles with
distinct microscopic heterogeneities at high pressures.
The temperature dependence of ethylammonium chloride

(EAC) and propylammonium chloride (PAC) crystal
structures was investigated by in situ X-ray powder diffraction
spectroscopy.199−201 A polymorphic transition, with a
reconstructive character, was observed for PAC from a
monoclinic phase formed at low temperatures to a tetragonal
phase formed at high temperatures. For EAC polymorphs, the
thermal expansion is small and anisotropic, which is attributed
to EAC’s liquid organization characterized by an anisotropic
framework consisting of apolar and polar domains, whereas an
isotropic thermal expansion was observed for PAC attributing
to striking intermolecular interactions between nitrogen atoms
in PA cations and Cl anions. In addition, microscopic
isostructurality was reported for other PA halides (Br and I)
at room temperature.200

In contrast to alkylammonium ILs, imidazolium ILs show
different crystal structures depending on anion structures and
cation alkyl chain lengths. [C2MIM] ILs were extensively
studied because they exhibit low melting points and high ion
conductivities. When [C2MIM] cations are coordinated with
halides, [C2MIM]F is unstable and has never been isolated
under ambient conditions.202 [C2MIM]Cl exhibits an ortho-
rhombic crystal structure containing four ion pairs in an
asymmetric unit cell,203 in which Cl anions are situated in
positions with characteristic C−H···Cl HB interactions. Similar
HB structures were also observed in [C2MIM]Br and
[C2MIM]I crystals.204 [C2MIM][BF4] exhibits a peculiar
monoclinic crystal structure in which [C2MIM] cations exhibit
one-dimensional (1D) pillar structures with one imidazolium
ring facing the next one, and they are linked by H-
(methylene)···π interactions,205 whereas in ILs consisting of
[C2MIM] cations and hexafluorocomplex anions, [C2MIM]
cations form a similar 1D pillar structure with anions
positioned in a zigzag arrangement along the same
direction.195,202

XRD spectra showed that multiple polymorphs with
rotational cation isomers are obtained for ILs consisting of
[C4MIM] cations coupled with Cl, Br, I, [BF4], and [PF6]
anions at crystalline and liquid states.206 Both monoclinic
crystal structures with trans−trans configurations and ortho-
rhombic crystal structures having gauche−trans configurations
are available depending on conformations of butyl chains in
cations and their delicate associations with anions. In

Figure 2. Molecular packing of (A) MAN and (B) EtAN crystal structures. Reproduced with permission from ref 186. Copyright 2011 American
Chemical Society. Reproduced with permission from ref 196. Copyright 2012 Royal Society of Chemistry. Minimum energy structures of (C) PAN
and (D) BAN ILs determined from atomistic simulations. Reproduced with permission from ref 188. Copyright 2012 American Chemical Society.
(E) Unit cell of [C12MIM][PF6] crystal structure. Reproduced with permission from ref 197. Copyright 1998 Royal Society of Chemistry.
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monoclinic [C4MIM]Cl crystal structure, butyl chains take a
trans−trans conformation, while in orthorhombic [C4MIM]Cl
and [C4MIM]Br crystal structures, butyl chains exhibit
gauche−trans conformations. Complementary Raman spec-
tra207 revealed that [C4MIM] cations in these ILs form
mesostructures in liquid regions that are similar to column
structures found in crystals.206 Two different mesoscopic
rotational isomers coexist in IL matrixes and are crucial in
hindering crystallization of [C4MIM] ILs.208,209

Imidazolium cations with alkyl chains longer than C14 can
form a thermotropic smectic liquid crystal phase between
liquid and solid states, which is similar to that observed in
alkylammonium ILs with cations having long alkyl chains and
some other protic ILs with cations having intermediate alkyl
chains.10,210 ILs consisting of halide anions and 1-alkyl-3-
methylimidazolium ([CnMIM]) cations with n = 12−18
exhibit bilayer crystal lattices,197 in which anion species and
imidazolium rings form polar sheets that are separated by
apolar domains consisting of interdigitated cation alkyl chains.
The interlayer distance between polar sheets ranges from 2.4 to
3.3 nm depending on cation alkyl chain length (Figure 2E).
The thermal behavior of a series of ILs consisting of [CnMIM]
cations (n = 12−18) and anions having different coordinating
abilities and sizes from Cl to [NTF2] was studied using small-
angle X-ray scattering (SAXS) experiments and differential
scanning calorimetry (DSC).211 These ILs form lamellar,
sheetlike arrays in crystalline phase and enantiomeric
structures in the smectic liquid crystal phase at higher
temperatures, except for ILs containing [NTF2] anions which
directly melt and form isotropic liquids. Layer spacing in
crystal mesophase determined from SAXS spectra increases
with cation alkyl chain length and with coordination ability of
anions, following an order of Cl > Br > [BF4] > [TFO] >
[NTF2].
Among many different anion species, [NTF2] anions exhibit

striking behavior due to their diffuse charge distribution. The
delocalized negative charge along S−N−S core in [NTF2]
anion reduces ion−ion interactions and results in a suppression
of liquid-crystallinity and fluidizes imidazolium ILs with low
melting points.212 XRD, vibrational spectra, and DFT
calculations213,214 showed that [NTF2] anions adopt a higher
energy, less stable cis geometry in [C1MIM][NTF2] con-
strained by bifurcated C−H···O and C−H···N HBs resulting in
the formation of fluorous layers in solid state structures.

2.2. Hydrogen Bonding and π−π Stacking Structures

2.2.1. Hydrogen Bonding Structures and Dynamics.
When cations contain hydrogen atoms and anions have lone
electron pairs, it is possible to form cation−anion HBs with
cations being dominant HB donors and anions being dominant
HB acceptors, respectively. It should be noted that HB in ILs is
not a binary on−off phenomenon but occurs on a graduated
scale, which makes demarking HB difficult. Because of a wide
range of cations and anions constituting ILs, the characteristics
and features of HB interactions are quite system depend-
ent.149,153,215−218 In protic cations, hydrogen atoms in HB
donors are often covalently bonded to heavy atoms carrying
formal charges, and aprotic cations tend to have C−H groups
as primary HB donor units. A large range of potential HB
acceptors exist in anions ranging from strong HB acceptors like
halides to weak HB acceptors with minimal HB interactions. In
many cases, alkyl chains in ions can be functionalized with, but
not limited to, alcohol, amine, carboxylic acid, and ether

groups.219−228 These functional groups add further oppor-
tunities to fine-tune HB interactions in IL matrixes.
Evans and co-workers made the first suggestion that there

are well-defined HB structures in alkylammonium ILs.229 They
found that transferring hydrocarbons and rare gases from
cyclohexane to EAN has negative enthalpies and thus
speculated that proton donors and acceptors in constituent
ions form a three-dimensional (3D) HB network resembling
water. While this speculation was never seriously disputed, HB
interactions in EAN and its derivative IL systems were
convincingly established by Ludwig and co-workers in
2009.230 In combination with DFT calculations, the
deconvoluted vibrational bands in FT-IR spectra for EAN,
PAN, and dimethylammonium nitrate ILs are assigned to
intermolecular stretching and bending modes of N−H···NO3
HBs. In these ILs, the characteristic symmetric and asymmetric
stretching modes, as well as bending modes in low-frequency
region of FT-IR spectra, are consistent with those of pure
liquid water. These observations are rationalized by the
formation of similar HB structures in these protic ILs, while
unlikely to be tetrahedral, are structurally reminiscent of water,
owing to different ion structures and donor−acceptor
capabilities of alkylammonium nitrate ILs.
By choosing specific cation−anion moieties and changing

the number of alkyl chains in alkylammonium cations, it is
feasible to tune dominant forces from HB to Coulombic
interactions by switching from protic ILs consisting of primary,
secondary, and tertiary ammonium cations to aprotic
tetraalkylammonium ILs.231−233 FT-IR spectrum of
[N1,1,1,1][NO3] shows a broad vibrational band attributing to
librational contributions of interacting ions, whereas FT-IR
spectrum of [N0,1,1,1][NO3] exhibits a distinct vibrational band
at approximately 170 cm−1, which is associated with N−H···
NO3 HB interactions since no other intramolecular vibrational
motion of alkylammonium or nitrate is observed in this
frequency range. This interpretation was further supported by
DFT calculated frequencies of [N1,1,1 ,1][NO3] and
[N0,1,1,1][NO3] ion clusters. The energy per ion pair for
[N0,1,1,1][NO3] (one HB donor) is ∼49 kJ/mol, higher than
that for [N1,1,1,1][NO3] (no HB donor), demonstrating the
formation of a single HB between [N0,1,1,1] cation and [NO3]
anion. In addition, this value is 2 times larger than that of HBs
in water (∼22 kJ/mol), indicating that [N0,1,1,1][NO3]
possesses stronger HBs than water.234

Solid-state NMR spectra in combination with atomistic
simulation results revealed that N-D deuterons in [N0,2,2,2]
cations have the lowest deuteron quadrupole coupling
constants in all reported tetraalkylammonium cations and
have strong HB interactions with anion species.235 For
hydroxyl-functionalized tetraalkylammonium ILs,236 N-D
deuterons have two types of HB interactions: a regular type
Coulomb-enhanced cation−anion HBs and an unusual type
cation−cation HBs. The formation of cation clusters prevents
these ILs from crystallizing, and HBs between cation species
persist at low temperatures, resulting in supercooling liquids
and glass formation. Both neutron diffraction experiments and
atomistic simulation results demonstrated that the elusive like-
charge attraction is almost competitive with conventional ion-
pair formation104 and thus leads to enhanced ion pairing
structures in comparison with dispersion forces between alkyl
groups.237 These findings revealed a new era of controlling IL
nanostructures via HB interactions between like-charged ions,
which impact diverse areas including electrochemical charge
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storage (batteries and catalysis), electrodeposition, and
lubrication.
In addition, a number of DFT calculations and atomistic

simulations indicated that hydrogen atoms in methylene units
that are covalently bonded to central atoms in tetraalkylphos-
phonium cations assume preferential orientations toward
electronegative atoms in anions via intermediate HB
interactions.142−144,238 In a representative [P6,6,6,14]Cl, Cl
anions interact with hydrogen atoms in central P(CH2)4
groups in cations, resulting in a cradlelike structure with Cl
anions sitting in regions formed by three alkyl chains in
[P6,6,6,14] cations (Figure 3A).142−144,239,240 For large anions,
like [NTF2] and orthoborates, the most negatively charged
atoms are always coordinated with polar moieties in cations via
strong electrostatic interactions and preferential HB coordina-
tions (Figure 3B). A synergistic effect of these intermolecular
interactions promotes a constrained orientation of large anion
species around tetraalkylphosphonium cations, like the piggy-
back structure of bis(oxalato)borate ([BOB]) anion on
[P4,4,4,8] cation (Figure 3C).164

When tetraalkylammonium cations are functionalized with
hydroxyl groups, a subtle energy balance between Coulombic,
HB interactions, and dispersion forces governs unique
properties of ILs.80,219 FT-IR spectra of [CH][NTF2] display
a well-defined vibrational feature, which is assigned to a
jumping-and-pecking motion of cations attributing to inter-
molecular vibrational modes between hydroxyl groups in [CH]
cations and oxygen atoms in [NTF2] anions.80,241 Repulsive
Coulombic interactions between [CH] cations are replaced by
cooperative HB interactions between cations, which are, in
principle, similar to those of alcohol dimers.241 Addition of
alcohols to pure [CH] clusters results in enhanced “kinetic
stability”,241 leading to the formation of ring structures with
[CH] cations separated by neutral alcohols. The enhanced
cooperative HB interactions and reduced Coulombic repul-
sions contribute to distinct thermodynamic stabilities of these
ion clusters with increased melting temperatures and viscosities
as well as decreased ion conductivities in comparison with
those for [N1,1,1,3][NTF2]. Rotational dynamics and HB
lifetimes for [CH][NTF2] consist of two time scales.219 The
short time contribution to rotational correlation times and HB
lifetimes is around picoseconds, whereas the long time
contribution decays with relaxation correlation times in
nanosecond range, demonstrating importance and longevity
of ion pairs stabilized by HBs.

HB interactions between imidazolium cations and paired
anions were fairly debatable in early investigations since their
contributions to ion arrangements are indistinguishable from
strong electrostatic interactions. In addition, similar to other IL
systems, the principle adopted to define a HB has a significant
effect on its interpretation.17,242 Nowadays, there is clear
evidence of HB interactions in imidazolium ILs, and it is
widely accepted that HB interactions between constituent ions
in aprotic and protic imidazolium ILs behave as usual cation−
anion interactions although sometimes HB interactions occur
between ion species carrying the same charge.243,244 Evidences
of HB interactions in imidazolium ILs were reported via a
variety of experimental characterizations (FT-IR,81,245

NMR,245 Raman spectroscopies,244 etc.), DFT calcula-
tions,81,245,246 and atomistic simulations.153,215,216,247 Local
and directional HB interactions in imidazolium ILs are
indicated by short C−H···anion distances, downfield shifted
C−H proton chemical shifts, red-shifted C−H frequencies, and
by DFT calculated frequencies of IL clusters consisting of
[C2MIM] cations paired with thiocyanate ([SCN]), dicyana-
mide ([N(CN)2]), [HSO4], [C2SO4], and [NTF2].

59,244,245

The observed differences in low frequency region of vibrational
spectra of these ILs stem from specific cation−anion
interactions, e.g., stretching and bending modes of C−H···
anion HB interactions.
Hunt and co-workers performed intensive DFT calculations

to elucidate HB structures in imidazolium ILs.17,149,248 HB
donor sites in aprotic imidazolium cations are C−H units,
which can be a C−H on ring moiety or a C−H from
methylene or methyl groups of alkyl chains (Figure 4). DFT
calculations revealed an array of different HB types between
[C4MIM] cations and Cl anions.249,250 The primary HB
interaction is C(2)−H···Cl with a HB distance of ∼2 Å, which
is very short considering the sum of vdW radii for Cl and H
atoms.250 It is noteworthy that this HB is not linear, as Cl sits
slightly displaced, forming another weak HB with neighboring
alkyl C−H unit. Large anions prefer to position over
imidazolium rings.251 These remarkable cation−anion config-
urations with anions sitting on top of imidazolium rings result
in a slight blue-shift of computed C(2)−H vibration due to
distinct anion-π donor−acceptor interactions.
HB interactions between imidazolium cations and their

paired anions are affected by electronic characteristics and
steric hindrance effects of alkyl chains. Alkyl chains can rotate
to stabilize distributions of anions, and long alkyl chains can
form secondary supporting HBs with anions. For all alkyl

Figure 3. Optimized ion pair structures of (A) [P6,6,6,14]Cl and (B) [P6,6,6,14][NTF2] ion pairs determined from quantum chemical calculations.
Reproduced with permission from ref 144. Copyright 2011 Royal Society of Chemistry. (C) Optimized [P4,4,4,8][BOB] ion pair structure obtained
from DFT calculations. Reproduced with permission from ref 164. Copyright 2014 American Chemical Society.
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substituents in imidazolium cations, methylene groups bonded
to nitrogen atoms on imidazolium rings have a distinctive
electronic character and tend to form intermediate HBs, and
the other methylene/methyl groups have varied weak HB
capabilities depending on local conformations of alkyl
chains.17,165,248,250,252 Generally, multiple HBs are formed
between imidazolium cations and anions via different HB
donor and acceptor sites with a wide range of HB strengths
(Figure 4). Secondary HBs of anions with cation alkyl chains
are viewed as influencing primary ones via displacing anions
from an ideal linear arrangement.250 A key feature of these HB
structures is that alkyl chains are able to reorient to maintain a
more linear C−H HB interaction, while ring C−Hs cannot.149

A chelating ability of these HBs is relevant; if one HB is
broken, another can keep the anion in the local vicinity
allowing the broken HB to reform.61,217,248,253 These features
are important for the formation of cation−anion HB networks
in imidazolium ILs.248

Most imidazolium cations can be functionalized with various
moieties, among which protonation of N(3) position and
methylation of C(2) position hold specific significance.220 The
former can tune the cation’s hydrophilicity from aprotic to
protic. The hydrogen atom at N(3) position serves as a strong
HB donor site and has significant and preferential HB
interac t ions wi th an ions and pola r so lu tes in
ILs.75,94,163,254,255 A combination of OHD-OKE, NMR,
Raman, and FT-IR spectra and atomistic simulations
demonstrated that strong competitive HB interactions among
cations, anions, and water molecules can significantly affect
molecular mobilities and rotational dynamics of ion species as
well as hydrodynamic behavior of ILs and IL−water
mixtures.75,94,254

Methylation of C(2) position in imidazolium rings disrupts
predominant cation−anion HB interactions, leading to
surprising changes in physicochemical properties of ILs via
adjusting respective contributions of Coulombic forces, vdW
associations, and HB interactions to yield distinct cation−
anion coordination patterns.75,94,255,256 Elimination of C(2)-
H···anion HBs by alkyl substitution tends to increase phase
transition temperatures and liquid viscosities,59,218 as man-
ifested in experimental studies of [C4C1MIM]X (1-butyl-2,3-
dimethylimidazolium) (X = Cl, Br, I, [BF4], and [PF6]) ILs in
comparison with [C4MIM]X ILs.257 Based on computational
results, it was argued that an increase in rotational barrier of
butyl chains facilitates alkyl chain association, and an
overcompensation of phase transition entropy decreases with
increasing transition enthalpy. A so-called “‘entropy theory”’
was proposed, but it is still presumed that HBs stabilize
imidazolium ILs.221 Ludwig et al. suggested another explan-
ation that directional cation−anion HBs destroy charge
symmetry resulting in fluidized ILs.230,233,258,259 HBs can be
regarded as “defects” in Coulombic networks of ILs. These
defects increase ion dynamics, leading to decreased melting

Figure 4. All possible HB donor sites in [C4MIM] cation to
coordinate anions denoted as filled black circles with a white X.
Different HB types are color coded and numbered as primary (1) with
C(2) of imidazolium ring (black), ring (2) with C(4) and C(5) at
rear part of imidazolium ring (red), first methylene (3a) or first
methyl (3b) with C(6) or C(7) groups in alkyl chain (dark blue),
secondary (4) with lateral methylene groups in alkyl chain (green),
and terminal methyl (5) with terminal C(6) or C(10) methyl groups
in alkyl chain (light blue). Reproduced with permission from ref 17.
Copyright 2015 Royal Society of Chemistry.

Figure 5. Left: Protonation and methylation of imidazolium rings at varied positions. Right: Plot of melting points (Tm) versus ion pair volumes for
representative imidazolium [NTF2] ILs. As indicated by dashed lines, there is an increase in Tm with increasing ion pair volumes for ILs with no
specific interaction site (●), with one interaction site (□), and with two interaction sites (◊). Reproduced with permission from ref 261. Copyright
2011 Wiley-VCH Verlag GmbH & Co. KGaA.
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points and viscosities, as observed in FT-IR spectra and DFT
calculations of [C2MIM][NTF2] and [C2C1MIM][NTF2] (1-
ethyl-2,3-dimethylimidazolium) ion clusters. Additional studies
showed that cation−anion interactions in imidazolium ILs are
enhanced by HB interactions as indicated by frequency shifts
to higher wavenumbers in FT-IR and terahertz spec-
tra.59,222,223,260

A combination of these two effects, namely, protonation of
N(3) position and methylation of C(2) position in
imidazolium rings, leads to complex phase behaviors of
imidazolium ILs. Ludwig and co-workers designed a series of
polymethylated imidazolium cations with varied methyl groups
and hydrogen atoms on imidazolium rings to reduce
conformational flexibility of imidazolium cations (Figure
5).222,223,261 By varying cation structures in a systematic way,
it was shown that increasing interaction strength leads to a
frequency shift to higher wavenumbers.261 Supported by DFT
calculations of IL clusters, a nearly linear relationship was
observed between calculated binding energies per ion pair and
the observed frequency shifts. These results are referred to
enhanced cation−anion interactions. For protic imidazolium
ILs, it was shown that the vibrational bands assigned to
cation−anion interactions can be well separated from other
low-frequency vibrational modes, which arise from librational
and rattling motions of ions. Stronger HBs further shift
vibrational energies to higher frequency and result in distinct
vibrational bands which can be used for studying phase
transitions of ILs and cation−anion interaction strengths as a
function of temperature. HBs have significant influence on ILs’
physicochemical properties, such as liquid viscosities, melting
points, and enthalpies of vaporization (Figure 5).59,218,262 In
addition, Noack et al. performed experimental studies on
similar ILs and found that changes in electron density can
adjust locations and strengths of interionic interactions, leading
to reduced configurational variations.260 They suggested that
neither “entropy theory”221 nor “defect hypothesis”59,222 alone
is capable of explaining changes in physicochemical properties
of ILs but complements each other.
There are other ideas discussing the relevance of inter- and

intramolecular HB interactions on physicochemical properties
of ILs.263,264 Zahn et al. showed that the absence of HBs at
C(2) position in imidazolium rings results in a reduced free
movement of anions and an increased melting point of ILs,
which is referred to flat energy landscapes of ion pairs.264

Izgorodina et al. investigated two possible structural and
energetic sources for decreased ion conductivities of
imidazolium ILs due to methylation of C(2) position; first,
ion associations, as suggested by the Walden rule, and second,
variations of potential energy surface profiles that favor ion
transport in non-C(2)-methylated imidazolium ILs.263 It was
shown that the increased liquid viscosities of C(2)-methylated-
imidazolium ILs, attributing to a high potential energy barrier
between energetically preferred conformations on potential
energy surface, inhibit an overall ion transport.
It should be noted that methylation of C(2) position on

imidazolium rings is also essential to improve chemical
stabilities and tribological properties of ILs.221,263 Trialkylimi-
dazolium ILs are considered as promising electrolytes for
electrochemical applications265 due to the lack of an acidic
proton at C(2) position and enhanced thermal and chemical
stabilities221 in comparison with dialkylimidazolium ILs.
Thermal stability is an important property when it is necessary
to select appropriate ILs for applications at high temperatures,

such as thermal fluids and lubricants and solvents for organic
reactions at elevated temperatures. ILs with low thermal and
chemical stabilities have reduced efficiencies in some
physicochemical processes, which may lead to hazardous
byproducts.266 Therefore, accurate data and knowledge of
physicochemical properties of ILs are essential for engineering
liquid flows for industrial applications and warrant extensive
investigations combining experimental characterizations and
computational studies.
Despite a wide range of anions, to date, HBs are formed with

anions having a limited number of atom types. Anions, and
their HB characteristics, can be classified by increasing
structural complexity. The simplest anions are monatomic
halides and small diatomics.250,267 Then follows highly
symmetric multiatomic anions which exhibit similar structures
but weaker HB interactions compared with monatomic
anions.268 The next level of complexity includes small, less
symmetric anions with an increasing number of strong HB
acceptor sites, such as [OAc], [TFO], and [HSO4]. The most
complex anions have more than one type of HB acceptors.
Nitrogen centered anion species such as [NTF2] and
[N(CN)2] have both an electron rich central nitrogen atom
and pendant groups containing oxygen and nitrogen atoms,
respectively. In most cases, oxygen atoms in anions have
preferential HB interactions, but in the liquid phase all
electronegative atoms can form HBs with cation species.269

In typical ILs, ions assume configurations to maximize HB
interactions, and there can be a fine balance between a small
number of shorter stronger directional HB interactions and a
large number of weaker looser HB interactions.252,268,270 The
density of HBs within ILs is very high, which facilitates
networking. HB networking is expected to be maximized when
the number of HB donor sites in cations is equal to the
number of HB acceptor sites in anions. Perfectly matched HB
donor and acceptor sites lead to the formation of “closed” rings
and clusters or a rigid HB network in which all ions are held in
place with well-defined configurations. A loss of HB sites or a
restriction of alkyl chain rotation due to HB interactions can
reduce entropy, which can be balanced by enhanced enthalpies
of multiple HBs. A mismatch creates “‘loose’” HB acceptors or
HB donors, i.e., “defects” within a HB network, which tend to
facilitate fluidity and enhance dynamic properties of HB
networks.187

Recent investigations have featured the significance of time
scales of HB interactions on ILs’ physicochemical proper-
ties.153,215,216,247,253 Both continuous and intermittent HB
dynamics were examined for representative imidazolium ILs.
For [C4MIM][PF6], continuous HB lifetimes are related to
rotations of anions leading to a rapid breaking and forming of
HBs, and intermittent HB lifetimes are associated with caging
and librational motions of ions in local heterogeneous
environments,271 respectively. Skarmoutsos et al. studied
temperature dependence of HB dynamics in “hot”
[C2MIM]Cl and “cold” [C4MIM]Cl ILs.253 It was shown
that HB dynamics change dramatically for an ∼100 °C
temperature variation even though the average number of HBs
remains constant. In “hot” [C2MIM]Cl IL, C(2)−H forms the
strongest HB having the slowest intermittent HB dynamics
with a time constant of ∼100−120 ps, which is similar to
rotational dynamics of N−N vectors in imidazolium rings.
These computational results indicate that in the time it takes
the entire imidazolium ring to rotate, adjacent anions have
moved away, breaking HB structures (Figure 6). In “cold”
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[C4MIM]Cl IL, ring C−H sites dominate HB dynamics and
intermittent HBs last for approximately 5 ns, whereas rotations
of imidazolium ring planes occur on a much longer time scale.
These HB dynamics can be intrinsically rationalized by
underlying HB structures in these two ILs. In “hot”
[C2MIM]Cl IL, a dynamic HB network exists, which contains
a large number of single HBs. Once one HB breaks, the
respective ions forming this HB are less likely to remain
colocated, and they will form new HBs with different ions. A
high density of ions in IL matrix is likely to be important as
ions should be sufficiently close together that new HB
arrangements will be readily formed. Thus, in “hot”
[C2MIM]Cl IL, HBs are rapidly breaking and forming between
different cations and anions. As this IL cools, a higher
proportion of bifurcated HBs occurs. Ions are colocated for
longer times, and lifetimes for individual HBs are extended
(particularly for ring HBs). Even in “cold” [C4MIM]Cl IL,
HBs are still breaking and reforming, but it is much more likely
that these are happened between the same ion pairs, and
intermittent HB lifetimes are dramatically extended.
For imidazolium cations coupled with large anions, like

[BOB], it was shown that the decay of continuous HB
dynamics of C(2)−H in coordinating [BOB] anions is much
faster than that of intermittent HB dynamics in a given IL
matrix, which is consistent with computational results for
[CnMIM]Cl ILs at elevated temperatures.253,272 It is note-
worthy that residence lifetimes for HB dynamics, either ring
C−H or alkyl C−H units, are much longer than those for
water and alcohols under ambient conditions and are
somewhat comparable with those of [C2MIM]Cl, [C2MIM]-
[BF4], and [C2MIM][NTF2] ILs at high temperatures and
with those of [C4MIM]Cl and [C4MIM][BF4] ILs over a wide

temperature range.156 The continuous and intermittent C(2)−
H···O ([BOB]) HB dynamics are described by a stretched
biexponential decay function, which are distinct to those of
C(2)−H···Cl HB dynamics. Diffusive properties of Cl anions
around cation species in [C2MIM]Cl and [C4MIM]Cl ILs are
described by a correlation function with three decay
components.253 This observation is attributed to remarkable
[BOB] anion structures compared with monatomic Cl anions
in coordinating imidazolium cations.156,253,272 [BOB] anions
have multiple HB acceptor sites, promoting their constrained
distributions in polar domains and the formation of HB
networks in heterogeneous IL matrixes. Assuming that
imidazolium cations are fixed on regular lattices, the rotational
dynamics of [BOB] anions around imidazolium ring planes,
either up-and-down or side-to-side angular motions, desire a
large energy to break ion structures and HB networks and
therefore are not favored in [CnMIM][BOB] ILs. The fast
decay of C(2)−H···O HB dynamics in [CnMIM][BOB] ILs
can be rationalized by a linear in-and-out stretching mode
along C−H bonds in cations. The librational motions of Cl
anions in IL matrixes, such as up-and-down and side-to-side
angular motions relative to imidazolium ring planes and linear
stretching vibration along the C−H bonds, lead to a fast decay
of continuous C(2)−H···Cl HB dynamics (Figure 6).253

Furthermore, lengthening cation alkyl chains leads to a
substantial increase in residence lifetimes for both continuous
and intermittent HB dynamics.217

2.2.2. π−π Stacking Structures. In addition to HB
coupling, π-type interactions are correlated with preferential
electrostatic interactions and favorable dispersion associations
among heteroaromatic rings, such as imidazolium, triazolium,
thiazolium, pyrazolium, pyridinium cations, orthoborate

Figure 6. Cartoons indicating (A−C) movements of cations and anions for breaking and reforming cation−anion HBs, (D) out-of-plane wagging
movements of anions around cations, and (E) cation in-plane spinning movements. Reproduced with permission from ref 253. Copyright 2014
Royal Society of Chemistry.
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anions, and their derivatives, despite the strong repulsive
electrostatic forces between ring moieties having like
charges.6,60,273−278

Matthews and Hunt performed DFT calculations to explore
microstructural and energetic landscapes of π−π stacking
structures in [C1MIM]Cl ion pair dimers.149,252,279 Imidazo-
lium ring stacking structures are described as electron deficient
π−π stacking interactions, and a competitive on-top ion pair
structure is identified as a peculiar anion-donor π-acceptor
coordination pattern between imidazolium ring planes and
anions. Ion pair dimers display a subtle balance of varied
microstructural features. The low-energy middle π−π stacking
conformer (Figure 7A) exhibits a front and side arrangement
where imidazolium rings exhibit parallel-displaced and stacking
structures, analogous to benzene dimers,149,279 whereas in a
low-energy diagonal conformer (Figure 7C) front and top
arrangements dominate.279 An energy barrier of ∼6.1 kJ/mol
exists for conversion of a π−π stacking structure (Figure 7B) to
a diagonal conformer with no π−π stacking (Figure 7C),
indicating that such a structural conversion is a facile process in
the liquid phase.149,252 In addition, rotation of methyl groups
within π−π stacking structures facilitates the formation of
linear secondary alkyl C−H···Cl HBs, which decay faster with
distance than primary ring C−H···Cl HBs and C(2)···Cl
anion−π interactions. Theoretical analysis showed that a subtle
structural difference of these stacking structures of [C1MIM]Cl
ion pair dimers is mainly attributed to an array of weak and
strong HBs, anion−π, and π−π stacking interactions. The
energy differences between cation−anion HB interactions,
anion−π associations, and cation−cation π−π stacking
interactions are all very small (<10 kJ/mol), and their
competition creates a very delicate balance of forces within
liquid environments. These interactions fluctuate in strength,
forming a small number of strong interactions and a larger
number of moderate interactions with very little cost in energy.
This is striking and in contrast to biological systems and some

crystal structures where π−π stacking, anion−π, and HB
interactions impart remarkable secondary structures.279

Furthermore, the impact of anion electronic structures on
disruption of π−π stacking interactions was identified by a
substitution of Cl with a range of large anions with diffuse
charge (i.e., [NO3], [C1SO4], [TFO], and [BF4]).

252 A
diagonal ion pair dimer structure is the most stable
configuration in energy for large anions, reflecting a propensity
of large multidentate [C1SO4] (Figure 7D), [TFO] (Figure
7E) and [BF4] anions (Figure 7F) to favor top interactions.
Based on analysis of molecular orbitals and electronic
structures, it is evident that there is a subtle interplay between
traditional in-plane HB coordinations and peculiar interplanar
anion−π interactions, the latter of which is particularly
prominent for [C1MIM][NO3] ion pair dimers (Figure 7G).
All these interactions have a significant impact on structural
arrangements in ILs and highlight the influence of dispersion
forces and the importance of HB interactions on the formation
of π−π stacking structures in imidazolium ILs.
Subsequent first-principles calculations also revealed prefer-

ential π−π stacking interactions in [C2MIM]Cl and [C2MIM]-
[SCN] ILs and their mixtures.277 A weak π−π ordering
structure was observed in [C2MIM][SCN] in comparison with
that in [C2MIM]Cl, and an intermediate π−π stacking
structure was observed in their mixture with an equimolar
fraction. In addition, π−π stacking dimer structure was also
formed between imidazolium ring planes in [C2MIM][NO3],

6

[C2MIM]2[SO4],
6 and [C2MIM][NTF2]

275 crystal structures
owing to a substantial screening of charge−charge repulsive
forces among cation species mediated by anions. XRD data,
complemented by atomistic simulations, revealed that Br
anions in [C2MIM]Br liquid phase are symmetrically
distributed around [C2MIM] cations and are more closer to
ring moieties than those in crystal structures.276 Thus, π-type
interactions are recognized as a key component for local
structuring of imidazolium ILs.

Figure 7. Optimized [C1MIM]Cl ion pair dimer structures determined from quantum chemistry calculations ((A) and (B) are middle
configurations, and (C) is the diagonal configuration). Reproduced with permission from ref 149. Copyright 2014 Royal Society of Chemistry. Ion
pair dimer structures for (D) [C1MIM][C1SO4], (E) [C1MIM][TFO], (F) [C1MIM][BF4], and (G) [C1MIM][NO3] obtained from DFT
calculations. Reproduced with permission from ref 252. Copyright 2014 IOP Publishing.
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For imidazolium cations with intermediate alkyl chains,
dispersion interactions between alkyl chains play a dominant
role.280 Nuclear Overhauser effect experiments suggested a
local short-ranged cation−cation stacking structure in
[C4MIM][BF4] and in its C(2)-methylated analogue.281 A
further lengthening cation alkyl chains results in the formation
of ionic liquid crystals, in which interdigitation of alkyl chains
facilitates alignment of imidazolium rings such that π−π
stacking interaction becomes more significant. Various
lyotropic liquid crystalline phases were obtained in mixtures
of [CnMIM]Br ILs (n = 12, 14, and 16) with p-xylene and
water.282 Strong π−π stacking interactions of imidazolium
rings and cation−π interactions with p-xylene have unique
influences in determining structural properties, especially the
thickness of water channels in mixtures. In addition, both
rheological steady and dynamic moduli of these liquid
crystalline phases increase with lengthening cation alkyl chains,
leading to their promising applications in fabrication of
nanomaterials.
Moreover, an incorporation of benzene (and its fluorinated

derivatives) in imidazolium ILs can significantly alter micro-
structures and, in particular, cation−cation interac-
tions.152,283,284 Benzene molecules tend to displace anions by
intercalation into high-charge density domains. This inter-
calation is attributed to π−π stacking interactions between
imidazolium ring planes and benzene molecules rationalized by
attractive arrangements of quadrupole moments.283,285−287 Ab
initio and atomistic MD simulations showed that quadrupole
moments of aromatics are an almost linear function of the
number of fluorine substitutions,89,152 which is fully reflected
in spatial arrangements of imidazolium rings around aromatics.
Cations are mainly located above/below benzene plane
(Figure 8) because of strong diamagnetic influence of aromatic
electrons. As benzene is progressively fluorinated, cations
migrate to equatorial plane of aromatics, experiencing a milder
paramagnetic effect. Lengthening alkyl chains in imidazolium

cations contributes to a finite probability for benzene to be
found both in apolar domains and in polar networks, indicating
that benzene experiences different local environments in
heterogeneous IL matrixes.288 Concerning dynamic features,
atomistic simulations showed that rotation of benzene in
[C4MIM]Cl is controlled by vdW and π−π interactions on
short time scales (picoseconds) and by solvent charge
associations on long time scales (hundreds of picoseconds).289

OHD-OKE experiments on [C1MIM][NTF2]-benzene
89 and

[C8MIM][BF4]-benzene
290 mixtures showed different inten-

sities in comparison with their ideal mixing spectra, which is
attributed to suppressed translational motions of benzene in
mixtures.

2.2.3. Hydrogen Bonding vs π−π Stacking Interac-
tions. HB coordinations and π−π stacking interactions have
distinct effects on stabilization of liquid structures of ILs having
heteroaromatic rings and multiple HB donor and acceptor
sites.252,279 For imidazolium cations paired with small anion
species, such as Cl,277,279 [NO3],

252 and [SCN],277 π−π
stacking structures coexist with HB coupling between ion
species, promoting the formation of decent microscopic ion
structures in bulk ILs.252,277,279 Ab initio molecular dynamics
(AIMD) simulations revealed distinct π−π stacking con-
formations in [C2MIM][SCN], which decrease dramatically in
[C2MIM][N(CN)2] and [C2MIM][B(CN)4] (tetracyanobo-
rate) ILs.153 HB interactions are very pronounced in
[C2MIM][N(CN)2] and [C2MIM][SCN] ILs with anions
taking in-plane configurations of imidazolium rings, while HB
interactions are almost absent in [C2MIM][B(CN)4] with
[B(CN)4] anions taking on-top conformations above/below
imidazolium rings.291 The small size of [SCN] anion together
with its strong HB capability stabilize local ion arrangements as
was pointed out for [CnMIM]Cl ion pair dimers.149,279 Cyano
ILs are generally viscous and their liquid dynamics are well
correlated with rotational dynamics of cyano groups.292 Both
microstructural and dynamical quantities of these ILs exhibit

Figure 8. Spatial distributions of C(2) (blue), C(5) (green), and C(6) (gray) atoms around (A, B) 1,2-difluorobenzene and (C, D)
hexafluorobenzene molecules in equimolar IL−aromatic mixtures. Radial distribution functions between carbon atoms in imidazolium cations
(C(2), blue; C(5), green; C(7), gray) and fluorine atoms in (E) 1,2-difluorobenzene and (F) hexafluorobenzene in equimolar IL−aromatic
mixtures. Reproduced with permission from ref 152. Copyright 2014 American Chemical Society.
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similar sequence as their viscosities, inferring that high
viscosity of [C2MIM][SCN] might be related to enhanced
π−π stacking interactions between imidazolium rings.
For ILs composed of imidazolium cations paired with large

anion species, like [C1SO4]
252 and [NTF2],

59,275,278 both π−π
stacking interactions and HB coordinations get weakened.
These anions have multiple HB acceptors and have preferential
HB coordinations with imidazolium cation hydrogen atoms,
promoting the formation of HB networks with distinct HB
strength and directionality. Additionally, these large anions
prefer configurations above and below imidazolium rings or
exhibit tilted orientations in equatorial region of imidazolium
rings, leading to cation−cation π-type coordination being
partially weakened or totally screened due to anion size effect.
Therefore, HB networks overtake π-type interactions and have
a significant effect on local ionic structures and complex liquid
morphologies of ILs.
The subtle balance of HB and π−π stacking interactions

among ion species, either competitive or cooperative, will be
more sophisticated if anions have planar rings, such as
orthoborate anions.61,217,293−296 For [CnMIM][BOB] ILs,
AIMD simulations revealed that preferential HB interactions
and remarkable π−π coordination among neighboring
imidazolium and oxalato ring planes coexist in ILs (Figure
9).61,217 HBs are formed between imidazolium cation hydro-

gen atoms and [BOB] anion oxygen atoms but with different
HB features. At short radial distances, imidazolium rings
exhibit π−π stacking associations (Figure 9A) and present
complicated orientational distributions at intermediate and
large radial distances due to intervention of other ions. Spatial
associations between imidazolium and oxalato ring planes are
characterized by short-range π−π stacking structures (Figure
9B) and displaced offset stacking conformations mediated by
peculiar in-plane HB interactions (Figure 9C) and by distinct
perpendicular distributions at intermediate radial distances

because of attractive electrostatic interactions. The intermo-
lecular interactions between oxalato ring planes are mediated
by repulsive Coulombic interactions and steric hindrance
effect, contributing to tilted orientations of oxalato ring planes
to neighboring ones in local ionic environments (Figure 9D).
A gradual lengthening of cation alkyl chains results in a
substantial increase in interaction strength for all HBs.
However, the strengthened HB interactions result in weakened
π−π stacking coordinations between imidazolium and oxalato
ring planes, demonstrating significant competitive character-
istics for HB and π−π stacking interactions in [CnMIM][BOB]
ILs. In addition, intermittent and continuous HB dynamics
exhibit a decent cooperative correlation feature with rotational
and translational dynamics of ring moieties with increasing
alkyl chains in imidazolium cations. The competitive structural
trade-off and cooperative dynamical interplay of HB and π−π
stacking interactions in [CnMIM][BOB] ILs are essentially
correlated with preferential and collective associations among
cation alkyl units and decisive Coulombic interactions among
imidazolium and oxalate ring moieties in heterogeneous IL
matrixes. These computational data may provide important
physical insights for a thorough understanding of striking
microstructures and dynamical quantities, and mesoscopic
liquid morphologies of [CnMIM][BOB] ILs as well as their
macroscopic functionalities in industrial applications, for
example, as promising solvent electrolytes in electrochemical
devices or as alternative lubricants or lubricant additives in
tribology.

2.3. Free Ions, Ion Pairs, and Ion Clusters

Since ILs are concentrated and solventless ion solutions,
intimate ion pairs would be a natural expectation and many
endeavors have been focused on describing bulk ILs as a large
population of neutral ion pairs plus a small concentration of
“free” ions or ion clusters.18,135,271,297−303 Both mass
spectrometric data and theoretical calculations suggested that
distillation of ILs mainly occurs via neutral ion pair clusters of
composition, followed by dissociation of large ion aggregates
to lower order ion pairs and thereafter to small charged ion
clusters in gas phase depending on the amount of internal
energy for depositing charged clusters into neutral ion pairs
upon evaporation.304,305 These findings indicate that ion pairs
might be available in bulk liquid phase, similar to that for a
description of aqueous electrolyte solutions and Coulomb
fluids. In addition, there are some postulations addressing that
ILs form clustered supramolecular structures to maintain HB
networks,306 whereas other studies focused on ion cluster
models including possible formation mechanism of IL ion
clusters and effect of IL ion clusters on interfacial structures,
liquid morphologies, and self-assembly processes of ILs in bulk
liquids and in interfacial regions.297 It should be noted that the
concept of the ion cluster mainly comes from theoretical
calculations and atomistic simulations. These studies should be
carefully interpreted as there is no rigorous criteria to define an
ion cluster and the distinction between different ion cluster
models is arbitrary.307

Weingartner et al. suggested the formation of EAN ion pairs
via measurement of critical behavior of EAN−octanol
mixtures.308 The obtained constant value describing ion pair
associations from ion conductivity data is an order of
magnitude larger than theoretical prediction of ion pairing
behaviors in mixtures, suggesting that EAN may exist in a
chemical equilibrium condition between “free” ions and ion

Figure 9. (A) Imidazolium ring pairs are featured with π−π stacking
orientation. Imidazolium and oxalate ring pairs are described by (B)
π−π stacking and (C) parallel displaced offset stacking configurations
as well as hydrogen bonding interactions. (D) Intermolecular oxalato
ring pairs are characterized by tilted distributions promoting their HB
coordinations with cation hydrogen atoms. Reproduced with
permission from ref 61. Copyright 2017 American Chemical Society.
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pairs in the liquid region.298 Ion pair lifetimes are close to
those of ion coupling phenomena in alkali metal nitrate molten
salts but are much larger than those for dilute aqueous
electrolytes. Kennedy and Drummond proposed that protic ILs
are composed of net charged ion clusters as they observed
distinct ion aggregates with varied ion sizes from positive ion
spectra of pure protic ILs, such as a dominant ion cluster
consisting of eight cations and seven anions in EAN and PAN
ILs (Figure 10A).299 Therefore, it was suggested that EAN and
PAN ILs are polydispersed mixtures consisting of aggregated
ions and charged ion clusters. DFT calculations supported this
hypothesis and showed that this particular ion cluster model is
thermodynamically favorable for EAN in the gas phase and is
the most stable species for entropic and enthalpic consid-
erations because this ion cluster forms the most compact HB
network in which all proton donors in EA cations and HB
acceptors in [NO3] anions are involved in an optimal way
(Figure 10B).309,310

Dielectric spectra, theoretical calculations,301,311 and atom-
istic simulations271,300 on a range of aprotic imidazolium,76,312

pyrrolidinium,313 pyridinium,313 and tetraalkylammonium313

ILs did not display signatures of ion pair formation in bulk
liquids. In an interesting work, Gebbie and co-workers
provided a distinct view of bulk IL structures from DLVO
(Derjaguin−Landau−Vervey−Overbeek) fits of SFA
data.135,136 For [C4MIM[NTF2] confined between two
charged solid surfaces, a weak attractive force spanning from
3 to 30 nm was obtained, which is independent of applied
electric potentials. The fitting of such a long-range force with
DLVO theory predicts a negligible concentration of free ions
in bulk liquids. Therefore, it was speculated that [C4MIM]-
[NTF2] is a dilute electrolyte solution consisting of a large
proportion of neutral ion pairs and a small fraction of
dissociated free ion species, which is akin to the description of
water consisting of an overwhelming majority of neutral water
molecules plus some H3O

+ and OH− ions. It should be noted
that while long-ranged forces might be real in IL matrixes,314

the main conclusion of this work is conflict with many
experimental and computational studies. An additional
description indicated that DLVO theory is unsuitable to
characterize phase behaviors of ILs because (1) ILs show

complex association and dissociation equilibria,315,316 (2) ion
species change allegiances among neighboring counterions but
not to single ion pairs or ion clusters in bulk liquids,300,301 and
(3) a long-range repulsive force was missing which should be
accompanied by the long-ranged attractive force.
In another case, ion and electrical conductivities of

[C4MIM][PF6] deviate from the Nernst−Einstein relation-
ship,271 which is attributed to correlated motion of ions having
opposite charge and anticorrelated motion of ion species
having the same charge over multiple timescales up to
nanoseconds.157,262,317,318 This scenario is distinct to that in
electrolyte solutions, where positively correlated motion of ion
species has a substantial contribution to decreased impedance
conductivity.318 On the basis of microstructural and dynamical
analysis, this observation indicates that cation−anion inter-
actions can be described using ion association instead of ion
pair as each ion group is not solely paired to a single
counterion nearby but to multiple counterions in ionic
atmosphere. Additional atomistic simulations demonstrated
that the formation of different ion associations is not so
important to describe bulk IL structures as these ion units are
weakly maintained together due to a small separation of ion
species in bulk IL matrixes.300 Therefore, it was suggested that
the origin of destabilization of ion associations is caused by an
overscreening of electrostatic charges in the first solvation
shell.301

Modeling of bulk ILs as a continuum consisting of ion
couples migrating together is not appropriate, which cannot be
reconciled with their intrinsic character of low vapor pressure.
It is known that the vapor pressure of liquid materials is
correlated with ionicity, which is well represented in the
Walden plot of molar conductivity against fluidity.319 A
separated neutral ion pairing unit does not have any
contribution to ion conductivity and charge transferability.
Therefore, ILs having a high proportion of neutral ion pairs or
ion pairing aggregates should be “poor” liquids as ion
conductivity and charge transferability will be less than
expected from liquid viscosity. However, to some extent,
most ILs are “good” liquids and have high ion conductivity,
charge transferability, and low vapor pressure.320 This might be
attributed to the fact that spatial distributions of ion species in

Figure 10. (A) Electrospray ionization mass spectrometry positive ion mode of EAN. Reproduced with permission from ref 299. Copyright 2009
American Chemical Society. (B) The most stable ″8Cation+7Anion” model for EAN obtained from thermochemistry calculations. Hydrogen,
carbon, and nitrogen atoms in EA cations are represented by white, orange, and blue spheres. [NO3] anions are represented as red spheres.
Reproduced with permission from ref 309. Copyright 2009 American Chemical Society.
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bulk ILs are highly heterogeneous with each ion surrounded by
a shell of counterions exhibiting different configurations due to
a delicate intermolecular interaction of central ion with
neighboring counterions.
In contrast to pure ILs, some other investigations indicated

that ILs may form ion pairing structures in IL−molecular
solvent mixtures. The direct-contacted and solute-separated
ion pairing structures were suggested in [C4MIM][BF4]−water
and [C4MIM][BF4]−dimethyl sulfoxide mixtures.321 In
addition, [C4MIM][PF6]−naphthalene322 and 1-methyl-4-
cyanopyridinium [NTF2]−methylnaphthalene323 mixtures
also exhibit cation−anion ion pairing and cation−aromatic
pairing groups across a wide range of solute concentrations.
Therefore, even the ion pairing concept is helpful to
understand liquid structures in electrolyte solutions, it is not
feasible to describe bulk IL structures. Transient ion pairing
structures might exist in IL matrixes with their lifetimes shorter
than picoseconds; however, it should be addressed that the
overall liquid structures of bulk ILs are more complicated than
a continuum of ion pairs, ion couples, and ion clusters in ion
solutions.

2.4. Microstructures and Mesoscopic Liquid Morphologies

2.4.1. Alkylammonium ILs. Atkin and Warr108 and
Umebayashi et al.189 investigated microstructures of EAN
using complementary wide-angle X-ray scattering (WAXS) and
small-angle neutron scattering (SANS) techniques, respec-
tively. Both studies indicated that nanoscale heterogeneity
exists in EAN with polar and apolar domains throughout the
bulk liquid matrix, suggesting a disordered, locally smectic, or
bicontinuous liquid structure. The solvophobic interactions
among alkyl units are essentially responsible for production of
nanostructural heterogeneity. In addition, both electrostatic
and HB interactions between amine and [NO3] groups play a
significant role in stabilizing microstructures in the EAN
matrix.
Lengthening alkyl chains in alkylammonium cations leads to

pronounced nanoscopic liquid structures in which apolar and
polar domains are segregated and partially interdigitated, with
ions in more precisely defined positions relative to one
another.108,192,195,324,325 HB networks are more stable and get
stronger in ILs having longer cation alkyl chains owing to a
distinct hydrophobic effect stemming from alkyl chain
contacts. Equilibration within apolar domains, as evident
from stretching dynamics of C−H bonds, is faster than that in

Figure 11. Nanostructures in primary alkylammonium protic ILs. Column 1 (left), box structures; column 2, uncharged groups in cations around
uncharged groups in cations; column 3, charged groups in cations around charged groups in cations; column 4, charged groups in anions around
charged groups in cations; column 5, HB acceptors in anions around HB donor sites in cations; column 6, charged groups in cations around
charged groups in anions; and column 7, charged groups in anions around charged groups in anions. Reproduced with permission from ref 332.
Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission from ref 190. Copyright 2014 American Chemical Society.
Reproduced with permission from ref 18. Copyright 2015 American Chemical Society.
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polar domains and shows a remarkably low thermal activation,
indicating that ILs are not only structurally heterogeneous but
also dynamics vary considerably among different substructures.
Both ends of alkylammonium cations, namely, charged N−H
head groups and hydrophobic tail C−H groups, exhibit
rotational dynamics on different time scales. These rotational
dynamics are heterogeneous and are governed by a local
propellerlike motion of cations, which is intrinsically attributed
to structural heterogeneity in IL matrixes.187,193 The N−H
head groups exhibit slow dynamics because of strong
Coulombic interactions and preferential HB interactions with
[NO3] anions, whereas the tail C−H groups exhibit fast
dynamics due to their weaker vdW interactions with
surrounding atoms. In particular, rotational dynamics of tail
C−H groups show marginal dependence on cation alkyl chain
length, while rotations of head N−H groups slow down with
lengthening cation alkyl chains, demonstrating that dynamical
heterogeneities are enhanced in ILs with longer alkyl chains in
alkylammonium cations. Such a slowdown is mainly correlated
with a decreased number of [NO3] anions near N−H groups,
which presumably leads to an increase in energy barrier for
their rotations and thus gives rise to a broad distribution of N−
H rotation times. Furthermore, the relative free energy
landscapes of cation−anion interactions exhibit a progressively
deeper well as cation alkyl chains get longer.192,326,327 These
observations indicate that IL nanostructures are analogous to a
surfactant mesophase, and thus the area ratio of polar and
apolar domains will be useful to predict self-assembled liquid
morphologies in alkylammonium ILs.190

Addition of hydroxyl groups to terminal methyl groups in
EA cations leads to a disruption of solvophobic associations
between alkyl chains in EtAN, resulting in small ion aggregates,
rather than a spongelike liquid morphology with extended
networks.191,224 EtAN has a less ordered liquid arrangement
than that of EAN since [NO3] anions are competitively
coordinated with both ammonium and hydroxyl groups in EtA
cations via strong HB interactions.328,329 Generally, inclusion
of additional HBs represents a source of defects in polar
networks, leading to more disordered microstructures in
ILs.94,223,255,330 In addition, both translational and rotational

dynamics of constituent ions slow down due to the formation
of HB networks in IL matrixes. When an external electric field
is applied, EtAN requires a lower electric field strength than
that for EAN to emit ion pairs.331 The applied electric field can
effectively reduce the number of hydroxyl−[NO3] HBs but is
less effective in disrupting HBs between N−H head groups and
[NO3] anions.
Besides variations in cation structures, anions also have a

significant effect on microstructures in a range of ILs consisting
of primary alkylammonium cations coupled with Br, [NO3],
[OAc], [HSO4], [SCN], formate, triflate ([CF3SO3]), and
alkylsulfonate anions.190,324,325,329,332−334 Representative spa-
tial distributions of HB acceptors around donor sites are shown
in Figure 11. Ion arrangements in these ILs are consequently
attributed to a delicate balance of ion dimensions and varied
intermolecular forces among constituent ions. While similar
nanostructures characterized by bicontinuous liquid morphol-
ogies were formed in all these protic ILs, there is a substantial
difference in HB features. More cation−anion HBs are formed
when anions have multiple HB acceptors and build up a dense,
cooperative HB network.332 HB geometries are intrinsically
related to capability of each ion to accommodate HBs in
bicontinuous networks rather than creating a different
structure in bulk liquids. When liquid structures are such
that there is a high proportion of linear HBs, attractions
between ion species increase and ILs exhibit solidlike phase
behavior. In contrast, nanostructures with bifurcated or
trifurcated HBs produce weak and bent HBs, leading to
decreased cation−anion attractions, and therefore ILs are more
fluidlike materials. These differences in HB interactions are
reflected in macroscopic physicochemical properties, like
melting points, glass transition temperatures, ion conductiv-
ities, and liquid viscosities of alkylammonium ILs.18

2.4.2. Imidazolium ILs. The first speculation of the
existence of mesoscopic liquid structures in imidazolium ILs
was suggested on the basis of experimental measurement of
diffusive properties of electroactive solute molecules dissolved
in imidazolium IL−water mixtures.335 Neutral and charged
solutes exhibit distinct diffusion coefficients, indicating that
binary imidazolium IL−water mixtures should not be

Figure 12. Snapshots of simulation systems containing 700 [CnMIM][PF6] ion pairs. [C2MIM][PF6] with (A) CPK color coding and (B) red
(polar domain)-green (apolar domain) color coding, (C) [C4MIM][PF6], (D) [C6MIM][PF6], (E) [C8MIM][PF6], and (F) [C12MIM][PF6].
Reproduced with permission from ref 343. Copyright 2006 American Chemical Society. (G) X-ray diffraction patterns for supercooled [CnMIM]Cl
IL. Reproduced with permission from ref.280 Copyright 2007 American Chemical Society. (H) X-ray diffraction patterns for [CnMIM][PF6] ILs at
25 °C. Reproduced with permission from ref 345. Copyright 2008 Elsevier. (I) SWAXS data for [CnMIM][NTF2] ILs at room temperature.
Reproduced with permission from ref 346. Copyright 2009 IOP Publishing.
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considered as homogeneous liquids but have to be treated as
nanostructured solvents consisting of polar and apolar
domains. Later systematic measurements of physicochemical
properties (densities, viscosities, diffusion coefficients, ion
conductivities, etc.) of [CnMIM][NTF2] ILs with cations
having varied alkyl chains262 and a suggestion of structural
heterogeneity being the underlying microscopic origin of the
“red-edge effect” observed in fluorescence spectroscopy64

showed that experimental and computational studies are
consistent with the hypothesis of microstructural and
dynamical heterogeneities in imidazolium ILs.
Subsequent molecular simulations further suggested that

aprotic imidazolium ILs can self-assemble and form solvent
nanostructures. CG simulations of [CnMIM][NO3] ILs
demonstrated that imidazolium rings and [NO3] anions are
relatively homogeneously distributed in bulk liquids. However,
alkyl groups aggregate into spatially heterogeneous apolar
domains, which is attributed to a competitive coordination
between long-range electrostatic interactions among charged
groups and short-range collective solvophobic associations
between hydrophobic alkyl chains.336,337 This observation is
more significant for cations having long alkyl chains,
contributing to the formation of liquid crystal-like struc-
tures.184,338,339 The application of external electric fields can
substantially affect spatial heterogeneities of ILs, which are first
disordered from spatially heterogeneous to spatially homoge-
neous structures, and thereafter get reordered to nematic-like
structures with a gradual increase in external electric field
strength.340,341 Translational diffusion of ions increases in the
homogeneous regime and decreases in the nematic-like region,
attributing to a competition between electrostatic interactions
among ion species and the formation of ion cage structures
under external electric fields.
ILs composed of imidazolium cations paired with varied

spherical anions (F, Cl, Br, [BF4], and [PF6]) present a similar
picture of heterogeneous microstructures in IL matrixes but
with a few important differences.342,343 Polar domains in
imidazolium ILs have heterogeneous distributions and form
continuous ion channels in IL matrixes. Polar domains coexist
with apolar domains consisting of hydrophobic alkyl groups.
Simulation snapshots showed in Figure 12A−F, particularly
those rendered under green (apolar domain) and red (polar
domain) convention, provide a clear visualization on the
evolution of heterogeneous liquid structures as cation alkyl
chain length increases. For imidazolium cations with short
alkyl chains, like C1 and C2, small and globular apolar “islands”
are formed within interpenetrating polar networks. Length-
ening cation alkyl chains enables apolar “islands” to aggregate
into spongelike liquid nanostructures. [C4MIM] cation marks a
microstructural transition between these two solvent morphol-
ogies.
Whether these computational results are interpreted as

indications of micelle-like structures or bicontinuous liquid
morphologies, X-ray scattering data are compelling evidence of
self-assembled solvent nanostructures. S/WAXS spectra exhibit
a well-defined peak at ∼0.3 Å−1 for [CnMIM]Cl (Figure 12G)
and [CnMIM][PF6] (Figure 12H) ILs with cation alkyl chains
longer than C4.

280,344,345 Not only peak amplitudes increase
but also peak positions shift toward low q values with
lengthening cation alkyl chains. Enlarging anions from small Cl
(Figure 12G) to intermediate [PF6] (Figure 12H) and then to
large and asymmetric [NTF2] (Figure 12I) has no discernible
effect on the dependence of characteristic size of nanoscale

heterogeneity on cation alkyl chain length,280 highlighting the
importance of apolar aggregation in self-assembly of
imidazolium ILs in bulk liquids.280,346

While these experimental studies provide valuable results,
the model used to rationalize scattering data at low q values is
minimalistic. It does not take into consideration privileged
correlations between similar polar−polar, apolar−apolar, and
different polar−apolar moieties. Hardacre et al. conducted
SANS experiments on imidazolium ILs and elucidated local
ion−ion distributions via an empirical potential structural
refinement (EPSR) fitting of SANS spectra.347,348 Micro-
structural arrangements in imidazolium ILs exhibit a
remarkable charge ordering feature which, to some extent,
resembles ion structures in crystalline state following an
onionlike alternating cation−anion shells. [C1MIM] cation is
not amphiphilic because of the very short methyl groups, and
thus its bulk liquid structures are principally determined by
electrostatic interactions.348 This cation serves as a reference
for description of bulk correlation peak changes with
lengthening cation alkyl chains. SANS spectra showed that
enhanced structural heterogeneities are mainly originated from
decreased symmetry of imidazolium cations as alkyl chain
length increases.347 For [CnMIM][PF6] ILs with cations
having intermediate alkyl chains that are long enough to
produce apolar segregations, an unambiguous scattering peak
was observed in the low q region (Figure 12H).345 This peak
moves to low q values (large spatial distances), sharpens, and
increases in intensity with lengthening cation alkyl chains.
These results indicate that lattice expansion and correlation are
entirely related to apolar domains with an increase of ∼2 Å per
methylene unit.344,347

Margulis and co-workers155 came to a similar conclusion to
that of Hardacre et al.347 via performing atomistic simulations
of bulk [C6MIM]Cl, [C8MIM][PF6], and [C10MIM][PF6] ILs.
The first sharp diffraction peak (FSDP) at low q values in the
scattering spectra is regarded as an indicator of the mesoscopic
liquid structure, attributing to segregation of polar and apolar
domains in IL matrixes. While cation anisotropy may be
important for the formation of FSDPs, it appears that FSDPs
can be described by a much simpler consideration of solvation
shell asymmetry.347 In addition, neutron scattering data for
protic190 and aprotic347 ILs are generally consistent with the
spatial distance of a spongelike liquid phase, and thus the
scattering peak for a sponge phase formed in these ILs can be
considered as a gauge of bulk self-assembly due to an
amphiphilic feature of constituent ions.
For ILs composed of imidazolium cations paired with

[NTF2] anions, neutron scattering data and theoretical
calculations showed that [C1MIM][NTF2] has a negligible
long-range alternating counterion ordering.275 Russina et al.
conducted S/WAXS characterizations on a series of [CnMIM]-
[NTF2] (1 < n < 10) ILs and highlighted their microstructural
heterogeneities.346 Three decent diffraction peaks are observed
with two peaks at high q values displaying marginal
dependence on the cation alkyl chain length and one peak at
a low q value showing strong dependence of amplitude and
position on cation alkyl chain length (Figure 12I). The latter is
a signature of microstructural heterogeneity with its size related
to alkyl chain segregation in apolar domains,349 similar to that
observed in imidazolium ILs consisting of Cl, [BF4], and [PF6]
anions.344,346,348

Mutating a methylene (methyl) group with specific atoms,
like hydrogen,94,254 oxygen,225,350 fluorine,278,351 silicon,85,352
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selenium,353 and even phenyl groups,354−356 leads to distinct
microstructural arrangements in heterogeneous IL matrixes.
Functionalization of alkyl chains using ether and hydroxyl

groups disturbs a delicate balance of Coulombic, HB, and
dispersion interactions, contributing to enhanced intermolec-
ular interactions between constituent ions.227,360,361 This has
an overall effect on disrupting mesoscopic ordering structures,
as revealed from peaks at low q values, which either have
decreased scattering intensities or are totally disappeared.
These changes in low q scattering are attributed to flexibility
and increased polarity of alkoxy chains and favorable
associations of ether and hydroxyl moieties with imidazolium
rings via HB interactions.225 Russina and Triolo compared
SAXS data for [C6MIM][NTF2] with its ether-substituted
counterpart [(C1OC1)2MIM][NTF2] (1-methoxyethoxymeth-
yl-3methylimidazolium) and presented experimental evidence
for mesoscopic liquid morphologies in these imidazolium
ILs.225 Later Shimizu et al. carried out a systematic study on
[CnMIM][NTF2] ILs (n = 3, 6, 9) and their ether-substituted
[(C1OC1)n/3MIM][NTF2] analogues.350 A clear bulk struc-
tural peak is observed in the low q region for [CnMIM][NTF2]
ILs, but this does not occur when ether groups are present
even though all ILs are isoelectronic (Figure 13A). SAXS data
and atomistic simulations demonstrated that a suppression of
nanostructures and the corresponding prepeaks in scattering
structural functions for ether-substituted imidazolium cations
occurs along the entire IL series, and this suppression of
nanostructures is not due to any modification of ILs’ polar
networks but rather due to different morphologies of the
surrounding apolar domains.362 The microstructures in the
apolar domains in [CnMIM][NTF2] ILs are described by bulky
segregated structures, which are transitioned to thin enveloping

ones in [(C1OC1)n/3MIM][NTF2] ILs. Such a microstructural
transition is attributed to an inability of alkoxy chains for their
effective side-by-side packing and the kinks along ether-
substituted alkyl chains, which lead to scorpionlike intra-
molecular interactions among imidazolium rings and ether-
substituted alkyl chains. As polyether chains are relatively
polar, inter- and intramolecular driving forces are weak for
spatial segregation of apolar moieties. This induces kinks along
ether-substituted chains to form a clustered liquid morphology,
which is similar to that in EtAN224,363,364 and in ILs with
imidazolium cations bearing hydroxyl and carboxyl terminal
groups.226,227,365,366

The silicon-substituted imidazolium cations have advantages
in some applications in comparison with carbon based
imidazolium cations, and thus they are frequently used as
solvent electrolytes and gas absorbents.352 [SiMIM] (1-methyl-
3-trimethylsilylmethylimidazolium) cation is very similar to
[CnMIM] cations, in which the Si−C bond is slightly longer
and more polar than the C−C bond, and therefore the
[SiMIM] cation has a larger cation size and the Si atom has
more excess charge than the corresponding carbon atom in
[CnMIM] cation. Both electronic and size effects make
intermolecular correlations in [SiMIM] ILs weaker than in
[CnMIM] ILs,357 leading to a low viscosity of [SiMIM]-
[NTF2].

367−369 OHD-OKE spectroscopy revealed a generic
correlation of low intermolecular vibrational frequencies for
[SiMIM][NTF2] with its decreased liquid viscosity, which is
distinct from that of [CnMIM][NTF2] ILs.367,368 An
alkylsiloxy-substituted [SiOSiMIM][NTF2] (1-methyl-3-pen-
tamethyldisiloxymethylimidazolium) has a decreased glass
transition temperature and a low shear viscosity.368 Despite
its polar nature, pentamethyl-disiloxymethyl chains in

Figure 13. (A) SWAXS spectra for [C6MIM][NTF2] and [C1OC2OC1MIM][NTF2] ILs. Reproduced with permission from ref 225. Copyright
2012 Royal Society of Chemistry. (B) Experimental (red) and computational (blue) structure factors for four silicon-substituted imidazolium
[NTF2] ILs. Reproduced with permission from ref 357. Copyright 2016 AIP Publishing LLC. (C) Comparison of SWAXS data for
[C5C5IM][NTF2] and [C9MIM][NTF2] ILs. Reproduced with permission from ref 358. Copyright 2011 American Chemical Society. (D) SWAX
scattering intensities for double-headed [C12(MIM)2][NTF2]2 at varied temperatures. Reproduced with permission from ref 359. Copyright 2014
Royal Society of Chemistry.
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[SiOSiMIM] cations are long enough to display a distinct
FSDP in X-ray scattering structural function (Figure 13B).357

A dimethylphenylsilylmethyl substitution on imidazolium
cations causes a substantial increase in liquid viscosities and
glass transition temperatures.368 It should be noted that
[PhSiMIM][NTF2] (1-dimethylphenylsilylmethyl-3-methyli-
midazolium) has higher shear viscosity and glass transition
temperature than other silicon-substituted ILs, likely due to
stronger intermolecular interactions. The diffusivities of small
solutes in silicon-substituted ILs are faster than those in alkyl-
substituted ILs with similar viscosities due to flexibilities of
silicon-substituted alkyl chains and weak cation−solute
interactions.370

Functionalizing imidazolium cations with aromatic moieties
(benzyl groups) leads to significant and systematic changes in
thermophysical properties of ILs. They have increased glass
transition and melting temperatures arising from additional
π−π interactions.371 Motivated by striking phase behaviors and
distinct molecular dynamics of [CnMIM][NTF2]−benzene
mixtures,89,372 Xue et al. performed femtosecond optical-
heterodyne-detected Raman-induced Kerr effect (OHD-RIKE)
experiments and atomistic simulations on [BzMIM][NTF2]
(1-benzyl-3-methylimidazolium) and compared results with
those for an equimolar [C1MIM][NTF2]−benzene mixture.354

Kerr spectra showed marginal differences in spectral densities
for phenyl and imidazolium rings, indicating a very similar local
environment for these two ring moieties. Furthermore,
intermolecular part of Kerr spectrum for [BzMIM][NTF2]
has lower intensity and higher frequency and is broader than
that for the 1:1 [C1MIM][NTF2]−benzene mixture.373 These
results are rationalized as being a consequence of local liquid
structures, which have π−π stacking complexes involving a
benzene molecule sandwiched between two imidazolium rings
in 1:1 [C1MIM][NTF2]−benzene mixture. It should be noted
that [BzMIM][NTF2] is a glass-forming liquid,355,371 whereas
1:1 [C1MIM][NTF2]−benzene mixture forms an inclusion
crystal with a congruent melting temperature,374 which is
mainly maintained by π−π stacking interactions between
benzene and imidazolium ring planes and anion−π interactions
of [NTF2] with benzene π electrons.
For imidazolium ILs, most cations are characterized by an

asymmetric feature with one nitrogen atom attached to either a
hydrogen atom or a methyl group, and the other nitrogen is
covalently bonded to an alkyl chain with varied chain length. It
is known that cation symmetry provides distinct structural
organizations that allow fine-tuning IL’s physicochemical
properties. There are two ways in tuning imidazolium cation
symmetry. One is to bond two alkyl chains having the same
number of carbon atoms to two nitrogen atoms in imidazolium
rings.358,375−378 The other is to functionalize terminal methyl
group in long alkyl chain with an imidazolium ring.379,380 The
obtained symmetric imidazolium cations are described by
double-tailed and double-headed structures, respectively.
For double-tailed imidazolium ILs, S/WAXS spectra showed

that microstructural heterogeneity for an IL consisting of
asymmetric imidazolium cations is larger than that for an IL
consisting of double-tailed symmetric imidazolium cati-
ons.358,375,376 Local liquid structures of double-tailed sym-
metric imidazolium ILs are more tightly packed and exhibit
more solidlike behavior than ILs with asymmetric cations, as
indicated by a high q peak being narrower for [C5C5IM]-
[NTF2] than that for [C9MIM][NTF2] (Figure 13C). Despite
there are some controversies for the trend shift on enthalpies

of vaporization, a nanostructuration effect in symmetric and
asymmetric ILs is observed in their physicochemical proper-
ties.262,358,375 [Cn/2Cn/2IM][NTF2] ILs have higher volatilities
and lower entropies of vaporization than [Cn−1MIM][NTF2]
ILs having the same number of carbon atoms in their alkyl
substituents.358,381 Moreover, [Cn/2Cn/2IM][NTF2] ILs exhibit
a striking odd−even feature in their enthalpies and entropies of
vaporization.381,382 With respect to intermolecular dynamics,
OKE spectra for ILs having symmetric imidazolium cations are
higher in frequency and broader than those for ILs having
asymmetric imidazolium cations. In addition, an explicit
difference was observed in the dependence of spectral
parameters of the intermolecular part of the OKE spectrum
of [CnCnIM][NTF2] ILs on cation alkyl chains from ethyl to
propyl groups,358,375,376 indicating that alkyl chain segregation
occurs at n = 3.
Besides distinct microstructural and dynamical heterogene-

ities in double-tailed imidazlium ILs, double-headed (divalent
or dicationic) imidazolium ILs exhibit different micro-
structures,359,383−385 dynamics,385−387 and solvent proper-
ties.380,386,387 S/WAXS experiments and atomistic simulations
showed enhanced spatial heterogeneities in [Cn(MIM)2]-
[NTF2]2 ILs characterized by changes in scattering intensities
and heterogeneity order parameters as the alkyl chain length
increases from n = 3 to 6, and 12.359 The bulk liquid structures
and ion diffusivities of double-headed imidazolium ILs are
substantially depend on the length of alkyl chain linkage
separating two imidazolium rings.383,385,388 Double-headed
imidazolium ILs with short alkyl linkages exhibit almost
identical mesostructural features as that for monovalent
imidazolium ILs, regardless of anion types, whereas double-
headed imidazolium ILs with long alkyl spacers between
imidazolium rings display a very small prepeak and a low
microstructural heterogeneity.359,385,389 Moreover, anions have
a weak effect on bulk liquid structures, but they are well
organized around imidazolium rings with similar spatial
distributions as in monovalent ILs,389,390 leaving a low-density
region around the alkyl linkage between two imidazolium rings
in double-headed imidazolium ILs.385,390 Variations in temper-
atures have a slight influence on locally assembled polar and
apolar nanostructures for double-headed imidazolium ILs in
comparison with monovalent ones. The scattering peaks at 0.9
Å−1 and 1.4 Å−1 are shifted toward lower q values as
temperature increases (Figure 13D), which are reflected in
variations in heterogeneity order parameters determined from
atomistic simulations.359,383−385,388 In addition, double-headed
ILs are “subionic”, relatively “superfragile”, and moderately
non-Newtonian fluids with positive Gibbs free energies of
activation.391

In general, microstructural heterogeneity of ILs is accom-
panied by distinct dynamic heterogeneity of constituent ions.11

Dynamic heterogeneity implies a distribution of spatial regions
with varied relaxation rates, which are determined by a
competition between short-range vdW interactions arising
from hydrophobic alkyl chains and long-range Coulombic
interactions from polar groups. This picture provides an
appealing insight into microscopic origin of nonexponentiality
that arises from ensembles of ions having fast and slow
dynamics.392 Indeed the diffusion mechanism of ions in IL
matrixes is more complicated than originally expected,393

which may have additional hints for rationalizing striking
dynamical quantities in self-assembled IL matrixes.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00693
Chem. Rev. 2020, 120, 5798−5877

5815

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00693?ref=pdf


The experimental data from ultrafast infrared spectroscopy
and OHD-OKE spectroscopy are used as evidence to describe
heterogeneous dynamics of ions in inhomogeneous ILs, which
occur on different time scales. Fayer and co-workers performed
ultrafast spectroscopy to study rotations and local structural
fluctuation dynamics of CO2 in [CnMIM][NTF2] ILs, which
are promising solvents for CO2 capture.91,92,394,395 The
rotational dynamics of CO2 occur on three time scales,
corresponding to two different time scales of restricted
wobbling-in-a-cone motions and a long-time complete diffusive
rotational randomization. In addition, the complete rotational
randomization of CO2 and the structural fluctuation of ILs in
supported IL membranes ([C2MIM][NTF2] in poly(ether
sulfone)) are slower than those in bulk liquids by
approximately 2−3-fold in spite of large pore size (350 nm)
in supported membranes. Experimental results indicated that
variations of IL structures induced by polymer interface span
more than hundred nanometers from the interfacial region,
influencing dynamics of ion species and rotational dynamics of
CO2.

395,396 Furthermore, rotation of CO2 slows down with
lengthening cation alkyl chains but less than that in liquid
viscosities of imidazolium ILs (Figure 14A).394 These
experimental results demonstrated that once there are
substantial apolar regions in IL matrixes, making these regions
larger does not change long-time-scale spectral diffusion
dynamics experienced by CO2. Therefore, if a process is to
be optimized for carbon capture, liquid dynamics that actually
influence CO2 absorption should be systematically considered.
OHD-OKE experiments showed that rotational relaxations of
ILs have a complex time dependence that span from a few
hundred femtoseconds to hundreds of nanoseconds with
several power laws and a final exponential decay (Figure
14B).90,91,93,397 The power laws reflect dynamics on time scales
during which a molecule is “caged” by surrounding molecules,
and the final exponential decay is the diffusive complete
rotational randomization of ion species.
Related information on dynamical heterogeneities of ILs

were obtained from NMR experiments,87,262,398 atom-
istic156−158 and CG66−68,133,184,336 simulations on single (van
Hove correlation function, incoherent intermediate scattering
function, non-Gaussian parameter, diffusional anisotropy, etc.)
and collective (self-diffusivity, thermal and ion conductivity,
shear viscosity, rotation, etc.) dynamical quantities. Despite
some discrepancies between NMR measurements and

simulation results, the dynamical heterogeneities of ILs and
changes in single and collective dynamical quantities with
temperatures are qualitatively captured. In general, imidazo-
lium cations have enhanced heterogeneous dynamical
quantities in comparison with their paired anion species, and
a small fraction of highly mobile cations contribute to their
distinct self-diffusivities in IL matrixes.66−68,185 Imidazolium
cations structurally relax faster but rotationally relax slower
than their coupled anion species at all temperatures. In
addition, there is a distinct temperature dependence of
rotational anisotropy for imidazolium cations but only a
weak temperature dependence for anion species. Ion
conductivities of ILs are significantly influenced not only by
ion sizes but also by shapes of constituent ions. Variations in
self-diffusion coefficients, viscosities, and ion conductivities
with temperatures follow a Vogel−Fulcher−Tammann (VFT)
equation.262 All in all, the dynamical behaviors of ILs are
extremely complex and consist of many different relaxation
modes spanning multiple time scales. The sizes and shapes of
IL ions and delicate interplay of interactions among
constituent ions contribute to distinct dynamical heterogene-
ities of ILs in heterogeneous ionic environments.156

In addition to temperature changes,399 effects of other
external constraints, such as pressure,400−405 shear flow,406 and
electric field,407,408 on microstructural and dynamical hetero-
geneities of bulk ILs have been investigated via numerous
experimental and computational studies. Imidazolium ILs
consisting of either small halides (Cl,409,410 Br409),
[BF4],

401,411 [PF6],
404,412 or [NTF2] anions400,405 exhibit

complicated phase behaviors due to conformational flexibilities
of alkyl chains. The external constraints can significantly affect
conformational equilibrium of imidazolium cations and anions,
like [NTF2],

400,405,409 which directly contribute to distinct IL
structural transitions. For [CnMIM][NTF2] ILs, the presence
of sandwiched structures of [NTF2] anions between
neighboring imidazolium rings leads to a substantial hindrance
for alkyl chains to curl and consequently to dissolve polar−
apolar alternations at high pressures.400 This behavior is
distinct from that of [CnMIM][BF4] ILs where locations of
[BF4] anions favor curling of alkyl chains and consequent
changes in liquid structural organization.411 In addition,
[CnMIM][NTF2] ILs with n = 3−10 form a glassy state at
high pressures. Intriguingly, the glass transition pressure
slightly increases up to n = 5, reaches a plateau at n = 8, and

Figure 14. (A) Isotropic spectral diffusion of CO2’s asymmetric stretching in [CnMIM][NTF2] ILs. Reproduced with permission from ref 394.
Copyright 2016 American Chemical Society. (B) Representative OHD-OKE data for [C4MIM][BF4]. Reproduced with permission from ref 91.
Copyright 2014 Elsevier.
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increases again at n = 10.405 This is completely different from
high-pressure glass formation of [CnMIM][BF4] ILs.

403 These
findings are intrinsically correlated with the fact that
[CnMIM][NTF2] ILs are resistant to external pressures and
prefer to retain their local liquid structures by essential
conformational adjustments of [CnMIM] cations and [NTF2]
anions at high pressures.82

2.4.3. Pyrrolidinium ILs. Pyrrolidinium ILs are widely
used in electrochemical applications because of their wider
electrochemical windows and higher electrochemical stabilities
than imidazolium analogues.413,414 SAXS and atomistic
simulations showed that effects of alkyl chain lengths and
temperatures on nanoscale organization of [CnMPYRR]-
[NTF2] ILs

415−418 are similar to those reported for [CnMIM]-
[NTF2] IL series even though imidazolium cations are planar
and aromatic and pyrrolidinium cations are nonplanar and
nonaromatic.280,346,347 However, the FSDPs for [CnMPYRR]-
[NTF2] ILs with long cation alkyl chains display a remarkable
shift to high q values with increasing temperatures,417 which is
rationalized by a competition between strong charge ordering
associations of ions and vdW interactions between alkyl chains
in [CnMPYRR] cations. This observation highlights a charge
ordering pattern of polar moieties resulting from electrostatic
ion ordering at short distances and a complex association
among cation alkyl chain at long distances. The self-
aggregation of alkyl chains and the dependence of polar
group ordering on alkyl chain length provide a clear view of
heterogeneous microstructures in [CnMPYRR][NTF2] ILs.
Rotation dynamics of [CnMPYRR] cations and [NTF2] anions
are anisotropic, and the degree of anisotropy increases with
decreasing temperatures. Electrostatic interactions between
constituent ions are mainly responsible for decreased ion
conductivities and increased viscosities of [CnMPYRR][NTF2]
ILs with larger effects at lower temperatures.419

In addition, constituent species (head and tail groups in
cations and anions) of [CnMPYRR][NTF2] ILs are structurally
complex and can be conformationally modified by applying
pressures.419−422 The Margulis and Castner Jr. groups did
comprehensive studies on microstructures of ILs consisting of
a common [NTF2] anion coupled with varied pyrrolidinium
cations (1-(cyclohexylmethyl)-1-methylpyrrolidinium, 1-(2-
ethylhexyl)-1-methylpyrrolidinium, and 1-alkyl-1-methylpyrro-
lidinium) via SAXS experiments and atomistic simula-
tions.415,418,423 Both polarity and charge orderings decrease
with increasing pressures as correlations of polar and apolar
moieties are susceptible to applied pressures.422 Alkyl tails in
cations possess an increased number of gauche defects at
higher pressures, leading to their increased bending and curling
in heterogeneous ILs.424 In addition, [CnMPYRR][NTF2] ILs
exhibit distinct changes in polarity and charge alternations
upon pressuring these ILs with cations having branched and
cyclic tails.415,423

Besides variations of pyrrolidinium cation alkyl chains, the
inclusion of an additional methylene unit in pyrrolidinium ring
leads to piperidinium and pyridinium ILs characterized by
distinct microstructures and complex phase behaviors, as
revealed from S/WAXS experiments.126 Lengthening cation
alkyl chains in [CnMPIP][NTF2] ILs (n = 1−8) leads to a
decrease in thermal stabilities and ion conductivities of ILs.425

Although prominent peaks are observed in low q region in S/
WAXS plots for [CnMPIP][NTF2] ILs with alkyl chains
ranging from C2 to C7, their peak positions are distinctly higher
than those for imidazolium ILs, indicating a smaller character-

istic length of microstructural heterogeneity in nonaromatic
ILs than that in aromatic ILs.
Variations of cation structures from [C4MPYRR] to

[C4HPYRI] and [C4MIM] lead to significant changes in low-
frequency Kerr spectra when these cations are coupled with
[NTF2] anions.

426 For ILs containing aromatic cations, such as
[C4MIM][NTF2] and [C4HPYRI][NTF2], spectral intensities
in the low-frequency region below 20 cm−1 increase and
representative spectral peaks in the high-frequency region at
around 80 cm−1 shift to lower frequencies with increasing
temperatures. These shifts are attributed to distinct activation
of translational and vibrational motions of ion species at high
thermal energies and fast librational motions of aromatic rings
due to large free volumes and weak intermolecular interactions
at high temperatures. Small differences between imidazolium
and pyridinium ILs are correlated with a delicate interplay of
intermolecular interactions (vdW, HB, π−π stacking, and
Coulombic interactions) among constituent ions and, in
particular, electronic structures of cations.427 In contrast, ILs
containing nonaromatic cations only exhibit an increase in
spectral intensities at the low-frequency region, while spectra at
the high-frequency region show little change with increasing
temperatures, indicating that the presence of aromatic rings
influences temperature-dependent spectral features, especially
at the high-frequency region.
The presence of static microstructural heterogeneity of

pyrrolidinium ILs leads to distinct solvation dynamics of (dye)
solute molecules, either neutral or charged, in IL ma-
trixes.428,429 Solvatochromic measurements indicated that the
extent of energetic heterogeneity of solutes in IL matrixes is
significantly correlated not only with microstructural but also
with dynamical heterogeneities arising from viscous glassy
nature of ionic environments.69,428,429 Small neutral and
charged dye molecules explore locally “soft” (mostly apolar
with low electrostriction) domains and locally “stiff” (mostly
charged with high electrostriction) domains, respectively.
These domains of low and high frictions are associated with
jump and cage regimes. The enhanced diffusivities of neutral
tracers in low friction domains, associated with apolar groups
in constituent ions, have a substantial bearing on large positive
deviations from the Stokes−Einstein hydrodynamics of ILs
compared to conventional molecular solvents.430 In contrast,
the diminished mobilities of charged tracers involve lengthy
caging dynamics separated by jump events, which are often
caused by a recovery or loss of counterions. Charged solutes
are strongly coupled with polar moieties of solvent ions and are
not an innocent spectator of stiff and soft solvent regions but
instead participate in creating electrostriction they experi-
ence.428 As cations in less viscous ILs are often asymmetric, it
is expected that a small positively charged probe will have
stronger interactions with anions than with cations.431,432

Therefore, small ion tracers will become an intrinsic
component of polar networks and their diffusions are strongly
correlated with that of ion groups comprising polar networks in
IL matrixes.

2.4.4. Tetraalkylammonium and Tetraalkylphospho-
nium ILs. In protic alkylammonium ILs consisting of either
primary, secondary, or tertiary ammonium cations, anions
prefer to coordinate with N−H groups via preferential HB
interactions, which are absent in aprotic tetraalkylammonium
ILs.433,434 SAXS435,436 and atomistic simulations437 of [N1,n,n,n]-
[NTF2] ILs (n = 4, 6, and 8) showed that low q peaks in
scattering structural functions depend on alkyl chain length in
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[N1,n,n,n] cations, while intermediate and high q peaks do not.
These conjugated studies delineate the nature of marked
nanoscale segregation of polar and apolar domains in ILs. Polar
domains consist of 3D networks of ion channels, and apolar
domains are arranged as a continuous microphase permeating
polar networks. These results agree well with previous studies
of [CnMIM][PF6]

438 and [CnMIM][NTF2] ILs,439 and
provide another confirmation that not only ILs are nano-
structured solvent media consisting of polar and apolar
domains but also that their liquid structures can be further
decomposed according to different categories of liquid
morphologies.440 In addition, [N1,n,n,n][NTF2] ILs are not
very viscous, but they exhibit a (low-frequency) macroscopic
solidlike response to a low shear strain even at 100 °C above
the glass transition temperature,441 indicating collective elastic
intermolecular interactions and long relaxation time scales.
Therefore, the role of shear elasticity has to be considered for a
better understanding of their odd properties, such as a non-
Arrhenius temperature dependence of viscosities and ion
conductivities as well as deviations of these dynamical
properties from the Nernst−Einstein equation and their
variations in the Walden plot, which are intrinsically ascribed
to changes in high-frequency shear modulus with lengthening
alkyl chains in tetraalkylammonium cations.442

Functionalization of the [N1,1,1,2] cation with a terminal
hydroxyl group leads a good capability of [CH] cation in
coordinating amino acid anions leading to a new type of ILs.
These ILs are wholly composed of renewable biomaterials with
inherent biocompatibility and low toxicity and hence can be
used in enzymatic extraction and biocatalysis.443 XRD and IR
spectra as well as AIMD and atomistic MD simulations444,445

revealed that amine groups in anions do not show strong
interactions with [CH] cations, that is, amino acid anions are
“more acid than amino”, contributing to their similarities with
alkylcarboxylate anions.325 The liquid structures of [CH]
amino acid ILs are substantially composed of two main
docking interactions acting between different charge moieties:
a strong HB feature connecting carboxyl terminals in amino
acid anions to hydroxyl groups in [CH] cations, which

determines short-range structural behavior and a substantial
ion coupling as basic building blocks of IL matrixes.446 A
remarkable change was observed in translational and rotational
responses of [CH] amino acid ILs to external electric fields.447

Effective dipolar alignments of constituent ions with electric
fields exhibit striking rotational mobilities of ions in the
direction of electric field, which decrease with electric field
frequency and increase with electric field strength.
SAXS experiments and atomistic simulations of ILs

consisting of [N2,2,2,8], [N2,2,2,(2O2O2)] (2-ethoxyethoxy-ethyl-
triethylammonium), and their phosphonium analogues showed
that ILs with cations having four alkyl substituents exhibit
FSDPs in their scattering structure functions, which are less
intense or totally absent in diether-substituted ana-
logues.420,448,449 In ILs with cations having four alkyl
substituents, anions are excluded from locations in which
they are found in other types of ILs, eliminating long-range
alternating polar−apolar patterns.450 In addition, the inclusion
of ether functionalities in tetraalkylammonium and tetraalkyl-
phosphonium cations disturbs both long-ranged charge
ordering and intermediate-ranged ordering in a rather subtle
manner.451 Ether groups have stronger interionic interactions
with cation polar groups, resulting in larger surface tensions
than ILs with hydrophobic alkyl groups and exhibiting a more
flexible and less segregated polar domains in apolar networks in
ILs.452−454 These two structural features contribute to distinct
transport properties of ether-substituted cations in comparison
with their alkyl-substituted counterparts.
The specific effect of changing cation core from nitrogen to

phosphorus atoms on cation−anion interactions, thermody-
namics, microstructures, dynamical, and transport properties
was investigated combining XPS,114 femtosecond OHD-
RIKES,452 quasi-elastic light scattering spectroscopy, and
broadband dielectric spectroscopy83 as well as atomistic
simulations.453,455 Tetraalkylphosphonium ILs exhibit lower
shear viscosities and glass transition temperatures and higher
ion conductivities than the corresponding tetraalkylammonium
ILs.83,452,454,455 These properties are attributed to flexible
molecular structures and weaker liquid structuring of

Figure 15. (A) Computational X-ray scattering structural functions and representative liquid morphologies of tetraalkylphosphonium Cl ILs. Polar
domains (red) are composed of P(CH2)4 moieties in cations and anions, and the apolar entity (cyan) consists of the remaining alkyl groups in
cations. (B) Self-part of van Hove correlation functions Gs(r,t) for ion species in [P6,6,6,14]Cl at seven different times. (C) Non-Gaussian parameters
α2(t) for Cl anions in six tetraalkylphosphonium Cl IL matrixes. Reproduced with permission from ref 238. Copyright 2017 AIP Publishing LLC.
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tetraalkylphosphonium cations in comparison with tetraalky-
lammonium homologues.453 DFT calculations showed that
phosphorus atoms in tetraalkylphosphonium cations carry
more positive charge than nitrogen atoms in tetraalkylammo-
nium cations, and a noticeable charge delocalization occurs in
tetraalkylammonium cations in comparison with tetraalkyl-
phosphonium congener.455 These features contribute to a less
ordered nanoscale aggregation of hydrophobic alkyl moieties
and, consequently, inhibit cooperative relaxation dynamics in
apolar networks in tetraalkylphosphonium ILs. Relative to α
structural relaxation, these ILs present pronounced secondary
structural relaxations that are strongly dependent on atomic
identity of charged cation centers. [P2,2,2,8][NTF2] exhibits
faster secondary relaxations than [N2,2,2,8][NTF2] at all
measured temperatures, of which the former is characterized
by an Arrhenius temperature dependence characteristic of local
β relaxation, whereas the latter exhibits a mild non-Arrhenius
thermal activation, which is indicative of molecular coopera-
tivity.
Compared with imidazolium and pyrrolidinium ILs, the

dependence of nanoscopic liquid morphologies of tetraalkyl-
phosphonium ILs on alkyl chain length of cations is
complicated as cations are composed of four alkyl chains and
each one can be tuned by varying the chain length.238,239,294,456

Tetraalkylphosphonium cations with short alkyl chains exhibit
both liquid and solid states,457,458 such as [P1,2,2,4][PF6], in
which the [P1,2,2,4] cation exhibits a distinct transport
mechanism involving a crankshaft motion around the isobutyl
group.457,458 The microstructural liquid morphology of
[P2,2,2,4]Cl is described by bicontinuous interpenetration of
the polar and apolar networks (Figure 15A). Lengthening the
cation alkyl chains results in a polar network composed of
central polar moieties in cations and anions being partially
fractured or totally partitioned within the apolar framework.238

The variations of liquid morphologies and heterogeneous
microstructures in the [Pn,n,n,m]Cl IL matrixes are qualitatively
manifested in decent adjacency correlation peaks and polarity
alternation peaks observed at high and low q values in
scattering structural functions, and their peak positions
gradually shift to lower q values with lengthening alkyl chains
in cations (Figure 15A). The peaks for charge alternations
located in the intermediate q range present a complicated
dependence on cation alkyl chain length due to a complete
cancellation of positive contributions from ions having the
same charge and negative contributions from ions having an
opposite charge. These liquid structure changes are obviously
manifested in dynamical properties. The terminal carbon
atoms of alkyl chains exhibit an overall higher translational
diffusivity than central phosphorus atoms in cations, which
exhibit comparable translational diffusivities as Cl anions due
to their decisive Coulombic associations in polar domains in IL
matrixes. Lengthening cation alkyl chains leads to a
concomitant shift of van Hove correlation functions to large
radial distances (Figure 15B) and of non-Gaussian parameters
to long time scales (Figure 15C), respectively, corresponding
to increased translational diffusion heterogeneities of con-
stituent ions in constrained ionic environments.
The [P6,6,6,14] ILs have been extensively investigated in

experimental and computational studies due to a versatility of
[P6,6,6,14] cations in coordinating various anions, from small
spherical ones (halides, [BF4], [PF6], etc.)

459−462 to bulky
asymmetrical ones with diffuse charges,462,463 like
[NTF2].

464,465 The FSDPs in scattering structural functions

for [P6,6,6,14] ILs are independent of anion types and increase in
intensity with decreasing temperatures.462 In addition, charge
and polarity orderings in [P6,6,6,14] ILs display appreciable
sensitivity to external pressures.460 Polarity ordering diminishes
as pressure increases from ambient to a transition pressure.
Upon further pressuring ILs, an additional peak corresponding
to crystalline order emerges on a relatively short length scale.
This observation is attributed to enhanced polar−polar and
apolar−apolar correlations and decreased polar−apolar
correlations. With increasing pressures, the probability of
finding more gauche kinks along C6 chains is systematically
increased, whereas a mixed effect is observed for C14 chains in
[P6,6,6,14] cations.
ILs consisting of [P6,6,6,14] cations coupled with chelated

orthoborate anions have striking tribological features.58,294,466

Atomistic simulations indicated that there are mainly four high
probability regions for orthoborate anions to coordinate
[P6,6,6,14] cations. Boron atoms in [BOB] anions exhibit
dispersed tetrahedral distributions around [P6,6,6,14] cations.
An increase in anion sizes from [BOB] to bis(malonato)borate
([BMLB]), bis(mandelato)borate ([BMB]) and bis-
(salicylato)borate ([BScB]) leads to an expansion of spatial
distributions of boron atoms in these orthoborate anions
around [P6,6,6,14] cations. Spatial distributions of oxygen atoms
in orthoborate anions are characterized by a trefoil-like
structure and follow a similar tendency as those of boron
atoms as anion size increases. These distinct ion structures lead
to significant changes in their liquid viscosities and rheological
properties.294,467,468

3. IONIC LIQUID−MOLECULAR SOLVENT MIXTURES

3.1. Solvation Thermodynamics and Structures of Water in
ILs

For IL related research in laboratory and industrial
applications, an inevitable issue is the presence of residual
impurities in ILs. As an omnipresent compound, water is one
of the most common contaminants found in IL samples. On
one side, this is caused by ILs’ intrinsic hygroscopic feature,
even those described by hydrophobic characteristics can
absorb a considerable amount of water from atmosphere,
and on the other side many processes including chemical
synthesis and liquid extractions and purifications involve water.
It has been well recorded that trace amounts of water can
dramatically alter microstructures in ILs, resulting in significant
changes in physicochemical and rheological properties of ILs as
well as reactivities and selectivities of reactions taking place in
IL matrixes.469

Water−ion interaction strength qualitatively determines the
trend of excess chemical potentials and therefore miscibility of
water in ILs.470 Anthony et al. found that excess chemical
potentials of water in [C4MIM][PF6], [C8MIM][BF4], and
[C8MIM][PF6] ILs lie between −15 kJ/mol and −20 kJ/mol
and increase slowly with temperatures and cation alkyl
chains.471 Lynden-Bell et al. calculated excess chemical
potentials of a series of solutes (water, methanol, dimethyl
ether, acetone, and propane) dissolved in [C1MIM]Cl IL
matrix using a thermodynamic integration method.472 Water
and methanol have large excess chemical potentials (−29 kJ/
mol and −14 kJ/mol, respectively), which are attributed to
specific HB interactions in stabilizing water and methanol in
[C1MIM]Cl. Apolar molecules like dimethyl ether and acetone
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have excess chemical potentials of ∼7 kJ/mol while the value
for propane is of approximately 26 kJ/mol.
Wang et al. showed that free energies of solvating one water

molecule from gas phase into bulk [P6,6,6,14] orthoborate IL
matrixes are positive and exhibit linear dependence on
temperatures.473 At a given temperature, these solvation free
energies are intrinsically related to orthoborate anion
structures with an order of [BMLB] > [BScB] > [BMB] >
[BOB], which is qualitatively consistent with experimentally
determined residual water contents in the corresponding ILs.
In addition, less solvation free energies are required to dissolve
the second one within the first solvation shell of the first
solvated water molecule, attributing to preferential pairwise
intermolecular interactions between two water molecules and
favorable multibody interactions of solvated water molecules
with neighboring anion species at short and intermediate
distances.
Seddon and co-workers provided guidelines on mutual

miscibilities of ILs with water.474 In general, ILs containing
highly fluorinated and charge-delocalized anions, such as
[NTF2], tricyanomethanide and [PF6], are hydrophobic and
are immiscible with water.475−477 ILs having hydrophilic ions,
such as halides, ethanoate, [NO3], trifluoroacetate, and
carboxylate, are totally miscible with water, and those
consisting of [BF4], [CF3SO3], and phosphate anions are
either miscible or immiscible with water depending on cation
substituents. In addition, cations also affect miscibilities of ILs
in water with hydrophobicity of cations following an order of
[CnMIM] < [CnMPYRI] < [CnMPYRR] < [CnMPIP] <
tetraalkylammonium < tetraalkylphosphonium. Furthermore,

hydrophobicity of cations increases with lengthening cation
alkyl chains, indicating a decreased polarity of cations.478

It is understood that solvation structures of water in ILs
depend primarily on strength of electrostatic ion−water
interactions, which, in turn, are essentially determined by ion
sizes and the amount of charge on the ion surface.470

Interactions of water with small ions are favorable while
those with large ions are much weak due to their delocalized
charges.470,475,477,479 In addition, HB interactions contribute to
significant coordination of water with constituent ions due to a
dual feature of water having HB interactions with both cations
and anions, which further complicates solvation structures of
multiple water molecules in ILs. The water−water potential of
mean force profiles for [P6,6,6,14] orthoborate ILs indicate
substantial interactions of solvated water molecules with
neighboring ions depending on local ionic environments
(Figure 16).473 A characteristic deep potential minimum
registered at ∼0.28 nm corresponds to the formation of a water
dimer complex, which has strong coordination with neighbor-
ing anions and forms stable ring structures via HB interactions.
As the separation distance between solvated water molecules
increases, there is not enough space between solvated water
molecules for an ion to squeeze in, leading to the formation of
unstable intermediates. These intermediates contribute to
gradually enhanced water−water interactions until the
formation of metastable ion-separated water association
structures at intermediate separation distance. The association
patterns for solvated water molecules at large separations are
described by remarkable characteristics depending on specific-
ities of anions and mild interactions of solvated water with
surrounding ions, leading to remarkable spatial association

Figure 16. Left, potential of mean force curves of two solvated water molecules in IL matrixes, and representative configurations of solvated water
molecules in coordinating neighboring anion species in [P6,6,6,14] orthoborate ILs. Right, spatial distributions of hydrogen (green contour) and
oxygen (red contour) atoms in solvated water molecules around neighboring orthoborate anions. Reproduced with permission from ref 473.
Copyright 2016 AIP Publishing LLC.

Figure 17. Representative snapshots of [P6,6,6,14][BOB]−water mixtures containing varied water mole fractions of Xwater = (A) 0.33, (B) 0.5, (C)
0.8, and (D) 0.95. Cations, anions, and water molecules are represented by green, red, and blue spheres, respectively. Reproduced with permission
from ref 491. Copyright 2015 American Chemical Society. (E) Translational diffusion coefficients of all ion species in mixtures having different
water concentrations at 333 K. Reproduced with permission from ref 293. Copyright 2016 American Chemical Society.
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patterns of solvated water molecules around orthoborate
anions (Figure 16).473

3.2. IL−Water Mixtures

E x t e n s i v e e x p e r i m e n t a l c h a r a c t e r i z a t i o n s
(NMR,161,254,321,480−483 infrared and Raman spectroscop-
ies,151,230,482−488 X-ray and neutron scattering spectros-
copies,109,111,159,487,489 etc.), theoretical studies,31,477 DFT
c a l c u l a t i o n s , 1 7 2 , 4 8 3 , 4 9 0 a nd a t om i s t i c s imu l a -
tions72,160,162,167−169,171−174,178,180,491−493 have been per-
formed to characterize phase behavior changes when mixing
ILs with water. Variations in liquid structures, translational and
rotational dynamics of ion species, and evolution of micro-
scopic liquid morphologies of IL−water mixtures with a
gradual increase of water concentration in ILs can be roughly
classified into several compositional regimes. Representative
changes of microstructural and dynamical quantities in
[P6,6,6,14][BOB]−water mixtures are illustrated in Figure
17.164,293,491

In IL−water mixtures with a small water mole fraction
(generally Xwater ≤ 0.2), cation groups and anion species are
strongly coupled together via decisive Coulombic interactions
and preferential HB interactions and possibly π−π stacking
interactions in ILs containing heteroaromatic rings. Micro-
scopic liquid organization is characterized by isolated polar
domains dispersed in a connected apolar network or by
interpenetrating polar and apolar networks. Most water
molecules are scattered in IL matrixes and are preferentially
coordinated with ion species nearby, leading to the local ionic
structures described by solute-shared ion pairs486 (Figure
17A). The restricted spatial configuration of water molecules in
IL−water mixtures results in their constrained rotational
relaxation within a cone of angles due to their dual feature
in coordinating both cations and anions via HB interactions
and a significant increase in translational diffusions of ion
species in mixtures as water concentration increases (Figure
17E).110,159,165,480,494

For IL−water mixtures having intermediate water concen-
trations (generally 0.2 < Xwater ≤ 0.9), small clusters, such as
water dimers, trimers, and water channels, appear and
dominate distribution of water aggregates in IL−water
mixtures (Figure 17B,C). These water clusters serve as bridges
connecting anions between isolated polar domains and
mediating their distributions in mixtures.485,495 The local ion
structures in these IL−water mixtures are described by solute-
mediated ion pairs, leading to increased spatial associations
between ions and, thus, have a strong effect on translational
and rotational dynamics of ion species in mixtures (Figure
17E).111,151,166,488,496,497

The further addition of water into IL−water mixtures results
in a dynamic percolation of water molecules throughout the
entire simulation box (Figure 17D). The local ionic environ-
ment is described by interpenetrating polar and apolar
networks or loose micelle-like aggregates in a highly branched
water network.168,494 The formation of water networks
promotes a rapid increase in ion dynamics in these water-
concentrated mixtures. These IL−water mixtures are charac-
terized by substantial spatiotemporal heterogeneities attribut-
ing to a competition between strong electrostatic and
preferential HB interactions between polar moieties in ion
species, and persistent dispersion associations between hydro-
phobic moieties in constituent ions.482,484−486,490,496

In addition to variations in microstructures and mesoscopic
liquid morphologies determined from atomistic simulations, a
combination of 2D IR spectroscopy,72−75,488 OHD-OKE
spectroscopy,74,75,141,498 time-resolved ultrafast infrared spec-
troscopy,93,102 and PSPP measurements74,75,90 provides
comprehensive characterizations on multi-time scale dynamics
of ILs ranging from ultrafast vibrational motions of well-
defined functional groups to rotational relaxation of con-
stituent ions in IL−water mixtures at ground and excited
states.91,102,499 Take [CnMIM][BF4]−water mixtures for
example, rotational dynamics of water in [CnMIM][BF4] ILs
(n = 4, 6, 8, and 10) characterized using 2D IR spectroscopy
and PSPP experiments showed that water’s hydroxyl
absorption spectra are independent of cation alkyl chain
length, indicating that dispersed water molecules feel fairly
similar local ionic environments in all studied mixtures.74

However, rotational relaxation (PSPP experiments) and
spectral diffusion (structural dynamics using 2D IR experi-
ments) measurements of hydroxyl groups display alkyl chain
length dependence. These dynamics slow when cation alkyl
chains become long enough to form apolar segregations in IL-
water mixtures. At low water concentrations, all hydroxyls
interact mainly with anions because of their dispersed
distributions in heterogeneous IL matrixes. As water
concentration increases, a water-associated water population
forms, absorbing in a new spectral region red-shifted from
absorption of isolated or anion-associated water populations.
At sufficiently high water concentrations, water clusters grow
and water molecules experience dynamics approach those of
bulk water, and IL structures are fluidized by addition of water.
Both rotations of hydroxyls and their spectral diffusions,
tracking fluctuations in local structures and interactions, speed
up noticeably with increasing water content in certain
concentration ranges. The water concentration at which dilute
water dynamics change to fluidized dynamics depends on
cation alkyl chain length, which determines the extent and

Figure 18. Debye−Stokes−Einstein plots for IL−water mixtures consisting of (A) [C2MIM][BF4], (B) [C4MIM][BF4], and (C) [C6MIM][BF4]
ILs with water at varied ratios of ion pairs:water. Reproduced with permission from ref 94. Copyright 2018 AIP Publishing LLC.
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ordering of apolar domains. Increasing water concentrations
and lengthening cation alkyl chains tend to modify IL
structural orderings but with opposite and competing effects
on dissolved water dynamics.
It should be noted that water exhibits different solubilities in

[CnMIM][BF4] ILs depending on alkyl chain length in cations.
Both [C2MIM][BF4] and [C4MIM][BF4] ILs are infinitely
miscible with water, whereas in [C6MIM][BF4] IL water
saturates at Xwater = 0.75.94 The Debye−Stokes−Einstein
(DSE) plot for [C2MIM][BF4]−water mixtures has two
hydrodynamic regimes of Xwater < 0.67 and Xwater > 0.80 with
a crossover region in between (Figure 18A).94 Atomistic
simulations showed that there is no connected apolar domains
in [C2MIM] ILs. The local ionic environments in [C2MIM]-
[BF4] can restructure without paying a significant penalty for
disrupting local ion structures in polar domains to accom-
modate more water molecules in the IL matrix. The DSE curve
for [C6MIM][BF4]−water mixtures is linear, indicating that
[C6MIM][BF4]−water mixtures do not substantially change
local ionic environments as water concentration increases
(Figure 18C).90,94 [C6MIM][BF4]−water mixtures are hydro-
dynamic, likely due to favorable dispersion associations among
cation alkyl chains, making it unfavorable for ion species to
change local ionic structures to accommodate additional water
molecules. Instead of disrupting the apolar framework in the IL
matrix, [C6MIM][BF4] saturates with water. [C4MIM][BF4] is
an intermediate item, in which apolar domains are
interconnected and present to a limited extent. Similarly, two
linear regimes, a low water content regime with a moderate
slope and a high water content regime with a steep slope, are
observed in the DSE curve for [C4MIM][BF4]−water mixtures
(Figure 18B).90,94 However, the transition point for [C4MIM]-
[BF4]−water mixtures is between Xwater = 0.25 and Xwater =
0.50, which is lower than that for [C2MIM][BF4]−water
mixtures. [C4MIM] cations are able to restructure local ionic
environments to accommodate more water molecules, leading
to two linear regimes in the DSE curve because apolar domains
in [C4MIM][BF4]−water mixtures are less extensive than
those in [C6MIM][BF4]−water mixtures.
It is known that protonation of N(3) position in

imidazolium rings changes imidazolium cations from aprotic
to protic. The hydrogen atoms in N(3)−H groups serve as
strong HB donor sites and have preferential HB interactions
with water molecules and anions.75,94,163,254 OHD-OKE
spectra showed that [C2MIM][NTF2]−water mixtures exhibit
hydrodynamic behavior at all water concentrations up to
saturation, whereas [C2HIM][NTF2]−water (1-ethyllimidazo-
lium) mixtures display distinct phase behaviors at specific
water concentrations.75,94 Atomistic simulations demonstrated
a substantial jump in the formation of N(3)−H···(H2O)n
clusters in [C2HIM][NTF2]−water mixtures upon increasing
water concentrations. Cluster formation contributes to
significant deviations of rotational relaxations of [C2HIM]-
[NTF2]−water mixtures from hydrodynamic behavior due to
dominant HB interactions of water with N(3)−H groups over
other HB donor sites in [C2HIM] and [C2MIM] cations. This
structural variation is confirmed by FT-IR spectra showing an
asymmetric O−D stretching that is indicative of water clusters
in [C2HIM][NTF2]−water mixtures.
In addition to aprotic and protic imidazolium ILs, water

exhibits distinct microstructures and dynamics in protic
alkylammonium ILs.154,230,500−503 AIMD simulations showed
that HBs formed between MAN and water are characterized by

distinct HB structures and dynamics, resulting in a significant
incorporation of water into HB networks of MAN.154,500 Water
slows down rotational dynamics of cations and anions in MAN
and, to some extent, changes polarization of IL ions. However,
in EAN−water mixtures, water changes EAN nanostructures
mainly due to its HB interactions with EA cations and [NO3]
anions.503 In addition to bicontinuous polar and apolar
domains in the EAN IL matrix, separate EAN aggregations
and water domains are also evident. Water neither dilutes
molecularly dispersed IL ions nor does it swell polar networks
of existing IL nanostructures. Instead, water is principally
associated with ion polar groups, and its net effect is to
increase effective cation headgroup size and to create an
interfacial curvature around apolar domains. This changes
EAN nanostructures in EAN−water mixtures from a near-zero
mean curvature to a branched (locally cylindrical) net-
work.224,500,503

S/WAXS and atomistic simulations were combined to
explore liquid structures and dynamics of IL−water mixtures
consisting of primary, secondary, and tertiary alkylammonium
cations in conjunction with Cl, formate, and alkanoates
anions.199,502,504 For IL−water mixtures consisting of primary
alkylammonium cations coupled with small anions, like EAC−
water and PAC−water mixtures, there exists a complex liquid
structure where cation groups and anion species do not possess
a completely closed hydration shell of their own. In particular,
a dominant percentage of solute-shared ion pair structures are
formed in mixtures with low water concentrations, in which
dispersed water molecules act as linkers between cations and
anions via HB interactions. This percentage decreases with
increasing water concentrations in mixtures, but in conditions
of very high dilution, solvent-shared ion pair structures
continue to survive.199 Lengthening cation alkyl chains leads
to distinct thermal behaviors in hexyl-, octyl-, and decylammo-
nium Cl IL−water mixtures.501 For ILs having large anions,
liquid viscosities of IL−water mixtures exhibit characteristic
behaviors of concentrated salt solutions, with water diluting
protic ILs.502,504 Ion conductivities of IL−water mixtures
display complicated changes with a gradual increase of water
concentrations due to a subtle interplay of available “free” ions
in mixtures and changes in liquid viscosities of mixtures.

3.3. IL−Alcohol Mixtures

ILs are polar liquids, and polarities of pure ILs are higher than
acetone, dimethyl sulfoxide, and dichloromethane but lower
than water and close to short chain alcohols.505 Mixtures of ILs
with alcohols showed reduced viscosities and enhanced
functionalities in chemical engineering applications.9,18 In
these processes, it is especially significant to understand how
microstructures and molecular arrangements of ILs change
upon mixing and in which way miscibility and physicochemical
properties of IL−alcohol mixtures are related to their
characteristics in applications.

3.3.1. Alkylammonium IL−Alcohol Mixtures. Both
EAN and methanol are amphiphilic and their bulk liquid
structures are characterized by extended HB networks. Hence,
they are expected to exhibit ideal mixing characters.506,507

However, though macroscopically homogeneous, EAN−
methanol mixtures are heterogeneous fluids at the mesoscopic
level.194,508,509 Fluorescence anisotropy measurements, XRD
spectra, and atomistic simulations revealed that even in
methanol enriched mixtures, most EAN ion species are
clustered and preserve their spongelike liquid organization,
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and methanol molecules cannot fully dissociate EAN
clusters.510 Such heterogeneous liquid structures contribute
to distinct dynamic heterogeneities of EAN−methanol
mixtures as revealed from fluorescence anisotropy measure-
ments.510 Additional analysis of time-resolved anisotropy data
together with DSE hydrodynamic theory predicts that
reorientation times for EAN and methanol are comparable
and close to the stick hydrodynamic line in mixtures with low
EAN concentrations. EAN−methanol mixtures with inter-
mediate EAN concentrations exhibit both Newtonian and
Arrhenius behaviors, and their liquid viscosities are independ-
ent of temperatures.510 Furthermore, SAXS spectra showed
that strong cohesive forces in EAN and PAN ILs can induce
intermediate chain length alcohols to self-organize into
microemulsion-like and micelle-like structures in ILs, which
is in contrast to their immiscibilities with EtA ILs and
water.191,194,511 This indicates that EA and PA cations act as
cosurfactants and enable alcohols to aggregate, whereas EtA
cations cannot serve this function because their terminating
hydroxyl groups render EtA cations nonamphiphilic.
Shrivastav et al. performed additional atomistic simulations

to explore the effect of alcohol alkyl chain length on liquid
organization and HB interactions in equimolar mixtures of
BAN with primary alcohols.512 All BAN−alcohol mixtures
exhibit two decent peaks in the low q region in structural
functions, indicating the presence of bicontinuous heteroge-
neous ordering structures, which depend considerably on
alcohol alkyl chain length.191 Alcohols prefer to reside with
their hydrophobic tails in apolar domains and their polar heads
in polar domains in the IL matrixes.194,511,513 This is distinct
from distributions of polar solutes, like water, which reside in
polar regions,230,503,504 while apolar solutes prefer apolar
domains.191,513 Lengthening alcohol alkyl chains produces
significant variations in microstructural ordering of polar and
apolar domains in BAN−alcohol mixtures and exhibits
enhanced HB interactions of hydroxyls in alcohols with anions
and other alcohols.326

Both miscibility and liquid organization of binary
alkylammonium IL−alcohol mixtures are structured on two
distinct length scales: one is associated with self-assembled
alcohol aggregates and the other is associated with the
underlying IL nanostructures, both of which are primarily
sensitive to the ratio of alcohol alkyl chain length to
alkylammonium cation alkyl chain length.191,509 Alcohols
with alkyl chains shorter than twice that of alkylammonium
cations disrupt intrinsic amphiphilic IL nanostructures and
reduce periodic orders but do not generate a qualitatively
different solution structures. Long chain alcohols cannot be
accommodated within intrinsic IL nanostructures to any
significant extent and instead are expelled into large
amphiphilic aggregates. The self-assembled liquid structures
depend on detailed chemical compositions of IL−alcohol
mixtures. Globular micelles are formed at low alcohol
concentrations, but micelles tend to percolate into bicontin-
uous structures at high alcohol concentrations, which are
alcohol-rich but contain some cation groups acting as
cosurfactants. EtA cations cannot act as cosurfactants to
induce self-assembly of alcohols and therefore lead to
immiscibility once alcohol alkyl chains exceed twice the EtA
cation alkyl chains.191,514 It should be noted that these liquid
structural transitions are affected by anion structures and anion
HB capacities.326 Ethylammonium formate (EAF) has a less
pronounced bulk nanostructure than EAN and PAN ILs,190

and its miscibility with octanol results from a weak solvophobic
driving force. Therefore, fewer and smaller aggregates are
formed in EAF−octanol mixtures.
These observations provide valuable physical insights into

microstructural features and general stabilization mechanisms
of weakly structured mixtures and reveal new pathways for
identifying molecules and ILs that are likely to generate weakly
structured fluids for facilitating aggregations of nontraditional
amphiphiles and for supporting self-assembly of nontraditional
surfactants. Understanding these systems is an important step
toward applications of functional ILs as solvent electrolytes for
electrochemical devices and their effective utilization to
assemble new forms of soft matter.191,194,515

3.3.2. Imidazolium and Pyrrolidinium IL−Alcohol
Mixtures. The mutual solubility of imidazolium ILs and
alcohols are intrinsically related to significant interactions of
ILs with alcohols.516,517 These interactions are important
characters affecting physicochemical behaviors of IL−alcohol
mixtures.518,519 A general feature is that a gradual lengthening
of alcohol alkyl chains leads to a systematic decrease in
solubility of ILs in alcohols, which is deduced from solubility of
[C2MIM][NTF2] in propanol, butanol, and pentanol,520 and
of [C8MIM][BF4] in butanol and pentanol,521 as well as
solubility of other ILs containing different cation−anion
moieties in various alcohols.516,522,523 Lengthening alcohol
alkyl chains leads to a decrease in excess molar enthalpies and
increases in molar excess volumes and in upper critical solution
temperature (UCST) of IL−alcohol mixtures. These proper-
ties indicate that packing structures and interactions between
unlike molecules become less important in mixtures containing
long chain alcohols.519,524 By contrast, an increase in alkyl
chain length in imidazolium cations leads to enhanced
hydrophobicity of ILs and therefore results in a decrease in
UCST of IL−alcohol mixtures.518,525,526 Decreasing HB
opportunities of alcohols with C(2)-methylated imidazolium
cations results in an increase in UCST, while the coupled
anions have a significant impact on this property,525,527 which
diminishes with increasing alkyl chain length in cati-
ons.522,523,528

Calorimetric data together with computational results
showed evidence of effects of anion’s basicity on IL−alcohol
interactions and of cation structures on the solvation process of
alcohols in ILs.16,529 The effect of anion basicity on molar
enthalpies of solvation at infinite dilution of propanol in
[C4MIM] ILs is described by a sequence of anion enthalpy
values: [PF6] > tri(pentafluoroethyl)trifluorophosphate
([FAP]) > [NTF2] > [N(CN)2] > trifluoroacetic acid
([TFA]). This trend of increasing exothermic enthalpies
from [C4MIM][PF6] to [C4MIM][TFA] is rationalized by a
decrease in cavitation energy (endothermic contribution) and
an increase in IL−alcohol interaction strength (exothermic
contribution). In addition, variations in molar enthalpies of
solvation of propanol in [C4MIM] ILs are linearly correlated
with HB interactions of anions with propanol in IL−propanol
mixtures.519,530 These experimental and computational results
are generally consistent with previous findings on delicate
interactions of different solutes with anions in protic and
aprotic ILs.513,531,532

The aggregation process of alcohols in ILs and dynamical
quantities of ion species in IL−alcohol mixtures are highly
dependent on the nature of anions and size of alcohols as
alcohols have predominant interactions with anions, partic-
ularly in halogenated IL−alcohol mixtures.533,534 Atomistic

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00693
Chem. Rev. 2020, 120, 5798−5877

5823

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00693?ref=pdf


simulations suggested that the formation of apolar networks, as
has been reported for IL−water mixtures, does not take place
in IL−alcohol mixtures when halides are present,533,534 as
observed from a significant presence of locally ordered
structures in [CnMIM]Cl−alcohol mixtures.535 However, in
solvophobic IL−alcohol mixtures with fluorinated anions, the
formation of apolar aggregates and polar networks depends on
anion sizes.533,536 Diffusivities of constituent ions in IL−
alcohol mixtures increase with increasing alcohol concen-
trations. Two different regimes are observed: (i) at low alcohol
concentrations, diffusion coefficients of alcohols increase very
slowly, which is associated with viscosities of mixtures, and (ii)
at high alcohol concentrations, diffusion coefficients of alcohols
show a rapid increase, which is related to percolation of alcohol
domains breaking IL polar networks.536,537

Concerning liquid dynamics of IL−alcohol mixtures,
particularly those involving HB fluctuations, Kramer et al.
conducted a series of 2D IR measurements of spectral
diffusions and PSPP measurements of vibrational population
dynamics and rotation relaxation of hydroxyl stretching mode
of methanol and ethanol molecules in [C2MIM][NTF2].

397

Long time scale spectral diffusion (structural evolution)
observed in 2D IR spectra showed a clear but not dramatic
slowing as alcohol alkyl chain increases: 28 ps for methanol
and 34 ps for ethanol, both of which are larger than that for
water (23 ps) in the same IL. Frequency−frequency
correlation functions characterizing structural evolution in
IL−alcohol mixtures reported a variety of time scales for HB
dynamics and water rotation relaxation ranging from a few
hundred femtoseconds to tens of picoseconds. Rotational
correlation functions for these IL−alcohol mixtures exhibit
several periods of restricted angular wobbling-in-a-cone
motions before a complete rotational randomization. These
experimental results suggest a weakening of angular potential
from methanol to ethanol with decreased HB strength.538

Similar microstructural and dynamical changes were also
observed in mixtures of alcohols with pyrrolidinium,
pyridinium, and piperidinium ILs.529,538 Molar enthalpies of
solvation at infinite dilution of propanol in ILs consisting of
[NTF2] and [FAP] anions coupled with [C4MPYRR],
[C4PYRI], and [C4MPIP] cations were studied to examine
the influence of cation structural factors (size, aromaticity,
charge distribution, and acidity).538 For [NTF2] ILs, there is
no significant dependence of solvation enthalpies on cation
structures, which is an indirect evidence of substantial
interactions of alcohols with [NTF2] anions. Regarding
[FAP] ILs, there is a significant difference in solvation
enthalpies of propanol in [C4MPYRR][FAP] in comparison
with that in [C4MIM][FAP].539 This is attributed to an
nonaromaticity of [C4MPYRR] cations and a decrease in their
acidic character, leading to decreased cation−alcohol dis-
persive and HB interactions.538

In general, solvation of alcohols in ILs can be described as a
two-step process: creation of a cavity in ILs and relaxation of
ions in cavities to establish preferential IL−alcohol inter-
actions.519 Experimental and computational results of solvation
enthalpies of alcohols in ILs are interpreted as a balance
between an endothermic contribution of cavitation effect in IL
solvents and an exothermic contribution of solute−solvent
interactions. These results provide a detailed effect of cations
and anions on solvation of alcohols in ILs.
3.3.3. Tetraalkylammonium and Tetraalkylphospho-

nium IL−Alcohol Mixtures. Mixing [N1,1,1,4][NTF2] with

ethanol and propanol is expected to result in a competition
between ion−ion and ion−alcohol interactions.540 Solubility
data of ethanol and propanol in [N1,1,1,4][NTF2] indicate that
mixing enthalpy is positive for these two alcohols because they
must overcome strong Coulombic ion pair interactions to
solvate in IL matrix. In addition, structural and energetic
properties of [N1,1,1,4][NTF2]−alcohol mixtures provide
important molecular-level information that can be used to
understand and predict solubility trends for other alcohols in
ILs. Furthermore, small variations in alcohol structures lead to
a wealth of microstructures and liquid morphologies in IL−
alcohol mixtures, highlighting a resilience of IL polar networks
to addition of alcohols with different polarities.531 Charge
ordering peaks for all IL−alcohol mixtures exhibit higher
intensities than those for pure ILs and are all shifted to lower q
values due to expansions of apolar networks in IL−alcohol
mixtures. It is noteworthy that the expansion of apolar
networks and the partial breakdown of polar networks
(domains) in [CH] ILs are totally different from those in
[CnMIM] ILs. The modified polar networks are more
filamentous in the former case, whereas in the latter case
they are more globular in shape (some portions are expanded
or broken while others still retain a fairly degree of 3D
connectivity). Microstructures and liquid morphologies of
these IL−alcohol mixtures are, in fact, determined by an
intricate balance between different types of interactions
(electrostatic, solvophobic, vdW, HB, etc.) that are privileged
among intervening species.
In another work, atomistic simulations revealed that

[P6,6,6,14]Cl−methanol mixtures exhibit a microstructural
evolution from IL-like to methanol-like with a gradual addition
of methanol into [P6,6,6,14]Cl.

459 In mixtures with high
methanol concentrations, cation−anion pairs are widely
separated by methanol molecules. The central polar units in
[P6,6,6,14] are overwhelmingly surrounded by Cl anions and
subsequently by methanol molecules, and methanol hydroxyl
groups are preferentially solvated by anion species. In addition,
liquid viscosities of [P6,6,6,14]Cl−methanol mixtures show a
nonlinear dependence on mole fractions of ILs with XIL < 0.1,
which is in contrast to a linear data variation with mole
fractions of ILs with XIL > 0.1.541

For molecules interacting mainly via permanent dipole
moments (1,2-difluorobenzene, ethers) or permanent electric
quadrupole moments (benzene, hexafluorobenzene), mole-
cules tend to swell existing IL apolar domains and prefer to
locate near polar networks with orientations to maximize
favorable multipole−charge interactions. Such a charge-
template arrangement also works in the other sense: IL polar
networks are generally flexible and can be rearranged to
accommodate solute molecules, even if such rearrangement
implies expanding polar networks. In the case of alcohol
solutes, IL polar networks have to simultaneously accom-
modate alkyl moieties and hydroxyl groups in alcohols. This
impact leads to a general loss of ion−ion interactions in close
solvation shells and a ramification in polar networks.
Nonetheless, IL polar networks can form well-organized
string-like arrangements and exist up to fairly high solute
concentrations. In IL−alcohol mixtures, a second network
composed of alcohols and anions forms at intermediate alcohol
concentrations. Such a secondary network causes a sheathing
of original IL polar networks, and is probably responsible for
neutron diffraction and X-ray scattering patterns at low q
values.
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3.4. IL−Acetonitrile Mixtures

Acetonitrile (ACN) is an important organic solvent, and its
mixtures with ILs have been utilized as reaction media for
organic synthesis and thermally stable electrolytes in batteries
and solar cells with low toxicity and high efficiency.62,542 In
addition, ACN is structurally similar to methanol but with
different HB donation capability, which contributes to its
intrinsic macroscopic functionalities in electrochemical appli-
cations.62,543

A large inhomogeneity was observed in EAN−ACN
mixtures with EAN being a minority component, as identified
from combined SAXS and atomistic simulations (Figure
19A).544 It is EAN’s wormlike liquid structure that is
responsible for density fluctuations in EAN−ACN mixtures,
which are even denser than pure EAN due to preferential HB
interactions.545 EAN and ACN have significant reciprocal
effects: EAN ions orient toward dipolar ACN molecules and
ACN effectively interacts with EA cations preventing self-
association of EAN, which promotes mutual solubility of these
two components (Figure 19B,C). Microstructural heterogene-
ities in EAN−ACN mixtures are manifested in their transport
properties at micro- and mesoscopic levels.546,547 Diffusion
coefficients, ion conductivities of constituent ions, and shear
viscosities of EAN−ACN mixtures exhibit strong deviations
from ideal mixing, which is attributed to the formation of large
ion clusters that behave similarly to colloidal aggregates. A
similar inhomogeneity was also observed in PAN−ACN
mixtures but with smaller magnitude than in EAN−ACN
mixtures.118

Microstructrues and dynamics of [C4MIM]X−ACN mix-
tures were extensively studied using S/WAXS,220,245 IR,82,548

NMR,88,548 OHD-RIKE,95 dielectric77,549 and terahertz
spectroscopies,550 as well as theoretical245,548 and computa-

tional95,551−553 approaches. Ion species are nanostructurally
organized into polar networks and apolar domains, and ACN
molecules are localized in interfacial regions with nitrogen
atoms pointing toward imidazolium rings because of HB
interactions.95 A gradual increase of IL concentration in
mixtures leads to a structural transition of mixtures from “IL
dissolved in ACN” to “ACN dissolved in IL”, and a phase
behavior transition of hydrodynamic boundary conditions from
a “stick” regime to a “slip” regime. In IL−ACN mixtures with
high IL concentrations, ACN diffuses much slower than
expected due to strong ion−ACN interactions and the
presence of ACN clusters in charge-enriched domains.77,553

Another series of studies showed that dilution of [C4MIM]-
[BF4] by ACN results in a local structural transition from large
ion clusters to small ion pairing structures (Figure
19D,E).245,548 ACN cannot break apart strong electrostatic
interactions among constituent ions, but they can separate
large ion aggregates into small ion pairing clusters with a
gradual increase of ACN concentration.88,245,548,552 For
[C4MIM]X−ACN mixtures used as solvent electrolytes in
electrochemical devices, microstructures and differential
capacitances of pure ILs and IL−ACN mixtures can be
described by a theoretical concept termed “counter-charge
layer in generalized solvent”.551 An electrical double layer
(EDL) structure is composed of a counter-charge layer
consisting of polarized IL ions for balancing electrode charge,
and the differential capacitances of EDLs are related to detailed
interfacial ion structures that will be discussed comprehen-
sively in section 5.
The microstructural and dynamical variations in IL−ACN

mixtures further influence their solvent properties, especially in
determining solvent−solute interactions. It was found that
nitrogen-containing solutes (hexan-1-amine, dipropylamine)

Figure 19. (A) SAXS patterns for EAN−ACN mixtures with EAN concentrations of 0.0 (blue), 0.1 (red), 0.3 (green), 0.5 (magenta), 0.7 (cyan),
0.9 (gray), and 1.0 (black). (B,C) Representative snapshots of EAN−ACN mixture with XEAN = 0.1. Reproduced with permission from ref 544.
Copyright 2017 American Chemical Society. (D) Deconvoluted IR spectrum in imidazolium ring C−H stretching region of a [C4MIM][BF4]−
ACN mixture with XACN = 0.5. (E) Schematic model of a transformation of ion species in dilution process. Reproduced with permission from ref
245 Copyright 2013 Royal Society of Chemistry.
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diffuse more slowly than oxygen-containing solutes (1-hexanol
and dipropylether) in [C4MIM][NTF2]−ACN mixtures,
indicating enhanced IL−nitrogen interactions compared to
IL−oxygen interactions in heterogeneous IL−ACN mix-
tures.220 It should be noted that not only ACN but also
other molecular components (water, dichloromethane, meth-
anol, and t-butanol) with varied polarity, size, and isomerism
can affect solvent power (dipolarity and polarizability) of
ILs.554 At low concentrations of molecular compounds, liquid
properties of mixtures are dominated by properties of ILs.
Conversely, when the quantity of molecular compound is
increased, ILs become solute ions in a molecular medium, that
is, an electrolyte solution. Between these two extremes, it is
expected that there will be remarkable microstructural changes
in mixtures with a gradual addition of molecular solutes into
ILs, such as the swelling of IL networks, the formation of
impetrating polar and apolar networks, and the disruption of
large IL cluster into small ion pairs and then possibly solvated
isolated ions in mixtures.

4. IONIC LIQUID−IONIC LIQUID MIXTURES

As ILs are solely consisting of cations and anion species,
blending two or more ILs represents an important extension of
ILs because IL mixtures have interesting physicochemical
properties and may outperform pure IL components for a
given process. A binary IL−IL mixture consists of either a
common cation coupled with two different anions or a
common anion coupled with two cations belonging to the
same or different cation families. Molecular associations and
liquid structures in IL−IL mixtures will be more complicated
than those in respective pure IL matrixes and will have a
significant effect on their macroscopic functional performance
in specific applications.

4.1. IL−IL Mixtures Containing the Same Cation

Neutron and X-ray scattering spectra327,329 showed that even
small protic ILs can be nanostructured in the bulk liquid phase
and have distinct rheological properties. Viscosities of pure
protic alkylammonium ILs are strongly correlated with
strength of HB networks and solvophobic nanostructures in
ILs.363 Pure alkylammonium ILs behave as Newtonian fluids at
low shear rates but exhibit striking shear thinning feature at
high shear rates. However, rheological properties of binary

protic alkylammonium IL−IL mixtures demonstrated funda-
mental differences in cation−anion interactions due to an
offsetting effect of HB interactions and the formation of
solvophobic nanostructures in mixtures.363,555 Mixtures
containing the same protic alkylammonium cation coupled
with formate and [NO3] anions can resist heavier flow fields
than respective ILs due to different HB capabilities of two
anions.259,333 These protic alkylammonium IL mixtures are a
representative demonstration of double-salt ILs in which
constituent ions do not retain their individual nature.556

Although pure alkylammonium ILs and their mixtures exhibit
great similarities with respect to overall ion-alternating
structures, each type of the statistically distributed ions
experiences a completely different local ionic environments
in heterogeneous IL matrixes.
For imidazolium IL−IL mixtures, it was found that

[C4MIM][NTF2]x[C1C1PO4]1−x (dimethylphosphate) mix-
tures exhibit significant positive excess molar volumes, whereas
[C4MIM][NTF2]x[TFO]1−x mixtures show small deviations
from ideality,557,558 which is attributed to greater HB capability
of [C1C1PO4] anions compared to that of [TFO] anions in
coordinating imidazolium cations. In addition, thermal and ion
conductivities of imidazolium IL−IL mixtures exhibit either
expected behavior upon mixing559,560 or minor deviations from
anticipated values561,562 depending on a delicate interplay of
interactions among constituent ions. Generally, deviations in
phase behaviors of mixtures are related to variations in short-
range interactions and ion asymmetries, the latter of which are
crucial for ion associations and dissociations in mix-
tures.315,563,564

There are some experimental attempts to understand phase
behaviors of imidazolium IL−IL mixtures.558,561,565,566 OKE
spectra for [C5MIM]Brx[NTF2]1−x mixtures are well described
by weighted sums of spectra for pure ILs, whereas OKE spectra
for [C5MIM][PF6]x[TFA]1−x mixtures are nonadditive.561

Either additive or nonadditive of OKE spectra depends on
relative sizes of anions in mixtures, assuming that mixtures are
assembled into polar and apolar networks at the nanoscopic
level.336,564 For anions with similar sizes (i.e., [PF6] and
[TFA]), polar networks in mixtures are described by random
co-networks, whereas for anions that differ greatly in sizes (i.e.,
[NTF2] and Br), polar networks are characterized by “block
co-networks”, a nanostructural organization resembling that of

Figure 20. (A) Schematics of nanostructural organization in binary [C5MIM]Brx[NTF2]1−x (left) and [C5MIM][PF6]x[TFA]1−x (right) mixtures.
Reproduced with permission from ref 561. Copyright 2008 American Chemical Society. (B) Ion cluster cage formed by one [C1MIM] cation, three
Cl anions, and four [P1,1,1,1] cations obtained from DFT calculations. Reproduced with permission from ref 142. Copyright 2015 Royal Society of
Chemistry.
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block copolymer (Figure 20A). Anion sizes and shapes have
significant effects on spatial arrangements of ions in IL−IL
mixtures in terms of interion distances and Coulombic
attractions between oppositely charged ions.563,567 NMR
results showed that both static and dynamic free volumes are
strongly correlated for imidazolium IL−IL mixtures.558 Given a
relationship between free volumes and transport properties
such as liquid viscosities and ion conductivities, these results
provide an intrinsic link between thermodynamics of mixing
and liquid structures of IL−IL mixtures.
Focusing on electrochemical applications of pyrrolidinium

and pyridinium IL−IL mixtures, the beneficial synergic effect
on ion conductivities and electrochemical stabilities of
mixtures was investigated combining experimental and
computational studies.568−570 Binary [C4MPYRI][BF4]x[N-
(CN)2]1−x mixtures exhibit two well-defined regions in which
physicochemical properties resemble those of pure ILs,
separated by a critical concentration of [BF4].

568 Liquid
structures do not change remarkably once this critical
concentration is reached, leading to an almost ideal mixing
from a thermodynamic point of view. This points to a simple
anion dilution effect leading to liquid regions dominated by
interactions between [C4MPYRI] cations and [N(CN)2]
anions with [BF4] anions being dispersed or liquid regions
dominated by interactions between [C4MPYRI] cations and
[BF4] anions with [N(CN)2] anions being dispersed.568

Atomistic simulations indicated a weak structural change
with an increase of [C4MPYRI][BF4] concentration in
mixtures, arising from decreased sizes of apolar domains.
This structural change leads to positive excess molar volumes
but without significant changes in energetic properties or in the
manner in which ions interact.

4.2. IL−IL Mixtures Containing a Same Anion

IL−IL mixtures containing two substantially different cations
and a common anion have a rich structural chemistry, even if
these two cations belong to the same cation family.571−573

Canongia Lopes et al. found very small positive excess volumes
for binary imidazolium IL mixtures composed of cations with
varied alkyl chains coupled with [NTF2] anions.

574 In addition,
several thermophysical properties, such as liquid densities,
enthalpies of mixing, conductivities, and viscosity data, also
exhibit practically “ideal” (linear) mixing behavior with small
excess deviations arising from structural differences between
imidazolium cations.559,575 For a [C2MIM]0.5[C6MIM]0.5-
[NTF2] mixture, microphase separation was observed between
polar and apolar domains whose sizes are intermediate to those
of two pure IL components.572 SANS experiments and
atomistic simulations of [C2MIM]x[C12MIM]1−x[NTF2] mix-
tures demonstrated that both physicochemical properties and
liquid structures change substantially as a function of chemical
composition of mixtures.113,573 Liquid structures of mixtures
with molar fractions of [C12MIM][NTF2] less than 0.3 are
described as aggregates of amphiphilic [C12MIM] cations in a
relatively polar [C2MIM][NTF2] solvent, whereas liquid
structures of mixtures with molar fractions of [C12MIM]-
[NTF2] more than 0.3 are characterized by bicontinuous polar
and apolar networks, where C12 chains percolate throughout
mixtures forming a continuous apolar subphase. With a gradual
increase of [C12MIM][NTF2] concentration in mixtures, the
length scale of apolar subphase increases and phase behaviors
of mixtures become more reminiscent of pure [C12MIM]-
[NTF2]. These [C2MIM]x[C12MIM]1−x[NTF2] mixtures

become more disordered with increasing temperatures, but
the fundamental liquid structures do not change substantially.
In addition, these mixtures exhibit different response to the
addition of water. For mixtures with less [C12MIM][NTF2],
water is incorporated into polar networks, whereas mixtures
with more [C12MIM][NTF2] are too hydrophobic to
incorporate sufficient water and to change liquid structures.
In addition to aprotic IL−IL mixtures consisting of a

common anion coupled with two imidazolium cations with
varied alkyl chains, different mixing behaviors were observed in
thermo-dynamical quantities of protic−aprotic mixtures with
cations belonging to different cation families.259,567,570,576,577

Atomistic simulations and experimental measurements showed
that binary mixtures composed of alkylammonium protic ILs
and imidazolium aprotic ILs exhibit almost ideal mixing
behavior with a gradual microstructural transition between two
pure IL components,576,578 which is rationalized by a structural
similarity of two ILs.557,579 In particular, a noteworthy
association was observed upon mixing PAN/BAN and
[C2MIM][BF4] ILs. In these mixtures, [C2MIM] cations are
integrated into protic networks and [BF4] anions occupy
previously empty regions near protic cation tails. It is
significant that a subtle microstructural change in these
mixtures leads to complicated variations in transport properties
of constituent ions.578 For EAN−[C2MIM][BF4] mixtures, a
novel conductivity curve exhibits pronounced deviations from
the simple ideal mixing rule, with three different regions
defined by a local maximum, reflecting enhanced translational
dynamics relative to ideal mixing behavior, and a global
minimum at intermediate concentrations. These regions are
defined by the onset of the formation of EAN HB networks
(XEAN = 0.2) and the virtual disappearance of aprotic IL
structures (XEAN = 0.7), where long-range ordering for
[C2MIM][BF4] breaks down.
In addition to these mixing behaviors observed in protic−

aprotic IL−IL mixtures where ions differ considerably in sizes
and in HB forming abilities,580 there are some mutually
immiscible binary IL−IL mixtures,570,581,582 which are in
disagreement to the intuitive rule of thumb similia similibus
solvuntur. Two phases were obtained for [C2MIM]x-
[P6,6,6,14]1−x[NTF2] mixtures over a wide temperature
range.581,583 In addition, mutually immiscible binary mixtures
w e r e a l s o o b t a i n e d i f [ N T F 2 ] a n i o n s i n
[CnMIM]x[P6,6,6,14]1−x[NTF2] mixtures are replaced by Cl
anions.581,583 A large negative entropy of dissolving [CnMIM]
Cl ILs in [P6,6,6,14]Cl was observed when imidazolium cation
alkyl chains are shorter than C5.

581 DFT calculations revealed
that solvation of [C1MIM]Cl in [P6,6,6,14]Cl not only exhibits a
large negative entropy but also leads to enhanced diffusion of
[P6,6,6,14] cations compared to [C1MIM] cations in mixtures.142

Both unexpected features are attributed to the formation of
large symmetric ion cluster cages in which a [C1MIM] cation is
surrounded by three Cl anions in the first solvation shell and
four [P6,6,6,14] cations in the second solvation shell (Figure
20B). This cage structural motif illustrated that atoms involved
in HB interactions in mixtures remain their positions similar to
those in pure ILs because polar domains in [C1MIM]Cl and
[P6,6,6,14]Cl ILs fit well with each other. Lengthening
imidazolium cation alkyl chains disturbs cage structures and
enhances π−π stacking of imidazolium rings in
[CnMIM]x[P6,6,6,14]1−xCl mixtures. Both aspects decrease liquid
structural ordering in mixtures.
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Even though there are some variations for IL−IL mixtures
consisting of a common anion and two cations, it is clear that
these mixtures are distinct systems in comparison with pure IL
components. Both experimental and computational studies
showed that a range of microstructural and physicochemical
properties can be controlled simply by fine-tuning chemical
compositions of mixtures rather than by synthesizing a large
number of pure ILs. These IL−IL mixtures provide a
promising path for rational selection of appropriate ILs for
particular applications.

4.3. Imidazolium IL−Imidazole Mixtures

For imidazolium ILs, there is a set of extraordinary binary
mixtures consisting of imidazolium ILs and neutral amphoteric
imidazole molecules.163,584,585 Imidazole molecules provide
both proton donor and acceptor sites to establish extended HB
networks and facilitate proton transfer in ionic materials.
AIMD simulations revealed that proton migration in imidazole
involves two steps with a strong HB between two adjacent
imidazole molecules (∼0.3 ps) and thereafter a rotation of
imidazole molecules because of HB cleavage (∼30 ps).
Imidazole molecules tend to form strong HBs with anions in
mixtures, like selenocyanate ([SeCN]),586 leading to a
restricted short time angular wobbling-in-a-cone sampling of
[SeCN] anions in heterogeneous solvent environments.
Mixing a protic [C2HIM][NTF2] with imidazole perturbs

the native HB networks in the IL matrix. Due to a structural
similarity, imidazolium cations and imidazole molecules are

interchangeable and exhibit competing features in coordinating
[NTF2] anions.163,585 These two species form HBs with
[NTF2] anions with varied HB strengths depending on the
detailed composition of IL−imidazole mixtures, leading to
significant changes in microstructures and dynamics in binary
mixtures. At low imidazole concentrations, HB network
configurations promote proton transfer (Grotthuss mecha-
nism) in mixtures where imidazole molecules act as base
molecules pulling protons from neighboring imidazolium
cations. In intermediate imidazole concentrations, mixtures
display a nonideal mixing behavior rationalized by competitive
ion−ion and ion−imidazole interactions and preferential HB
interactions. For a [C2HIM][NTF2]−imidazole mixture with
an equimolar fraction, a microstructural transition occurs from
an ion network mainly stabilized by electrostatic forces among
constituent ions to a mixed phase held together by site specific
HB interactions. This composition marks a steep increase in
ion conductivities resulting from the formation of HBs
between neighboring imidazole molecules. Liquid structures
of [C2HIM][NTF2]−imidazole mixtures with high imidazole
concentrations are characterized by highly dissociated and
rapidly diffusing ions in a neutral solvent. Charge transport in
these imidazole-concentrated mixtures is characterized by a
vehicular mechanism. These observations provide important
physical insights into a potential usage of protic ILs as solvent
electrolytes in electrochemical devices and demonstrate that

Figure 21. Local structures in apolar domains for IL−LiNO3 mixtures. Comparison of radial distribution functions for (A) EAN−LiNO3 and (D)
EtAN−LiNO3 mixtures (solid lines) with those for pure ILs (dashed lines). Spatial distribution function plots of carbon atoms bonded to nitrogen
atoms in EA and EtA cations as a function of distance and angular position from a central cation for (B) EAN, (C) EAN−LiNO3 mixture, (E)
EtAN, and (F) EtAN−LiNO3 mixture. Reproduced with permission from ref 596. Copyright 2014 American Chemical Society. Representative ion
structures of (G) [Li(NTF2)2]

− and (H) [Li(NTF2)4]
3−. Reproduced with permission from ref 598. Copyright 2008 American Chemical Society.

Typical Li+ coordination complexes of (I) [Li(FSI)4]
3− found in [C3MPYRR][FSI] and of (J) [Li(BF4)4]

3− found in [C2MIM][BF4] at 298 K and
with XLi+ = 0.05. Reproduced with permission from ref 599. Copyright 2014 American Chemical Society.
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manipulation of HB networks is a valuable approach to fine-
tune charge transport mechanisms in IL mixtures.

4.4. IL−Li Salt Mixtures

IL mixtures containing Li salts are useful systems for Li ion
batteries in terms of safety, manufacturing cost, and perform-
ance.560,587−590 Usually, Li salts containing IL anions are
preferable because of a higher solubility with respect to
mixtures with dissimilar anions. Therefore, IL−Li salt mixtures
can be considered as a ternary component system consisting of
IL cations, Li ions, and common anions.
Focusing on ILs as solvent electrolytes in batteries,

representative studies were devoted to analysis of LiNO3 in
alkylammonium nitrate ILs. At ambient conditions, EAN and
LiNO3 are miscible up to ∼0.2 molar fraction of LiNO3 in
EAN.591,592 An overall structural scenario in EAN−LiNO3
mixtures, as determined from joint SAXS and atomistic
simulations,591,593 can be described as (1) EAN can essentially
retain its nanostructure and liquid morphology upon addition
of LiNO3 and only interactions among ammonium groups and
[NO3] anions being slightly perturbed and (2) Li ions are
solvated in polar domains in IL matrixes, where they
coordinate with [NO3] anions either in a monodentate or in
a bidentate manner, leading to a solidlike short-range
pseudolattice ordering structure.
However, it is noteworthy that solvated Li ions have distinct

capabilities in coordinating ions in IL matrixes and can be
described using a similar idea of “structure-making” and
“structure-breaking”, which are well-established concepts for
description of dilute aqueous electrolytes.594,595 LiNO3 is a
“structure-breaking” salt for EAN. Li ions are incorporated into
polar domains of spongelike nanostructures. They disrupt
alignments of ethyl chains in apolar domains and weaken
cation−anion HB interactions, resulting in fewer linear HBs
and a higher proportion of bifurcated HBs (Figure 21A−C).596
Conversely, LiNO3 is a “structure-making” salt for EtAN. Li
ions induce a long-range rearrangement of EtAN ion species,
such that a bicontinuous instead of a clustered nanostructure is
formed, which is attributed to favorable trans conformations of
EtA cations (Figure 21D−F).596 In addition, heterogeneous
structures in IL−Li salt mixtures are further corroborated by
experimental characterizations of microstructural and rheo-
logical properties of EAN−LiNO3 and EtAN−LiNO3 mixtures
in confined environments.595 EAN is weakly dependent, with
only small changes in structural forces, frictions, and liquid
viscosities at low concentrations of Li ions,592 whereas EtAN’s
behavior is strongly subjected to Li ion concentrations. At low
Li ion concentrations, liquid viscosities of EtAN−LiNO3
mixtures increase. Structural forces and the associated friction
profiles deviate from those for pure EtAN, which has a direct
consequence on boundary layers, as demonstrated from a large
reduction in friction forces at high loads. A high Li ion
concentration in EtAN leads to enhanced changes in liquid
viscosities and structural forces. Lengthening alkyl chains in
primary alkylammonium cations from EA to PA and BA and
changes in cation structures from primary to secondary and
tertiary ammonium cations have a significant impact on
solvation structures of Li ions in mixtures as Li ions are
preferentially accommodated into polar networks to coordinate
anions.597 With an increase of Li ion concentrations in
mixtures, Li ions progressively erode HB networks, decreasing
the extent of HB networks and inducing orientation disorders
in polar domains. These effects are more pronounced for ILs

having long cation alkyl chains due to a lower degree of
cation−anion HB interactions. Large secondary and tertiary
ammonium cations have sparsely packed 3D ion structures in
IL matrixes, which are easily perturbed by Li salts.
OHD-OKE spectra demonstrated that addition of LiNTF2

salt to [C4MIM][NTF2] leads to an increase in liquid viscosity,
a decrease in ion mobility, and distinct rotation relaxation
dynamics of ions in IL−Li salt mixtures.431,600,601 These
changes are essentially correlated with distinct variations of
microstructures in mixtures with a gradual addition of LiNTF2
salt. Competitive binding of large cations to [NTF2] anions
acts as an enhancer of Li ion diffusivities in mixtures by
reducing LiNTF2 aggregate sizes and keeping a tetra-
coordination feature of Li ions.598 IR and DFT calculations
provided direct evidence supporting the presence of strongly
coordinated [Li(NTF2)2]

− structure being a major adduct in
[CnMIM][NTF2]−LiNTF2 mixtures (Figure 21G).598,602,603

In general, [Li(NTF2)n+1]
n− clusters are highly stable species

due to strong Coulombic interactions between Li ions and
oxygen atoms in [NTF2] anions (Figure 21H).598,603−605

A series of interesting works demonstrated that hybrid
electrolytes consisting of imidazolium ILs and Li salts having
different anions are promising electrolytes for Li ion batteries.
For [C2MIM][NTF2]−LiNTF2 mixtures, replacing [NTF2]
with bis(fluorosulfonyl)imide ([FSI]) or combining both
anions leads to enhanced ion conductivities in mixtures.589

The [C2MIM][FSI]0.8[LiNTF2]0.2 electrolyte holds peculiar
significance due to its high thermal stability, arising from a
specific solvation structure of Li ions in coordinating [NTF2]
and [FSI] anions.606 In such a way, a remarkable EDL
structure is formed on the electrode surface protecting
[C2MIM] cations from decomposition and thereby improving
cathodic stability. A nontrivial nature of these EDL structures
together with their dependence on electrolytes and electrode
materials607 are on par with organic electrolytes in terms of
viscosities, ion and electrical conductivities when taking into
account their anticipated operating temperatures.608

The IL ion-Li coordination pattern in protic imidazolium
ILs is very different to that in aprotic imidazolium ILs.609,610

The coordination number of Li ions in protics is always smaller
than that in aprotics, which makes Li ions more “free” to move
in protic imidazolium ILs.611,612 Furthermore, the charge
valence of inorganic salt cations like Mg2+ and Ca2+ has a
significant effect on HB networks in IL−salt mixtures than
those in their monovalent counterparts.590,613 Vibrational
spectra and AIMD simulation results indicated that there are
three different potential energy environments for [NTF2]
anions in IL−Mg salt mixtures in contrast to the fact that there
are only two coordination patterns in IL−Na and IL−Li salt
mixtures.614 Additional investigations revealed noteworthy
coordination patterns of strontium, uranyl, and perrhenate
salts with imidazolium ILs in IL−salt mixtures, which provide
valuable clues for extraction of these salts in context of nuclear
waste processing.615

In challenging electrochemical applications, pyrrolidinium
ILs have prominence for their outstanding capabilities in
dissolving Li salts, giving rise to IL−Li electrolytes for
innovative uses in Li ion devices.616,617 In comparison with
those observed in imidazolium ILs, doping Li salts into
pyrrolidinium analogues results in distinct microstruc-
tures.599,618−620 For example, at low levels of Li salt doping,
both [C4MPYRR][NTF2] and [C3MPYRR][FSI] ILs exhibit
stable Li solvation structures containing either two anions,
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both having bidentate ligand bonds, or three anions, one being
bidentate and the other two being monodentate (Figure 21I),
whereas [BF4] ILs exhibit a tendency toward a solvation shell
having four monodentate anions (Figure 21J).599 A high level
of Li doping leads to the formation of highly coordinated Li
ion network structures where a single anion participates in
multiple Li ion solvation shells. A similar [Li(NTF2)n+1]

n−

adduct structure is observed in [CnMPYRR][NTF2]−LiNTF2
mixtures.603,604,621 SAXS experiments showed a nonmonotonic
variation of charge alternation distances with and without
addition of Li salts into pyrrolidinium and imidazolium ILs as a
function of cation alkyl chain length, highlighting a competitive
feature of steric hindrance and vdW interactions of alkyl tails in
cations and a reconfiguration of [NTF2] anions in coordinating
Li ions.599,620,622

It should be noted that transport and conductivities of Li
ions in IL−Li salt mixtures are governed by their binding
strength with anions and intrinsic liquid viscosities of
ILs.599,619,623,624 In a [C4MPYRR]0.9Li0.1[NTF2] mixture,
diffusivities of ion species are significantly smaller than those
in pure IL matrix due to a larger viscosity of this IL−Li salt
mixture and the formation of peculiar Li−anion adducts in this
mixture.604,625 These findings are rationalized by a hopping
diffusion process of Li−anion adducts in mixture because of a
disruption of adduct coordination shells by [NTF2] anions
(structure−diffusion mechanism) rather than a Brownian
motion of the whole Li−anion adducts (vehicular mecha-

nism).593,618,625 Ion conductivities of IL−Li salt mixtures
increase with increasing concentrations of Li ions, with this
effect being greater at elevated temperatures. However, the
contribution of Li ions to ion conductivities does not
proportionally increase with Li ion concentrations but
saturates at a high doping level.604

5. IONIC LIQUIDS IN INTERFACIAL REGIONS

Applications of ILs in gas separations, biphasic extractions, and
in electrochemical devices involve their contact with gas,
liquid, and solid materials. Microstructural and dynamical
properties of ILs on surfaces and in interfacial regions
determine their functionalities in physical and chemical
processes occurring across phase boundaries. Given that
interfacial regions are highly inhomogeneous, ILs exhibit
fundamentally different physicochemical and structural quanti-
ties as that in bulk liquids. In the following subsections, we
mainly focus on a description of heterogeneous micro-
structures and dynamics of ILs in varied interfacial regions
and their effects on macroscopic functional performance of ILs
in electrochemical and tribological applications.

5.1. IL−Vapor (Gas) Interface
The IL−vapor (gas) interface holds a special significance for
particular applications of ILs involving adsorption and
desorption of gas molecules.626 In these applications, chemical
compositions and molecular arrangements of ions in interfacial

Figure 22. (A) Experimentally determined atomic H/C ratios for representative ILs at the IL−vapor interface. Reproduced with permission from
ref 79. Copyright 2001 Royal Society of Chemistry. (B) Definition of Cm and Cb vectors in [C4MIM] cation and (C) preferential distributions of
[C4MIM] cations, characterized with bivariate orientations of Cm and Cb vectors, at the IL−vapor interface for simulation systems containing varied
numbers of [C4MIM][PF6] ion pairs on the graphene surface. The notations →, ↑, and ↓ correspond to Cm and Cb vectors being parallel and
perpendicular to the IL−vapor interface with terminal carbon atoms protruded into the vapor phase and projected into bulk liquids, respectively.
Reproduced with permission from ref 645. Copyright 2013 Royal Society of Chemistry. (D) Schematic conformation of [C4MIM] in the IL−vapor
interface. Reproduced with permission from ref 646. Copyright 2012 Royal Society of Chemistry. (E) Fresnel-normalized (symbols) and model-
fitted (lines) XRR curves of the IL−vapor interface of [CnMIM][NTF2] ILs at specific temperatures. Different colors indicate different surface
phases. Curves in two colors denote a transition between surface phases. (F) Electron density profiles (normalized to bulk electron density)
obtained from model fits in part E. Reproduced with permission from ref 647. Copyright 2018 National Academy of Sciences. (G) XRR profiles for
EAN (Δ), PAN (○), and EAF (□) IL−vapor interface, and for (H) EtAN−vapor interface. Reproduced with permission from ref 629. Copyright
2011 Royal Society of Chemistry. Scattering length density profiles for (I) EAN−vapor and (J) EtAN−vapor interfaces from the slab fit (dotted
line), Chebyshev fit (dashed line), and slice fit (solid line) models. Reproduced with permission from ref 364. Copyright 2012 Royal Society of
Chemistry.
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regions are distinct to those in bulk liquids because ions
experience unbalanced forces. A wide range of experimental
techniques including DRS,78,79,627 neutron reflectome-
try,106,628−630 SFG,96,98,100 XRR,105,119,628,629 XPS,115,626 and
molecular simulations631−633 have been employed to provide
detailed information on surface compositions, interfacial
structures, and dynamics of ions at the IL−vapor interface.
Watson et al. first reported experimental investigations of

interfacial compositions and molecular orientations of
imidazolium ILs using DRS spectroscopy.79,627 Both imidazo-
lium cations and anions in [CnMIM][PF6] (n = 4, 8, and 12)
and [CnMIM][BF4] ILs (n = 4 and 8) are present at the IL−
vapor interface with no significant segregation. Imidazolium
rings in these two ILs exhibit similar orientations being
perpendicular to the IL−vapor interface. However, butyl
chains are positioned differently with those in [C4MIM][PF6]
being parallel to the IL−vapor interface and those in
[C4MIM][BF4] projecting into bulk liquids with a shift of
N−CH3 groups closer to the IL−vapor interface. Lengthening
cation alkyl chains from C4 to C8 has little effect on the H/C
ratio for all ILs at the IL−vapor interface, but a further increase
to C12 results in a substantial increase in the H/C ratio for
[C12MIM][PF6] with methyl groups close to the IL−vapor
interface (Figure 22A). In another series of studies, SFG
spectra for hydrophobic [C4MIM][PF6] and [C4MIM][NTF2]
ILs and hydrophilic [C4MIM][BF4] IL suggested that
imidazolium rings are most likely lying parallel to the IL−
vapor interface with butyl chains projecting into the vapor
phase with a tilt angle from the surface normal direction.438,634

Moreover, SFG spectra illustrated that anions have a negligible
effect on preferred orientations of [C4MIM] cations in the IL−
vapor interfacial region.97,635

XRR and neutron reflectivity are complementary techniques
in providing electron density profiles across the IL−vapor
interface.105,106,628,630 Bowers, Vergara-Gutierrez, and Webster
carried out neutron reflectivity on [C4MIM][BF4] and
[C8MIM][PF6] ILs.636 A surface layering structural model
was suggested with imidazolium rings and alkyl tail moieties
being segregated at the IL−vapor interface forming a lamellar
structure extending to two layers of the alkyl chains. On the
other hand, XRR studies of [C4MIM][PF6] and [C4MIM]-
[BF4] ILs reported by Deutsch et al. indicated the presence of
surface layering structures at the IL−vapor interface.630 Two
types of molecular arrangements in the IL−vapor interfacial
region were proposed, one with alkyl chains parallel to the IL−
vapor interface and the other one with alkyl chains normal to
the IL−vapor interface. In addition, XRR spectra revealed an
increase in electron density (∼10−12%) at the IL−vapor
interface, which is higher than that in bulk ILs and is mainly
attributed to adsorption of anions at the IL−vapor interface.
These experimental results indicate the presence of both
cations and anions in the IL−vapor interfacial region, which is
consistent with experimental data obtained from DRS
spectra.78,627

Applications of external fields can significantly change
interfacial ion structures.637,638 An intriguing work conducted
by Jurado et al. demonstrated that an extended SFA repeatedly
imposing and releasing confinement on [C6MIM][C2SO4] IL
film induced a phase transition that was not relieved by the
final removal of such an external constraint.639 Atomistic
simulations of the [C8MIM][C8SO4] IL film indicated that a
lamellar structure is not restricted to the IL−vapor interfacial
region but instead extends across a slab of ∼9 nm.640 A

systematic variation of alkyl chain lengths in [CnMIM]-
[CmSO4] ILs showed similar layering structures at the IL−
vapor interface,99,100,641,642 which is also supported by surface
tension measurements with a decreased trend with increasing
alkyl chain lengths of cations and anions if the corresponding
counterion is fixed.643 When [CnMIM] cations and [CmSO4]
anions are functionalized with ether groups in the alkyl chains,
both of them still favor tail-outward orientations at the IL−
vapor interface, and bulk liquid phase preserves an alternation
of polar and apolar regions.644 These experimental and
computational observations indicate that different polymorphic
phases of ILs can be “engineered” on the nanoscopic level via
confinement perturbations or other external stimuli, and the
observed liquid morphological transitions are very attractive
for energy applications particularly for electrochemical devices.
It should be noted that not only IL ion structures but also IL

film thickness can have a significant effect on distributions of
cations in the IL−vapor interfacial region if the IL film is
confined on a solid substrate.645 With a gradual increase of the
IL film thickness, preferential orientations of cations in
[C4MIM][PF6] at the IL−vapor interface exhibit a progressive
transition from a dominant flat distribution in an IL monolayer
to that described by multiple favorable orientations having
varied proportions (Figure 22B,C).645,648 In these favorable
orientations, the main orientation of imidazolium rings is
essentially perpendicular to the IL−vapor interface with some
angular tilt (Figure 22D).646 The formation of compact IL−
vapor interfacial layering structures further complicates
dynamical quantities of ILs in comparison with those in bulk
liquids. In the IL−vapor interfacial region, translational
mobilities of terminal carbon atoms in [C4MIM] butyl
chains648 and rotational dynamics of a short molecular axis
in [C4MIM] cations271 are faster than those in other layers of
confined IL films and in bulk liquids of simulation systems
without confinement. Rotational dynamics of [C4MIM]
cations generally follow a Kohlrausch−Williams−Watts behav-
ior in the IL−vapor interfacial region, whereas in bulk liquids
of confined IL films, the temperature dependence of
translational diffusions and rotational relaxations of [C4MIM]
cations is characterized by a VFT feature over a wide
temperature range.271

Systematic lengthening alkyl chains in imidazolium cations
and enlarging anions from halides to [BF4], [PF6], [TFO], and
complex anions containing perfluoroalkyl groups such as
[NTF2], [FAP], and bis(perfluoroethylsulfonyl)imide lead to
significant changes in interfacial structures and molecular
arrangements in the IL−vapor interfacial region.115,626,646,649

In general, lengthening the alkyl chains in the imidazolium
cations and changing asymmetric [CnMIM] to symmetric
[CnCnIM] cations tend to increase the probability for alkyl
chains to point into the vapor phase and the coverage of the
IL−vapor interface by alkyl groups with an expense of
imidazolium rings and anions.633 However, this interfacial
structural enhancement decreases with enlarging anion sizes,
which promotes a disruption of interfacial alkyl layer
structures, leading to cations with enhanced orientation
freedom and more alkyl chains being able to point into liquid
phase. In addition, no significant surface segregation of anions
relative to imidazolium rings occurs in the IL−vapor interfacial
layers, indicating that imidazolium rings and anions are located
at similar distances from the interface, forming a densely
packed polar layer due to strong Coulombic interactions.
Temperature has a negligible influence on the overall density
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profiles and a relatively small effect on molecular orientations
in the IL−vapor interfacial region. Ions stay considerably
longer in the IL−vapor interfacial layers than they do in
subinterfacial layers and ion exchange dynamics between
consecutive layers are associated with distinct ion diffusions
and rotational dynamics of ions within layers.
The evolution of IL−vapor interfacial structures with

lengthening alkyl chains in imidazolium cations from
Coulombic to vdW interaction domination was clarified in a
systematic Angstrom-resolution synchrotron XRR study of
[CnMIM][NTF2] ILs.647 A progressive change in electron
density profiles was observed from a typical “simple liquid” for
n < 6 (akin to that of simple liquids like water and organic
solvents), through a nonmonotonic layered solvent for 8 < n <
20 (single high-density surface-segregated monolayer), to a
liquid crystal surface phase for n = 22 which reverts to a
“conventional” layered surface phase at high temperatures
(Figure 22E,F). The layered surface phase consists of
alternating polar and apolar parallel slabs, and layer spacing
is larger than extended alkyl chains in imidazolium cations but
smaller than twice that length, indicating that alkyl chains in
lateral packing slabs are flexible, kinked, and partially
interdigitated.375,650,651

Compared to bulk liquid structures of protic ILs, XRR
spectra showed that EAN, PAN, and EAF ILs exhibit extended
IL−vapor interfacial structures spanning at least five ion pair
diameters (Figure 22G,I).119,629 All three ILs exhibit similar X-
ray scattering length density profiles consisting of two parts.
The top interfacial layer is a diffuse layer composed of multiple
cations and anions arranged in such a way that polar groups are
surrounded by cation alkyl chains, protecting hydrophilic
species from the hydrophobic gaseous phase. Below this are
layers enriched with apolar alkyl groups and polar domains
consisting of cation ammonium moieties and anions, which
gradually decay to bulk liquid structures. Lengthening cation
alkyl chains from EA to PA results in pronounced interfacial
structures. Alkyl chains in PA cations impart larger
solvophobicity than those in EA cations, leading to well-
defined segregation of polar and apolar domains in a
heterogeneous PAN matrix. Conversely, replacing [NO3]
with formate anions reduces HB interactions, and thus the
interfacial region does not extend as far into bulk liquids. This

suggests that solvophobicity determines the sharpness of
segregation of interfacial structures while HB determines the
extent of interfacial ordering.
The IL−vapor interfacial structures of EtAN (Figure 22H)

are distinct from those of EAN, PAN, and EAF ILs.364 A
simple model used to fit XRR spectra revealed that electron
densities increase from zero to bulk values over a distance of
∼11 Å (Figure 22J), a distance of approximately twice the
EtAN ion pair dimension. Polar head and tail moieties in EtA
cations are internalized to form, along with [NO3] anions, the
interior of the surface aggregates, which are coated by methyl
moieties in contact with the vapor phase. However, surface
orientations of alkyl groups in EtA cations are quite different
from those of EA cations due to a less amphiphilic character of
EtA than EA.119 This is a clear illustration of how designer
properties of ILs can be exploited to control interfacial
nanostructures. If an (relatively) unstructured interface is
desired, it is better to incorporate polar functional groups into
alkyl chains to disrupt solvophobic interactions. This prevents
the formation of a layered subsurface and facilitates a rapid
adsorption and transport of species from the vapor phase
through the interfacial region into bulk liquids, desirable for
applications such as CO2 absorption.
For ILs consisting of pyrrolidinium cations coupled with

[NTF2] anions, experimental features observed in SFG and
XPS spectra resemble those for imidazolium ILs with alkyl
chains projecting into the vapor phase.652,653 Pyrrolidinium
rings appear to be parallel to the surface plane with alkyl chains
taking tilted configurations relative to the surface normal
direction. Atomistic simulations showed that [C4MPYRR]-
[CF3SO3], [C4MPYRR][NTF2], and [C4MPYRR][FAP] ILs
exhibit distinct segregation of polar and apolar domains in the
IL−vapor interfacial region, where liquid morphologies of
apolar domains are independent of anion types.654 The
presence of a discontinuity in local density leads to a small
charge segregation at the IL−vapor interface, which is less
substantial for [C4MPYRR][FAP] as [FAP] anions are
voluminous and motivate a lack of interfacial ordering at the
IL−vapor interface.

Figure 23. (A) Effect of electrode curvature on differential capacitance of ILs on OLCs and planar electrodes. R is the radius of an OLC, and it is
infinity for a planar electrode. Reproduced with permission from ref 181. Copyright 2012 American Chemical Society. (B) Differential capacitance
as a function of applied electric potential for pure [C6(MIM)2][NTF2]2, [C6(MIM)2](NTF2)2−ACN, and [C6(MIM)2](NTF2)2−PC mixtures
with an IL concentration of 5%. Reproduced with permission from ref 674. Copyright 2014 IOP Publishing.
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5.2. IL−Carbon Interface

Carbon materials span a wide range of active porous carbons
with various ordering structures including C60,655 onionlike
carbons (OLCs),181,656,657 carbon nanotubes (CNTs),658−660

graphene/graphite,661−663 and 3D ordered mesoporous carbon
matrixes.664−666 Carbon materials have distinct benefits, such
as high hydrophobic surface areas, large pore volumes, and
good thermal and mechanical stabilities and thus exhibit
remarkable potential as promising materials for confining ILs.
Interest in the IL−carbon interface has been fueled by the
desire to understand the solvation structures of C60, CNTs,
graphene/graphite, and their derivatives in ILs659,667,668 as well
as applications of ILs in supercapacitors, where ILs and carbon
materials are used as solvent electrolytes and electrodes,
respectively.669,670

5.2.1. IL−OLC Interface. Formed by vacuum annealing of
nanodiamond powder, OLCs can be viewed as concentric
graphene shells, and their surface is fully accessible for ion
accumulation.671 Therefore, OLCs are novel electrode
materials for supercapacitors.672 It was found that super-
capacitors with OLC as an electrode and [N2,2,2,2][BF4]-PC
(propylene carbonate) as an electrolyte have high energy
density and ultrahigh power density.672 Furthermore, EDL
capacitance increases as OLC becomes smaller.656 To
understand the underlying physical origin of these striking
phenomena, Cummings and co-workers performed intensive
atomistic simulations to study interfacial structures of ILs near
idealized spherical OLCs.181,673 An almost linear relationship
of surface charge density versus electrode potential applied
over a large voltage range was found for EDLs of ILs near OLC
electrodes,181 leading to a differential capacitance versus
electrode potential curve that is nearly flat (Figure 23A).
These results are in contrast to the observed U-, bell-, and
camel-shaped curves observed in many theoretical, computa-
tional, and experimental studies of ILs on planar electrodes.
The flat capacitance−potential curve is ascribed to an almost
constant charge overscreening behavior, and the normalized
capacitance of EDLs on OLCs increases with curvatures of
OLCs and decreases with sizes of OLCs, which is in good
agreement with available experimental measurements.672

In addition, ILs consisting of double-headed imidazolium
cations show distinct interfacial structures and enhanced
capacitive performance over monovalent counterparts near
OLC electrodes.181,673 A high concentration of anions is
accumulated near the OLC electrodes to neutralize the charge
of the double-headed cations. For [Cn(MIM)2][BF4]2 ILs, the
average capacitance at the OLC electrode characterized by
positive charges is higher than that at the OLC electrode
characterized by negative charges, which is mainly attributed to
the smaller size of [BF4] anions than [Cn(MIM)2] cations. In
the latter case, differential capacitance decreases with
increasing cation alkyl chain length. In order to facilitate the
usage of double-headed imidazolium IL electrolytes in
supercapacitors without compromising their power density,
organic solvents such as PC and ACN are always used to
increase ion conductivities, charging, and discharging rates
(Figure 23B).674 However, the reason for the underlying
enhanced functionalities of the IL−solvent mixtures and the
charging/discharging mechanisms are yet to be understood.
This is an important direction of research for future
electrochemical applications.
5.2.2. IL−CNT Interface. The confinement of ILs within

CNT materials is of particular significance due to their

fascinating surface structures. The initially empty CNTs can be
filled spontaneously with ILs to reach a saturated state despite
of their hydrophobic feature. The spontaneous diffusion of ILs
into CNTs has been described with atomistic simula-
tions.658,675−677 The cations of [C4MIM][PF6] are always
faster than anions to enter CNTs in the filling process owing to
favorable dispersion interactions of alkyl groups with CNT
surface and preferential electronic interactions of imidazolium
rings with CNT π-electrons.658 Atomistic simulations showed
that a single [C4MIM] cation can enter a CNT (9,9) from the
bulk liquid region driven by a favorable free energy of −27 kJ/
mol, whereas the corresponding value for a single [PF6] anion
to enter this CNT is approximately 32 kJ/mol, indicating that
it is very difficult for [PF6] anions to spontaneously enter this
CNT.658 However, for a [C4MIM][PF6] ion pair, the obtained
free energy value is around −27.6 kJ/mol, indicating that it is
energetically favorable for ion pairs to enter CNTs. A
hypothesis that a cation “pulls” an anion into CNT channels
from bulk IL matrix gives a reasonable explanation for the
insertion of [C4MIM][PF6] into CNTs. Furthermore, CNTs
with larger diameters can accommodate more ions and provide
faster filling speed for ions entering CNTs.658 It is noteworthy
that the smallest diameter of CNTs capable of being filled by
common ILs is around 0.95 nm, as revealed from atomistic
simulations677 and experiments.678,679 This value is consistent
with that determined from theoretical calculations considering
the vdW radii of atoms constituting ions and sp2 carbon atoms
of CNTs.679,680 Below this threshold, ILs do not spontaneously
enter CNTs under normal conditions.
In addition to solvation of ILs inside CNTs, ILs are also

good solvents to maintain dispersion of CNTs.659,667,668 Weak
vdW interactions between ILs and CNTs guide enthalpy
alteration upon CNT solvation and increase monotonically
with CNT diameters. Therefore, solvation of CNTs in ILs is
strongly prohibited entropically. Functionalization of CNTs
with hydrophilic groups is definitely helpful to enhance
interactions of CNTs with ILs. At the macroscopic level,
IL−CNT mixtures exhibit varied rheological and viscoelastic
features depending on temperatures, concentrations, and types
of CNTs dissolved in ILs.681 Addition of multiwalled CNTs in
the dilute regime of mixtures provokes a decrease in liquid
viscosity at high flow fields, but concentrated dispersions of
CNTs in ILs always have a high viscosity in comparison with
that for pure ILs. Aligned multiwalled CNTs have a more
pronounced effect on liquid viscosities than nonaligned CNTs
in ILs.
The confinement of ILs in CNTs leads to anomalous

variations of the ILs’ phase behavior from the liquid phase to
high-melting-point crystallites, which is attributed to ordered
arrangements of ions inside CNTs.678,682,683 The freezing
behavior of ILs in CNTs is a nonequilibrium process that is
fully suppressed in bulk liquids and only occurs in nano-
confinement or at very low temperatures.682 Conversely, the
presence of electrical charges at the IL−solid interface and
changes in the local cation−anion ratio have a significant effect
on a thawing thermal behavior.684 For example, a downshift of
melting point of confined [C3MPYRR][NTF2] is attributed to
high ion concentrations and nonstoichiometric local ion
arrangements in the interfacial region impeding the formation
of extended ionic liquid crystal structures. Both freezing and
thawing phase transitions of ILs in CNTs are strongly
influenced by geometric constraints and strong interactions
of ILs with CNT walls.685 The interior radius and chiralities of
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CNTs and doping atoms in CNTs686 can affect the melting
temperatures of confined ILs.687,688 ILs inside smaller CNTs
are more stable than those in larger CNTs, which is attributed
to enhanced interactions of ILs with CNT walls. In addition,
ILs inside zigzag CNTs have lower energy and are more stable
than those in armchair configurations and therefore have
higher melting temperatures. Furthermore, the glass transition
temperature of [C2MIM][PF6] encapsulated in a zigzag CNT
is further increased when nitrogen atoms are doped into
CNTs.686

ILs confined in CNTs are expected to display distinct
microstructural characteristics that are not present in the bulk
liquid phase. ILs exhibit diverse solvation structures in CNTs,
resulting in heterogeneous density distribution along the
radial55,182,183,675,677,688−692 and axial directions of
CNTs.658,688−690 Atomistic simulations showed that internal
solvation structures of [C2MIM][BF4] in CNTs are described
by a single file distribution of ion species in CNT (7,7) (Figure
24A), zigzag distributions of cation−anion structures in CNT
(8,8) (Figure 24B), chiral ion distributions in CNT (10,10)
(Figure 24C), disordered ion structures in CNT (12,12)
(Figure 24D), staggered pentagonal ion structures with
alternating cation and anion layers in CNT (15,15) (Figure
24E), and staggered octagonal ion structures with disordered
ion configurations in CNT (20,20) (Figure 24F).677 Addition-
ally, for [C4MIM][PF6] confined in CNTs, the number of ion
layers increases from two to four with an increase of CNT
diameters from 2.0 to 3.7 nm (Figure 24G−J).689 The
preferential ion structures inside CNTs are strongly associated
with pore loading of [C4MIM][PF6] inside CNTs.675,689,693

An increase in pore loading results in a concomitant increase in
mass density distributions near the central regions of CNTs.
Imidazolium cations prefer to align along CNTs and exhibit
dense packing structures in the IL−CNT interfacial region
compared to other layers farther from CNTs.686 This behavior
is attributed to hydrophobic interactions of CNTs with cation
alkyl chains and π−π stacking interactions between CNTs and
imidazolium rings, whereas anions prefer to locate in the
vicinity of imidazolium rings due to preferential intermolecular
interactions.675,677,689,693

CNT diameters and pore loading of ILs inside CNTs have a
remarkable influence on dynamic quantities of ILs, such as
diffusion and ion conductivity.676,680,686,688,694−697 An increase
in diffusion coefficients, as observed for [C8MIM][BF4] in
membranes consisting of vertically aligned CNTs (CNT
forests consisting of multiwalled CNTs with 2 or 3 walls and
with a 4 nm internal diameter),697 is likely due to a frustration
of self-organization of [C8MIM][BF4] on the nanoscopic scale.
Ohba et al.680,693 specified that a destruction of HB and
electrostatically driven polar networks in [C2MIM]Cl and
frictionless movement of ions along CNT walls contribute to
their enhanced mobilities inside CNTs. The hydrophobicity
and HB structures of confined ILs in CNTs are assumed to
play major roles, because some hydrophobic ILs, such as
[C4MIM][PF6]

689 and [C4MIM][NTF2] ILs,
694 characterized

by hydrophobic features exhibit slow dynamics when they are
confined within CNTs. Translational dynamics of confined IL
ions are highly heterogeneous and depend on their relative
distance from CNT walls.678,698 Additionally, ion and electric
conductivities of ILs increase with increasing temperatures87

and decrease with lengthening imidazolium cation alkyl
chains.675

Besides imidazolium ILs that are widely studied via
experimental and computational characterizations, other ILs
consisting of nonaromatic cations, such as EAN and its
derivatives, can also form varied ion pair structures inside
CNTs.660,699 EAN exhibits peculiar, well-defined ion pair
structures inside CNTs having various diameters660 and has
cylindrical double-shell solvation structures around the CNTs
regardless of the CNT diameters.699 In the first solvation shell,
methyl groups in EA cations are closer to CNT walls than the
amine groups, while [NO3] anions tend to be in contact with
CNT walls with three oxygen atoms facing bulk liquids. In
addition, asymmetric stretching intensities of C−H in EA
cations and N−O in [NO3] anions at the EAN−CNT interface
are slightly higher than those in bulk liquids owing to enhanced
accumulation and significant orientation of cations and anions
in interfacial regions.

5.2.3. IL−Graphene (Graphite) Interface. Besides
CNTs, graphene and graphite provide another attractive
confinement environments for ILs. Functional performance

Figure 24. Snapshots of IL species in the first internal solvation shell of a CNT. Red and green spheres represent locations of center-of-mass of
[C2MIM] and [BF4], respectively. (A) CNT (7,7), (B) CNT (8,8), (C) CNT (10,10), (D) CNT (12,12), (E) CNT (15,15), and (F) CNT
(20,20). Reproduced with permission from ref 677. Copyright 2009 American Chemical Society. Snapshots of [C4MIM][PF6] confined inside
multiwalled CNTs with diameters of (G) 2.0 nm, (H) 2.5 nm, (I) 3.0 nm, and (J) 3.7 nm. Reproduced with permission from ref 689. Copyright
2010 American Chemical Society.
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of ILs in IL−graphene systems, either in electrochemical
devices or in lubrication, is strongly correlated with their
wetting states on graphene surface.700,701 Experimental
characterizations showed that diverse wetting states of liquid
droplets on graphene can be achieved by changing the
thickness of graphene layers on substrates and by careful
manipulation of IL−substrate interactions via a judicious
selection of cations and anion species.702,703

SFG spectra for [C4MIM][C1SO4] on a graphene surface
showed that methyl groups of [C1SO4] anions align greater
than 40° from the surface normal direction, while [C4MIM]
cations exhibit a weak parallel alignment along the graphene
surface, leading to a wetting state with a contact angle of 58 ±
2°.101,704 Another SFG measurement of [C4MIM][N(CN)2]
demonstrated that only [N(CN)2] anions were aggregated on
the bare barium fluoride substrate, whereas both [C4MIM]
cations and [N(CN)2] anions were detected on barium
fluoride substrate coated with graphene, which is accompanied
by an increase of the contact angle from 57° for IL on bare
barium fluoride substrate to 69° for IL on substrate covered by
a single graphene layer. In addition, [C4MIM][N(CN)2] forms
ordered interfacial layers at different potentials, but concen-
trations and orientations of butyl chains exhibit negligible
changes as the electrode potential varies.705 More physical
insights obtained from various experimental studies lay a solid
foundation for a comprehensive understanding of interfacial IL
structures on the electrified graphene surface and their utilities
in specific applications.130,663,706−711

DFT calculations provided detailed microstructures of ILs at
varied wetting states on the graphene surface.146,147,274,712,713

Imidazolium cations interact more strongly with neutral
graphene than anions due to π−π stacking interactions
between imidazolium ring planes and solvophobic associations
of alkyl chains with graphene.274,709,714,715 Imidazolium cations
have a small band gap in comparison with pyrrolidinium
analogues when they are paired with Br and [BF4] anions and a
larger band gap when they are coupled with [PF6] and [NTF2]
anions. These anions interact with graphene via different π
type interactions.145,714 Binding energies of representative ILs
on neutral graphene surface follow an order of [C4MIM][PF6]
(−15.01 kcal/mol) > [C4MIM][N(CN)2] (−14.38 kcal/mol)
> [N1,1,1,4][N(CN)2] (−13.53 kcal/mol) > [C4MIM][BF4]
(−13.04 kcal/mol) > [N1,1,1,4][PF6] (−12.88 kcal/mol) >
[N1,1,1,4][NTF2] (−11.69 kcal/mol) > [C4MIM][NTF2]
(−10.53 kcal/mol) > [N1,1 ,1,4][BF4] (−9.61 kcal/
mol).712,714,715 In addition, anions have stronger coordinations
than cations with positively charged graphene surface.
Interactions between halides and graphene are even stronger
than those for molecular anions due to preferential and
cooperative anion···π interactions.715 However, at negatively
charged graphene surface, cation alkyl chains prefer to align
“epitaxially” along graphene lattice, which induces quasi-
crystallization of (imidazolium) cations on graphene. Besides
DFT calculations, atomistic and CG simulations showed that
wetting graphene with ILs is essentially related to IL droplet
size,703 interaction strength between graphene and ILs,716

coating materials,703 temperatures,710,716 and external electric

Figure 25. (A) Differential capacitance versus electrode potential for [C3MPYRR][NTF2] and [C3MPYRR][FSI] ILs. (B) Representative
snapshots of interfacial ion orientations for [C3MPYRR][NTF2] and [C3MPYRR][FSI] ILs within 8 Å from the electrode surface (green vertical
lines). Reproduced with permission from ref 746. Copyright 2011 American Chemical Society. (C) Differential capacitance versus EDL potential
for varied electrode surfaces. Inserted image snapshots indicate electrolyte structures near flat (left) and rough (right) surfaces at ∼2.5 V.
Reproduced with permission from ref 747. Copyright 2011 American Chemical Society. (D) Comparison of absolute values of capacitances
obtained from simulations in atomically flat and rough slit pores as a function of pore dimensions for [C2MIM][NTF2] IL. Reproduced with
permission from ref 745. Copyright 2015 American Chemical Society.
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fields.717,718 The interfacial energy of solid−liquid interface is a
good indicator to describe affinity of ILs to graphene.719

Imidazolium cations functionalized with benzyl groups have
low interfacial energies due to favorable interactions between
ring moieties and graphene and thus can easily wet the
graphene surface. Imidazolium cations having long alkyl chains
are characterized by low interfacial energies in comparison with
those having short alkyl chains, but their affinities to graphene
surface are weaker than that of pyrrolidinium analogues.
ILs confined in neutral graphene slits possess symmetric

layering structures between graphene walls and exhibit distinct
m i c ro s t r u c t u r a l 7 2 0− 7 2 5 and dynam i c a l h e t e r o -
geneities.588,645,648,695,710,720,722,723,726,727 Ions in interfacial
layers close to graphene walls exhibit slower dynamics than
those in the central region of confined IL films. If graphene
walls have a large slit width, ions in the central region of
confined IL films usually have similar dynamical quantities and
comparable relaxation times to those in bulk liquids without
confinement. In addition, diffusions of ions in directions
perpendicular to the pore walls are significantly slower than
those along the pore walls as ions must traverse dense ion
layers in the perpendicular direction.695,722,723,728

Heterogeneous microstructures and dynamical quantities of
ILs in the IL−graphene interfacial region are essentially
correlated with their functionalities in applications, such as in
electrochemical devices20,133,729−735 and in lubrication.736−738

Yan and co-workers performed intensive atomistic simulations
studying effects of anion structures,739,740 temperatures,741 and
specific interactions of ions with graphene742,743 on EDL
structures and capacitive functionalities of imidazolium ILs
confined between graphene electrodes. On one side, specific
adsorption of imidazolium cations on the graphene electrode
causes a positive potential of zero charge (PZC) on a positively
charged electrode and a depression of capacitance at positive
polarization.742 On the other side, adsorption of imidazolium
cations effectively lowers the surface charge and electrode
potential on the negatively charged graphene electrode and
thus raises capacitance at negative polarization.742 For
specifically absorbed ions, such as [C1MIM], variations in
the electrode potentials near PZC do not affect the cation
absorption structures to a significant extent but alter the anion
layer next to the absorbed cation interfacial layer.742

Consequently, the local minimum of camel-shaped differential
capacitance curve, though commonly observed in experiments
and simulations, may not be related to PZC, whereas interfacial
co-ion structures next to absorbed counterions may contribute
to a striking relationship between differential capacitances and
applied potentials by altering an effective EDL thickness.
For [C3MPYRR] ILs near a graphite electrode, cations

exhibit perpendicular orientations at potentials near the PZC,
and anion species in the first interfacial layer exhibit increased
parallel orientation to the electrode with a gradual increase in
applied electrode potentials.744,745 The asymmetry of the
capacitance−electrode polarity curve for [C3MPYRR][NTF2]
is attributed to strong interactions of fluorine atoms in [NTF2]
anions with a graphite electrode, with the relatively large
footprint of [NTF2] anions in comparison with [C3MPYRR]
cations and the tendency of C3 chains in [C3MPYRR] cations
to reside in the IL−graphite interfacial region even at high
positive potentials (Figure 25A). Replacing [NTF2] with [FSI]
does not lead to a significant increase in differential capacitance
near a positively charged graphite electrode,746 whereas a 30%
higher differential capacitance is observed on a negatively

charged graphite electrode for [C3MPYRR][FSI] in compar-
ison with [C3MPYRR][NTF2] (Figure 25A).

744 This behavior
is correlated with two microstructural characteristics of EDL:
(a) a closer approach of [FSI] to the electrode surface than
[NTF2] (Figure 25B) and (b) a faster anion desorption rate
(vs potential decrease) for [FSI] from the electrode surface
than [NTF2]. An observed decrease in capacitance and a
disappearance of the minimum in the capacitance−potential
curve near PZC with increasing temperatures are most
probably attributed to an enhanced crowding effect of ions
in IL−graphite interfacial layers.
Further atomistic simulations indicated that the atomic level

roughness of the graphene electrode can qualitatively change
the dependence of capacitance on the applied potentials.747,748

ILs on an atomically flat basal plane of the graphite surface
exhibit camel-shaped differential capacitance curves, whereas
those on an atomically corrugated prismatic face of the
graphite surface have large differential capacitances charac-
terized by bell shapes at low double-layer potentials (Figure
25C,D). Both bell-shaped and camel-shaped capacitance−
potential curves are correlated with variations of the EDL
structures as a function of the applied potential due to a strong
dependence of electrolyte packing structures on the surface
and a large difference in the intermolecular potential energies
of electrolyte ions near the flat and rough graphene surfaces. In
addition, ILs on an atomically flat graphene electrode exhibit a
slight decrease in capacitance with increasing temperatures due
to thicker EDL structures,739,749 whereas the influence of
temperatures on differential capacitance is more pronounced
for ILs confined on atomically corrugated graphene surface
with ion dimension comparable to the size of corrugation
pattern on graphene surface. Therefore, interpretation of
experimental capacitance data should take detailed knowledge
of the electrode topography and roughness into consideration,
and it should go beyond the typical route of considering
electrolyte behavior near a flat surface. These computational
studies further indicate that controlling the electrode surface
roughness might be an effective route to improve energy
densities of EDL capacitors.
Addition of ACN into imidazolium and tetraalkylphospho-

nium ILs improves ion conductivities and thus enhances power
and energy densities of supercapacitors as ACN facilitates
dissociation of cation−anion pairs in EDL.674,750,751 However,
addition of PC into imidazolium ILs results in distinct changes
in interfacial ion structures and capacitances of super-
capacitors. PC molecules exhibit outstanding co-ion expulsion
capabilities due to their strong absorption onto the graphite
surface in contrast to ACN. In addition, doping inorganic salts
(Li+,752−754 K+,753 Mg2+,752 Ca2+,755 and Al3+755) and
molecular solvents (water,754,756 methanol,757 ethanol757) in
ILs and generating vacancy sites on the graphene surface757,758

leads to significant variations in interfacial structures and
dynamics of confined ions in comparison with those in bulk
liquids and thereafter variations in capacitance−potential
curves.
A significant experimental observation showed that the

energy density of supercapacitors can be significantly increased
by confining ILs in the graphene slits with pore widths at the
subnanometer scale, but this reduces their power density and
c omp r om i s e s t h e k e y a d v a n t a g e o f s u p e r -
capacitors.728,745,759−766 Molecular simulations using a
phenomenological model revealed that charging ionophilic
pores with pore widths comparable to ion diameters is a
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complex process (Figure 26A).759 It is adsorption-driven at
high potentials but depend on the ion concentrations, and it is
dominated either by co-ion desorption or by adsorption of
both types of ions at low potentials (Figure 26B). Diffusivities
of ions in subnanometer pores exhibit a strong dependence on
ion densities and local chemical compositions (Figure 26C)
during charging over a few orders of magnitude and can exceed
a few times the bulk liquid ion diffusion under similar
conditions.759,767 A fast demixing transition inside narrow
pores due to an instant expulsion of co-ions from the pores
above a certain electrode potential threshold and the ability of
conductive pores to maintain elevated densities of counterions
after demixing lead to distinct capacitance enhancement.728,760

During cyclic charging and discharging, a nanopore system is
driven far from the equilibrium state. Indeed, the internal state
of nanopores, in particular, total ion densities, not only
deviates from those under quasi-static charging and discharging
conditions but also varies greatly as the scan rate changes.
For supercapacitors, the charge storage mechanism is a

complicated process intrinsically correlated with multiple
factors such as relative ratios of pore sizes over ion
dimensions669 and desolvation effects of ILs in confined
environments.670 For negative polarization, the adsorption of
cations onto solid substrates dominates, whereas for positive
polarization, charging proceeds by an ion exchange effect with
anions replacing cations in the interfacial regions. Experimental
measurements using NMR and in situ electrochemical quartz
crystal microbalance indicated that adsorbed ions are partially
solvated.768 Atomistic simulations demonstrated that charge
screening,20,761,769 ion rearrangement and confinement (Figure
26D),765,766 and pore surface properties21,733,759,770−773 have
significant effects on charging dynamics and differential
capacitances. ILs absorbed onto solid electrodes exhibit varied

configurations and have striking coordinations with different
adsorption sites like edge sites (concave curvature), plane sites
(graphene sheetlike structure), hollow sites (convex curva-
ture), and pocket sites (inside a subnanometer carbon pore)
(Figure 26E−G).766 These different adsorption sites have
distinct effects on power performance of electrochemical
devices.774

It should be noted that molecular dynamics of ions near
electrified nanoporous electrode are described by multiple time
scales arising from solvation, electrosorption, and ion confine-
ment effects.775 Diffusivities of confined ions are always slower
than those of bulk electrolytes due to the confinement effect
and strong electrostatic attractions with pore walls when a
potential is applied, which significantly hinder their utilizations
as electrolytes for ensuring fast charging supercapacitors.776

Therefore, molecular simulations with effective prescreening
methods will be an economical procedure for selection and
design appropriate IL candidates with enhanced properties to
meet specific application requirements.777,778

5.2.4. IL−3D Mesoporous Carbon Interface. In
addition to cylindrical CNTs and graphene slits, confinement
of ILs within 3D carbon materials having complicated pore
sizes and pore geometries, such as CMK-3664 and CMK-
5,665,666 was also investigated via atomistic simulations. These
CMKs are amorphous carbon materials characterized as
interconnected mesoporous but with different pore size,
shape, and surface roughness, which have a significant effect
on microstructural and dynamical quantities of confined ILs.
Large spatial structural heterogeneities of confined ILs are
observed in the axial direction of CMK-3 at a pore loading
below bulk IL density, suggesting that ions tend to cluster
together to create domains with similar local densities as those
of bulk liquids (Figure 27A,C).664 For the same ILs confined

Figure 26. (A) Side-view snapshot of simulation system for charging narrow electrode pores with ILs, and top-view perspectives of ion species
inside a negatively charged electrode pore when a voltage of 3 V is applied between electrodes. Blue and orange spheres represent cations and
anions, respectively. (B) A plot showing averaged total and charge densities during instant charging (blue solid line) and in equilibrium conditions
(black dash-dot-dot line). Green dash-dot line corresponds to an ionophobic pore. (C) Normalized diffusion coefficients of cations along an
equilibrium path and along charge densities corresponding to instant charging at 3 V. Reproduced with permission from ref 759. Copyright 2014
Nature Publishing Group. (D) EDLC simulation cell consists of CG [C4MIM][PF6] electrolyte confined between two porous electrodes. The same
configuration at each potential is shown twice: ion distribution (left) and degree of charging of electrode atoms (right), in which carbon atoms are
color coded according to partial charge q they carry (green, q < 0; yellow, q ≈ 0; and red, q > 0). Reproduced with permission from ref 765.
Copyright 2012 Nature Publishing Group. Adsorption of ion species in a nanoporous carbon electrode at null potential, and distribution of degree
of confinement experienced by ion species in (E) pure [C4MIM][PF6] and in (F) [C4MIM][PF6]−ACN mixtures. (G) Representative
configurations of ion species for their four adsorption modes (gray rods for C−C bonds, gray spheres for carbon atoms that are in a coordination
sphere of central molecules, red for [C4MIM] cations, green for [PF6] anions, and blue for ACN molecules, respectively.). Reproduced with
permission from ref 766. Copyright 2013 Nature Publishing Group.
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within CMK-5, ILs adsorbed at the outer surface of carbon
nanopipes have a dramatic effect on density distributions of ILs
confined inside carbon nanopipes (Figure 27B,C).665,666 Ions
are more closer to carbon walls in CMK-5 than those in the
CMK-3 matrix due to preferential interactions of IL ions inside
CMK-5 nanopipes with those outside CMK-5 nanopipes. The
surface curvature and mesoporous arrangement in CMK-3 and
CMK-5 result in different confinement effects on dynamical
properties of ILs. ILs adsorbed outside CMK-5 nanopipes have
faster dynamics than those outside CMK-3 having a similar
pore size.664 Exterior ion absorption can affect dynamics of
ions inside nanopipes, but this effect is IL-specific. It should be
noted that all confined ions inside CMK carbon materials
exhibit slower translational and rotational dynamics compared
to those in bulk IL matrixes.664,666

Compared with constrained microstructures of ILs within
carbon matrixes having regular nanopores, it was shown that
ILs exhibit bulk liquidlike microstructures inside porous
carbon materials having varied pore size and pore geometry.727

[C2MIM][NTF2] prefers to form ion layers on a coconut shell
carbon surface with ions parallel to surface walls.727 Different
to well-defined ion layering structures in slit pores, confined
ion species exhibit significant spatiotemporal heterogeneities in
coconut shell carbon materials due to complex pore geometries
of carbon materials (Figure 27D,E), wherein ions near pore
walls move more slowly than those in central regions of the
pores, similar to observations in other slit pores.722,725

Furthermore, a gradual increase in averaged pore size in
carbon materials leads to small and nonmonotonic variations
in ion transport properties which, in turn, leads to a
nonuniform and weakened confinement effect of irregular

Figure 27. Density profiles of [C2MIM][NTF2] IL inside (A) CMK-3 and (B) CMK-5 carbon materials. Areas with high cation densities are
depicted in dark shades of gray. (C) Density distributions of [C2MIM] cations and [NTF2] anions outside CMK-3 nanorods and inside/outside
CMK-5 nanopipes along the direction indicated by solid arrows up to distances indicated by dashed circles. Reproduced with permission from ref
666. Copyright 2016 Taylor & Francis. Representative snapshots of [C2MIM][NTF2] IL inside a coconut shell carbon material with pore sizes of
(D) 0.75 nm and (E) 1.23 nm. Reproduced with permission from ref 727. Copyright 2014 American Chemical Society.

Figure 28. (A) Measured (symbols) and Lorentzian-plus-linear background fitted (line) diffraction peak for [C4MPYRR][FAP] on the Hg surface
at a surface coverage of 50 Å2/molecule. Reproduced with permission from ref 122. Copyright 2011 American Physical Society. STM images of
[C4MPYRR][NTF2] on Ag(111) surface recorded at 100 K. (B) Image at submonolayer coverage exhibits four Ag terraces. (C) At monolayer
coverage, large Ag terrace is covered by an ordered 2D crystalline phase, while small Ag terraces are occupied by a disordered 2D glass phase.
Reproduced with permission from ref 781. Copyright 2013 American Chemical Society.
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carbon materials compared with those with regular pore
geometries.

5.3. IL−Metal Interface

5.3.1. IL−Hg Interface. Mercury provides a very smooth
liquid surface which enables one to carry out XRR experiments
at sub-Angstrom resolution, as demonstrated by investigations
of a mercury-supported [C4MPYRR][FAP] IL Langmuir film
in both the lateral and longitudinal directions.122 At a low
surface coverage (90 Å2/molecule), a monolayer ion pair
structure is formed at the IL−Hg interface, whereas a bilayer
surface-parallel ion pair structure is formed at a high surface
coverage (50 Å2/molecule) (Figure 28A). Surface-parallel ion
pairs self-organize into stripes, exhibiting 1D, smecticlike order,
implying a checkerboard-like tilted ion surface structure. This
checkerboard pattern at the IL−Hg interface has similarities

with interfacial structures of Hg-supported Langmuir films of
alcohols, thiols, and fatty acids.779 In these Langmuir films, full
2D lateral ordering structures eventually emerge upon
increasing cation alkyl chain lengths, irrespective of irregular
ion shapes and strong Coulombic interactions between
constituent ions. However, XRR spectra for [CnMIM][NTF2]
ILs demonstrated that IL−Hg interfacial structures are highly
disordered, and diffuse surface-normal electron density profiles
exhibit gradual Hg penetration into IL films and surface-
normal structural evolution over a period of hours.780 Unlike
localized charges in pyrrolidinium cations, charge delocaliza-
tions in imidazolium cations and [NTF2] anions increase their
affinities to Hg atoms, leading to a lateral segregation of ions
into polar and apolar domains at the IL−Hg interface with
residual Hg in apolar domains.

Figure 29. (A) Lateral force against normal load for different surface potentials for [C4MPYRR][FAP] confined between the Au(111) electrode
surface and a silica colloid probe. Reproduced with permission from ref 805. Copyright 2012 American Physical Society. Typical force versus
apparent separation distance for the silica colloid probe approaching the Au (111) surface in (B) [C2MIM][FAP], (C) [C4MIM][FAP], and (D)
[C6MIM][FAP]. Left column, ILs at negative potentials (−2.0 V for [C2MIM][FAP], −1.0 V for [C4MIM][FAP], and −2.0 V for
[C6MIM][FAP]). Middle column, ILs at null potential. Right column, ILs at positive potentials (1.5 V for [C2MIM][FAP], 1.0 V for
[C4MIM][FAP], and 1.5 V for [C6MIM][FAP]). Reproduced with permission from ref 803. Copyright 2013 Royal Society of Chemistry.
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In electrochemical applications of the IL−Hg interface, a
thorough understanding of the dependence of differential
capacitance and charging curves of the IL EDL structures on
constituent ions is important.782,783 Costa et al. found that
interactions of positively charged imidazolium rings with the
Hg surface gradually diminish with lengthening cation alkyl
chains due to preferential hydrophobic interactions of alkyl
chains with the Hg surface. Variations in cation alkyl chains
lead to remarkable changes in capacitance−potential curves for
[CnMIM][NTF2] ILs (n = 2, 4, and 6) on Hg
electrode.430,782,783 In addition, differential capacitance of ILs
increases with increasing temperatures.784 Both noncoinci-
dence and positive temperature coefficients of PZC are distinct
to predictions of classical Gouy−Chapman theory, which is
suitable for description of phase behaviors of dilute aqueous
electrolytes.785,786

5.3.2. IL−Au Interface. Potential-induced surface recon-
struction of single-crystalline Au electrode is always an
important issue in electrochemical surface science. Concen-
trated solvent electrolytes (ILs) interact strongly with Au
atoms and destroy the long-range order of a single-crystal Au
surface at certain potentials.787−790 STM characterizations of
[C4MPYRR][NTF2] and [CnMIM] ILs on Au(hkl) substrates
demonstrated that Au(111) and Au(100) can be reconstructed
into the usual surface structures at sufficiently negative
potentials,134,791 indicating that solvent adsorption of ILs has
a remarkable influence on electrode processes compared to
aqueous electrolytes.
A comprehensive investigation of adsorption of ILs on an

unreconstructed Au(100) surface in a wide potential range
revealed that [C4MIM][PF6] exhibits a 2D phase transition
upon cathodic excursion.792 For [C4MIM][BF4], ordered
adsorption of [BF4] anions occurs at the anodic side of the
bell-shaped capacitance maximum, while adsorption of
[C4MIM] cations is on the cathodic side of the capacitance
maximum and follows a potential-promoted disorder−order
transition.134 However, [C2MIM][NTF2] and [C8MIM]-
[NTF2] ILs absorb onto the Au(111) surface and form a 2D
liquid phase at ambient temperature, whereas they condense
into 2D islands with short-range ordering glasslike structures at
lower temperatures.793 These findings indicate that (1) the
formation of IL−Au interfacial structures is dominated by a
tendency to optimize anion adsorption geometries and (2)
cation alkyl chains prefer standing upright rather than lying flat
along the Au surface.134,793−801 A close similarity was found in
the adlayer structures of [C4MPYRR][NTF2] on the Au(111)
surface.795,796 At room temperature, the growth of 2D IL film
occurs up to one monolayer coverage, with both anions and
cations in direct contact with the Au substrate. At lower
temperatures, ion mobilities in the IL−Au interfacial region are
frozen. Both a 2D crystalline phase with long-range order and a
disordered 2D glass state are formed. Annealing experiments
revealed that the 2D crystalline phase is thermally more stable
than the 2D glass state against melting, and its stability is
strongly influenced by coverage of adsorbates on the
underlying Au(111) surface.795,796

Atkin and co-workers elucidated interfacial structures of
various ILs on charged Au electrodes via AFM experi-
ments.802,803 At null potential, interfacial behaviors of ILs are
consistent with a discontinuous sliding process. This effect is
less pronounced when a positive or negative potential is
applied. ILs consisting of imidazolium cations coupled with
[FAP] anions exhibit similar lubrication behavior: a high

friction at positive potentials and a low friction at negative
potentials, suggesting that imidazolium cations are more
lubricating than [FAP] anions.802,804−807 The lateral force
varies as a function of applied potential and ion structures
because of changes in interfacial compositions of confined ion
layers from anion-enriched (at positive potentials) to mixed (at
null potential) and then to cation-enriched (at negative
potentials) structures (Figure 29A). The length of alkyl chains
in imidazolium cations has a significant influence on lubricity
at similar negative potentials. C6 chains in [C6MIM] cations
produce a well-formed interfacial layer that provides a
lubricating sliding plane (left column in Figure 29D), whereas
C4 chains in [C4MIM] cations lead to a less defined interfacial
layer and reduced lubricity (left column in Figure 29C). When
the cation alkyl chain length is further reduced to C2,
imidazolium rings in [C2MIM] cations orientate parallel to
the Au surface, and lubricity is increased relative to [C4MIM]
cations (left column in Figure 29B). However, when interfacial
layers are [FAP] enriched, imidazolium cations become
irrelevant and a same friction coefficient is obtained at positive
potentials independent of cation alkyl chain length (right
columns in Figure 29B−D).
A combined AFM-STM investigation provides a compre-

hensive understanding of EDL structures in the IL−Au
interfacial region.133,808 Both [C2MIM][NTF2] and
[C4MPYRR][NTF2] ILs form multiple ion pair layers (3−5
layers) on the Au(111) surface at an open circuit potential.809

The [C4MPYRR][NTF2]−Au interface appears highly struc-
tured (in part wormlike), while the [C2MIM][NTF2]−Au
interface exhibits weak interfacial structuring. Therefore, it
requires a large force to rupture the innermost IL solvation
layer for [C4MPYRR][NTF2] in comparison with that for
[C2MIM][NTF2]. This remarkable difference is ascribed to
stronger interactions of [C4MPYRR] cations than [C2MIM]
cations with the Au(111) surface. Similar experimental features
were also observed for ILs consisting of [FAP] anions coupled
with either imidazolium or pyrrolidinium cations.810−812

Addition of inorganic salt precursors810,813−818 or
water819−821 can significantly affect the IL−Au interfacial
structures. AFM investigations revealed that typical multi-
layered IL interfacial structures are retained only at quite low
salt concentrations. IL EDL structures will be disturbed when a
large amount of salt is introduced into the IL−Au interfacial
region, where new EDL structures consisting of salt ions will be
formed. The width of the innermost layer is dependent on salt
concentrations and applied electrode potentials. For IL−water
mixtures, a clear transition from “water in IL” to “IL in water”
was observed with a gradual increase of water concentration in
ILs.819 Above a certain water concentration, cation−anion
intermolecular interactions are drastically weakened, and a
transition from a multilayered interfacial structure to a classic
double-layer structure occurs at specific electrode potentials.
As more water molecules adsorb onto the Au surface, the
thickness of the interior EDL structures increases and the
thickness of the neutral exterior layers (beyond the first two
layers in the IL−Au interfacial region) remain constant.820

In addition to heterogeneous microstructures in the IL−Au
interfacial region, the dynamic evolution of these interfacial
structures upon charging Au electrodes was studied using
various experimental techniques including surface-enhanced
infrared absorption spectroscopy (SEIRAS),822−824 surface
plasmon resonance,825 STM,131,132 and AFM measure-
ments.826,827 Distinct stepwise transitions were observed in
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the IL−Au interfacial region with increasing electrode charge
density. SEIRAS measurements revealed hysteretic cation−
anion exchanges and rotations of ions in the first IL−Au
interfacial layer.822,823 During potential scans for ILs consisting
of sufficiently large ion groups, a fast and barrierless change in
the local ionic environment occurs first in the overlayers, and
thereafter a slow replacement of ions with their counterions
occurs in the IL−Au interfacial layers to compensate the
surface charge when an overpotential exceeding a critical value
is applied. These results highlight the significance of a steric
hindrance effect of ion species on their replacement in the
interfacial layers.826,828,829

Extensive experimental and computational investigations
were performed to address effects of IL ion structures and EDL
interfacial structures on differential capacitance of ILs upon
charging Au electrodes.748,830−834 It was revealed that IL
capacities follow an order of [C4MIM][PF6] < [C4MIM]-
[NTF2] < [C4MIM][BF4]. Lengthening the cation alkyl chains
does not obviously affect the general shape of capacitance−
potential curves but influences capacitances in a systematic way
due to constrained distributions of alkyl chains in the IL−Au
interfacial region. In addition, enlarging anions from small
spherical ones (Cl, [BF4], and [PF6] etc.) to large nonspherical
and multidendate species ([NTF2], [FAP] etc.) further
complicates the dependence of differential capacitances of
ILs on cation alkyl chain lengths and potentials required for a
transition from overscreening to overcrowding IL−Au
interfacial layers due to distinct interactions between confined
ions and Au atoms. It is noteworthy that an IL composed of
tetramer imidazolium cations and [NTF2] anions exhibits
outstanding electrochemical properties in EDL devices.835

Furthermore, an introduction of ether spacers to the
imidazolium ring moieties makes these oligomers fluidic, and
multivalent electrostatic interactions ensured by their oligo-
meric structures play a vital role in their functional perform-
ance in electrochemical devices.
5.3.3. IL−Ag Interface. Metallic silver is a catalyst in

oxygen-assisted coupling reactions.836 Potential applications of
Ag alloys in heterogeneous catalysis raise additional interest in
understanding interactions of Ag with ILs. Research on
ultrathin IL layers on the Ag substrate showed that both
[CnMIM] cations and [NTF2] anions adsorb in a checker-
board arrangement with both ions in contact with the Ag(111)
surface,837 similar to that observed in the IL−Au(111)
interfacial region.838 Deposition of a large amount of
[C1MIM][NTF2] on Ag(111) revealed an initial 3D IL film
morphology.839,840 In contrast, a quasi 2D film morphology
was found from the beginning of depositing [C8MIM][NTF2]
on the Ag(111) substrate, indicating a remarkable effect of
imidazolium cation alkyl chain length on IL film growth
kinetics. In addition, STM investigations reported that
[C2MIM][NTF2] and [C8MIM][NTF2] ILs exhibit similar
ion mobilities at submonolayer coverage on the Ag(111)
surface as that on the Au(111) substrate.793 When [C8MIM]-
[NTF2] and [C8MIM][PF6] ILs are sequentially deposited
onto the Ag(111) surface, a pronounced enrichment of
[NTF2] anions was observed at the IL−vapor interface due
to a rapid anion exchange at the IL−Ag interface.841 It is the
larger adsorption energy and surface tension of [C8MIM][PF6]
than those of [C8MIM][NTF2] that contribute to exchange of
[NTF2] with [PF6] anions in the IL−Ag interfacial region.
For deposition of [C4MPYRR][NTF2] on the Ag(111)

surface at room temperature followed by a gradual cool-down

to ∼100 K, a coexistence of a 2D liquid phase, a disordered 2D
glass phase, and an ordered 2D crystalline phase was observed
(Figure 28B).781 Dynamic STM measurements at low
temperatures resolved exchanges of adspecies at crystalline−
liquid and disordered glass−liquid phase boundaries (Figure
28C). In addition, a dynamic equilibrium between the liquid
phase and the crystalline phase is attributed to weak
adsorbate−adsorbate associations and a low surface diffusion
barrier. DFT calculations revealed an equal adsorption of
[C4MPYRR] cations and [NTF2] anions laterally placed side
by side with [NTF2] anions exhibiting cis configurations, SO2
groups binding to the Ag surface, and CF3 groups pointing
toward the IL−vapor interface. ILs interact with the Ag surface
through weak electrostatic (dipole induced dipole) interactions
and preferential dispersion interactions, leading to a distinct
electron solvation behavior of [C4MPYRR][NTF2] at the IL−
Ag(111) interface.842

Besides these extensive studies of ILs confined on Hg, Au,
and Ag surfaces, there are some other metals that are used as
substrates to support ILs for specific applications, such as Li,843

Cu,116,799,844,845 Ti,466,846 Fe,847,848 Ni,847 Ru,849 Pd,850 Cd,851

In,852 Pt,853,854 and Bi.855 ILs exhibit varied interfacial
structures and dynamical quantities in IL−metal interfacial
regions depending on the delicate interplay of interactions
among constituent ions and metal atoms that are in direct
contact with confined ILs. These IL−metal interfacial systems
have distinct electrochemical applications.

5.4. IL−Al2O3 Interface

Mezger et al. reported temperature-dependent microstructures
of [FAP] ILs on a charged Al2O3 substrate using XRR
spectroscopy.121 A pronounced interfacial layering structure
with the innermost layer spacing of ∼8 Å was observed for
[C4MPYRR][FAP] at the IL−Al2O3 interface, indicating a
double-layer interfacial structure with [C4MPYRR] cations
being in contact with the Al2O3 surface (Figure 30A). [FAP]
anions are repelled from the negatively charged Al2O3 surface
and form a second anion layer on the interfacial cation layer.
Such an EDL structure is totally distinct from those of dilute
aqueous electrolytes near charged substrates, owing to strong
correlations between oppositely charged ions. This EDL
structure leads to some apparently counterintuitive observation
like charge inversion and attraction between like-charged
objects.856,857 A gradual addition of PC solutes in
[C4MPYRR][FAP] leads to reduced ion−ion correlations
and a decreased correlation length of interfacial layer
structures. At high concentrations, PC molecules accumulate
laterally within the IL−Al2O3 interfacial layers and reduce
Coulombic repulsions between like-charged ions.
Replacing [C4MPYRR] with [C6MIM] and [N4,4,4,4] cations

leads to negligible variations in molecular layer structures at
the IL−Al2O3 interface, but there are distinct changes in the
interfacial electron densities (Figure 30B,C).121 However,
additional experimental characterizations showed that
[C4MIM][PF6] and [C4MIM][BF4] ILs exhibit different IL−
Al2O3 interfacial behaviors.858 The former exhibits strong,
exponentially decaying, and alternate-charge layering structures
at the IL−Al2O3 interface, whereas the latter does not show
interfacial layer structures but only a single dense layer at the
IL−Al2O3 interface. This interfacial structural discrepancy is
attributed to different correlations between constituent ions of
these two ILs. In additional, preferential HB interactions
between Al2O3 interfacial groups and ILs can also induce
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lateral ordering structures characterized by an excess of cations
in the IL−Al2O3 interfacial region.

121,858

Saramago and co-workers characterized the wetting proper-
ties of [C8MIM][BF4] IL films on representative solid
substrates (silicon, boron-silicate glass, and aluminum) and
found that only aluminum substrate is wetted and the
corresponding interfacial structures are strongly dependent
on time and IL ion concentrations in ethanol solution.859,860 IL
films deposited from highly diluted IL in ethanol exhibit
liquidlike lamellar structures, whereas IL films deposited from
concentrated IL in ethanol present solidlike or solid−liquid
coexistence structures.128 These interfacial structures are
mainly determined by London dispersion forces between
confined ion species and substrates. For [C8MIM][BF4], its
reduced surface tension is well described by Guggenheim’s
universal curve for simple, purely dispersive fluids. However,
for [C2OH-MIM][BF4] (1-(2-hydroxyethyl)-3-methylimidazo-
lium), there is a distinct deviation of reduced surface tension
toward lower values, which is a typical behavior of molecular
fluids having strong HB interactions.
SEIRAS spectra showed that adsorption of [C4MIM]-

[NTF2] on a well-ordered Al2O3 surface is molecular and
reversible.861 Strong changes in relative intensities of [NTF2]
anion related vibrational bands were observed in the
submonolayer region due to distinct accumulation of [NTF2]
anions in the IL−Al2O3 interfacial region, indicating a
pronounced interfacial orientation of [NTF2] anions. DFT
calculations demonstrated that [NTF2] anions predominately
adopt a cis conformation with slightly tilted orientation with
respect to the IL−Al2O3 interface, preferentially interacting
with interfacial atoms via SO2 groups. In addition, character-
istic differences were observed in monolayer adsorption spectra
of [C2MIM][TFO] on a bare Al2O3/NiAl(110) surface and
that covered by Pd nanoparticles.862 [TFO] anions are less
oriented on the Al2O3 surface, while they appear to stand up
on the Pd nanoparticles with CF3 groups directed toward the

Figure 30. Total (black) and individual (red for cations and blue for
anions) electron densities for (A) [C4MPYRR][FAP], (B) [C6MIM]-
[FAP], and (C) [N4,4,4,4][FAP] at the IL−Al2O3 interface. Red and
blue lines indicate Gaussian distributions for cations and anions
contributing to their respective partial electron density profiles. The
gray bar corresponds to the electron density of the Al2O3 substrate
without roughness. Reproduced with permission from ref 121.
Copyright 2008 American Association for the Advancement of
Science.

Figure 31. Representative configurations of ILs consisting of [C4MIM] cations coupled with [BF4], [PF6], [TFO], and [NTF2] anions confined on
silica surfaces covered by positively charged SiH2 (top) and negatively charged Si(OH)2 (bottom) interfacial groups. Reproduced with permission
from ref 63. Copyright 2014 Royal Society of Chemistry.
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vapor phase due to stronger intermolecular interactions of SO3
groups with Pd atoms.
5.5. IL−Silica Interface

A microporous silica matrix is a promising framework for
confining ILs because of its simple synthesis procedure and
nontoxicity. When ILs are confined in silica matrixes, an
obvious difference is observed in melting points of ILs in
comparison with those in bulk liquids. The effect of silica
confinement on melting points of ILs, either increases863 or
decreases,864,865 is contradictory from different reports. Most
studies stated that melting endotherms of confined ILs are
detected at relatively lower temperatures and sometimes
disappear compared to bulk ILs, resulting in liquidlike phase
behavior of ILs below their solidification temperatures.865−868

ILs consisting of [C2MIM] cations coupled with [N(CN)2],
[C2SO4], [SCN], and [TFO] anions have decreased melting
temperatures when they are confined within mesoporous silica
monoliths, in which melting temperatures of [C2MIM][N-
(CN)2] and [C2MIM][TFO] ILs are depressed by approx-
imately 14 and 8 °C, respectively.868 [C4MIM][C8SO4] shows
significant changes in melting, crystallization, and glass
transition temperatures in a nanoporous silica matrix.864 In
addition, melting temperature depression for ILs confined
within a porous silica matrix shows a linear variation with the
inverse of the mean pore diameter of the microporous silica
matrix.864,868 Furthermore, immobilization of imidazolium
cations on the silica surface can also lead to a melting point
depression for confined ILs depending on the weight
proportion of immobilized ions and the loading amount of
ILs on the silica surface.869 In contrast to melting temperature
depression, it was shown that compressed gases play an
important role in increasing melting temperatures of
imidazolium ILs entrapped within mesoporous silica ma-
trixes.863,870

These nonbulk thermodynamic phase behaviors of ILs
confined in silica matrixes are essentially correlated with
delicate interactions of silica surface atoms with confined ion
species. The silica surface contains Si atoms, Si−O, silanol
SiOH, and silane SiH2 groups.

63,127,871,872 Depending on the
specificity of the ion species and their relative positions in
confined environments, ILs exhibit varied coordination
features with these interfacial groups, as revealed from
combined SFG, FT-IR spectra, and theoretical calcula-

tions.127,864,866,873,874 In general, strong charge-balancing and
electrostatic interactions and preferential HB interactions
between confined ion species and silica interfacial groups
contribute to remarkable microstructures and distinct
orientations of ILs on the silica surface.63,125,871,873,875−877

For ILs consisting of [C4MIM] cations coupled with [BF4],
[PF6], [TFO], and [NTF2] anions, atomistic simulations
showed that [C4MIM] cations attach exclusively onto the
negatively charged silica surface covered by Si(OH)2 surface
groups, with imidazolium ring planes perpendicular to the
interfacial Si(OH)2 groups and butyl chains elongated above
the Si(OH)2 groups along the silica surface (Figure 31).63

Anions exhibit random orientation distributions in subsequent
anion layers because interactions between the adsorbed anion
species and interfacial Si(OH)2 groups are partially
screened.63,864,875,878,879 However, anions are particularly
absorbed onto positively charged silica surface covered by
silane SiH2 groups. The main axes of asymmetric [NTF2] and
[TFO] anions are parallel and perpendicular to interfacial SiH2
groups, respectively (Figure 31).63 Additional simulations
demonstrated that silica surface with irregularly distributed
SiOH groups is less efficient in trapping anions such that
confined ILs are less localized on the amorphous SiO2
surface.878 In addition, there are significant positive dipole
determined short-range SiOH-anion interactions in the IL−
SiO2 interfacial region, which can be perturbed by strong
external fields. Therefore, an effective way to control interfacial
structures of ILs on the silica surface is to regulate the
concentration of interfacial hydroxyl groups via appropriate
physicochemical treatments of the SiO2 surface.
Owing to substantial interactions of ILs with silica surface

groups, confined ions with flexible structures usually have
distinct conformations near the silica surface.867,878,880−882

Even though the trans conformer is dominant for [NTF2]
anions in bulk ILs, both Raman spectroscopy330,881 and
atomistic simulations880 indicated that [NTF2] anions
preferably adopt a cis conformation, allowing efficient packing
of [NTF2] anions in the IL−SiO2 interfacial region.881 An
increase in degree of confinement880 or loading amount of
ILs330 into silica matrix leads to a gradual increase in the cis/
trans ratio, and the cis conformer becomes dominant. In
addition, conformational changes of [NTF2] anions resulting
from the confinement effect lead to prominent variations in

Figure 32. Normal force rescaled with the radius of the surface curvature (F/R) as a function of surface separation distance between two silica
surfaces in (A) [C4MIM][BF4] and (B) [C4MIM][NTF2] ILs. Open circles and closed triangles correspond to data on approach and on retraction,
respectively. Dotted lines represent vdW attractions between silica surfaces calculated from the Lifshitz theory. Solid and dashed lines correspond to
stable and unstable regions, respectively, in the force profiles. Reproduced with permission from ref 884. Copyright 2010 Royal Society of
Chemistry. Schematic spatial distributions of ion species between silica surfaces are shown in the insets. Reproduced with permission from ref 125.
Copyright 2018 Royal Society of Chemistry. (C) Temperature dependence of ion conductivity σ0(T) (open symbols) and characteristic rate of
charge transport ωc (filled symbols) for [C4MIM][BF4] in the bulk liquid region and in confined silica nanopores. Lines represent VFT fitting of
the bulk data. Inset: ion conductivity σ0 versus charge transport ωc for bulk and confined [C4MIM][BF4] IL. Reproduced with permission from ref
889. Copyright 2012 Royal Society of Chemistry.
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spectroscopic properties, especially fluorescence,865 FT-
IR,864,867,873 and Raman vibrational spectra of anion
species.330,873,881,883

Because of the distinct confinement effect and preferential
distributions of ions on the silica surface, ILs exhibit
remarkable interfacial layering structures.869,875,878,884

[C4MIM][NTF2] and [C4MIM][BF4] ILs confined between
two silica surfaces display considerable oscillatory solvation
force profiles with varied features depending on ion pair
dimensions and structure-forming abilities of ILs (Figure
32A,B).884 [C4MIM][NTF2] in a confined silica matrix shows
two XRD peaks, indicating that both cations and anions coexist
in the interfacial layer with a checkerboard ion arrange-
ment.125,878,885 Force−distance profiles revealed that interfacial
structures of [C4MPYRR][NTF2] are much weaker than those
of [C4MIM][NTF2], and addition of LiNTF2 salt can further
abate interfacial IL nanostructures. Similar interfacial layering
structures of ILs confined within porous silica materials were
a l s o ob s e r v ed in e x t en s i v e a tom i s t i c s imu l a -
tions.125,875,877,882,886−888

Besides distinct interfacial layering structures, dynamical
quantities of confined ILs and the intrinsic response of
interfacial structures to external variables, such as shear and
electric fields, are important for their usage in lubrication and
electrochemical applications. Studies have been mainly focused
on addressing translational873,875,878,879,883,890,891 and rota-
tional dynamics,876,890 shear viscosities,880,892 ion and thermal
conductivities,877,889 and tribological884,892 and dielectric
relaxations869 of ILs in confined environments. Unlike ILs in
bulk liquids, dynamics of confined ILs, either increase882,893 or
decrease873,877,880,894 with different trends and extents, depend
on the delicate interplay of interactions among constituent ions

and interfacial groups and the loading fraction of ILs in
confined environments.330,877,880,886 Jacob et al. measured self-
diffusion coefficients of [C6MIM][PF6] and [C4MIM][BF4]
ILs confined within micro- and mesoporous silica mem-
branes.889,895 NMR data exhibit a distinct temperature
dependence of translational diffusion data of hydrophilic
[C4MIM][BF4] on pore sizes in silica matrixes.889 Ion
conductivities of [C4MIM][BF4] in mesopores silica matrixes
present a peculiar thermal activation described by VTF
character, exhibiting a stepwise increase in ion conductivities
with decreasing pore diameters of silica matrixes at low
temperatures (Figure 32C).889

A silica surface functionalized with various chemical groups,
such as tributylsilyls,893 metal carbonyls,896 and even IL
groups,897,898 offers additional pathways for tuning heteroge-
neous dynamics of confined ions in silica matrixes. Diffusion
coefficients of hydrophobic [C6MIM][PF6] IL in untreated
silica membranes (hydrophilic) decrease by approximately 1
order of magnitude compared to that in bulk liquids. However,
a remarkable increase in diffusion coefficients is observed upon
decorating silica membranes with hexamethyldisilazane
groups.889,895 In another case, both [C6MIM][NTF2] and
diethylmethylammonium methanesulfonate ILs display higher
ion conductivities in silica matrixes functionalized with
tributylsilyl groups as compared with those in untreated silica
nanopores.893 A similar feature with enhanced proton
conductivity is observed in [C8HIM][NTF2]−imidazole
mixtures confined in nanopores of silica particles.899 Proton
conductivity occurs due to an establishment of new N···H−N
HBs and fast proton exchange events in polar domains, which
are decoupled from molecular diffusions of constituent ions in
heterogeneous IL matrixes.

Figure 33. Interfacial data for EAN−, PAN−, EtAN−, and dimethylethylammonium formate (DMEAF)−mica systems. Column 1 (left) shows
forces versus separation distances for an AFM tip to approach and to retract from the mica surface. Reproduced with permission from ref 129.
Copyright 2007 American Chemical Society. Reproduced with permission from ref 908. Copyright 2009 American Chemical Society. Column 2
shows typical amplitude (dotted) and phase (black) data documented when an oscillating AFM tip approaching a mica surface dispersed in ILs.
Column 3 shows topographic images of the innermost ion layer adsorbed to a mica surface. Column 4 (right) shows topographic images of the first
near-surface layer of IL−mica systems. Insets present section analysis of interfacial IL structures near mica surfaces indicated by a blue line.
Reproduced with permission from ref 912. Copyright 2015 Royal Society of Chemistry.
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For ILs used as lubricants or lubricant additives, their
tribological and antiwear properties are intrinsically correlated
with a balance of molecular shapes of ILs and atomic structures
of solid surfaces and possible residual impurities (such as
water) in ILs.892,900−905 Spencer and co-workers studied
representative tribological behaviors of silica/silicon tribopairs
lubricated with fluorinated ILs.901,902,906 XPS and Raman
spectra showed that a mechanical form of wear dominates
within a wide speed range for [C2MIM][NTF2] and
[C6MIM][NTF2] ILs.906 In contrast, the corresponding
[FAP] ILs exhibit significantly different XPS and Raman
spectra, suggesting a different boundary lubrication mechanism
depending on contact pressure.901,902 Furthermore, effect of
water on antiwear properties of IL lubricants depends on
hydrophilicities of anions and surface types.903,904 Addition of
water into hydrophilic [C4MIM][BF4] results in a disruption
of solvation IL layers and thereafter the formation of an
interfacial water phase on silica via HB interactions of water
with IL ions and silica interfacial groups.904

5.6. IL−Mica Interface

Mica is a layered alumina silicate with two layers of silica
tetrahedra sandwiching a layer of alumina octahedra. Mica has
been extensively used as a model surface to gain insights into
microstructures and dynamical properties of liquids and
solutions in confined environments.107 Horn and co-workers
measured oscillatory forces between atomically smooth mica
surfaces immersed in EAN and EAN−water mixtures.907 Four
to five oscillations are obtained for EAN before strong
repulsion is observed, which prevents a closer approach of
mica surfaces. The step period of 0.5−0.6 nm is consistent with
the EAN ion pair diameter, indicating that EA cations and
[NO3] anions are present in approximately equal numbers at
the IL−mica interface. For EAN−water mixtures with low
EAN concentrations, EAN behaves as a simple electrolyte and
EDL force between mica surfaces decreases with a gradual

increase of EAN concentration, consistent with DLVO
theoretical prediction.856 As EAN concentration increases,
EA cations adsorb to mica surfaces in a manner that is
described by an ion-exchange model, and the EDL force
becomes weak and is completely replaced by a short-range
solvation force extending up to several nanometers.
Atkin and co-workers studied interfacial structural quantities

of alkylammonoium ILs confined between a Si3N4 AFM tip
and a mica surface.129,130,908,909 Two significant features, a
series of repeating “push-through” at discrete separations on
the AFM tip approach and retraction and a significant increase
in the rupture force closer to the mica surface, were
consistently obtained from extensive AFM measurements
(Figure 33). In addition, oscillatory force profiles for EAN−
mica systems exhibit a significant temperature dependence. An
increase in temperature leads to a decrease in the number of
solvation layers in the EAN−mica interfacial region and a
decreased force that is required to rupture the innermost
solvation layer due to reduced liquid viscosity.910 However, the
force barriers associated with interfacial ordering structures are
largely unaffected by temperatures, indicating that boundary IL
layers remain in the interfacial region even at high temper-
atures.
Lengthening the alkyl chains in alkylammonium cations

from C2 to C3 leads to notable changes in the solvation forces
for alkylammonium nitrate ILs confined on a mica sur-
face.129,908,911,912 C3 chains in PA cations pack efficiently
without layering as they confer more orientation freedom than
C2 chains in EA cations, and thus fewer and more compressible
interfacial layers are detected in the PAN−mica interfacial
region (Figure 33). Additional AFM characterization of the
PAN−alcohol mixtures on the mica surface showed that
butanol can pack into the native PAN nanostructural region
and causes swelling of polar and apolar networks with minimal
structural variation.913 Alkyl chains in octanol and dodecanol
are too long to simply accommodate themselves alongside PA

Figure 34. Normal force (FN) renormalized with curvature radius (R) between mica surfaces across (A) [C4MIM][NTF2], (B) [C6MIM][NTF2],
(C) [C4MPYRR][NTF2], (D) [C8MPYRR][NTF2], (E) [C10MPYRR][NTF2], and (F) [C4MPYRR]0.5[C10MPYRR]0.5[NTF2] mixture as a
function of separation distance between mica surfaces. Open diamond points were measured on approach and open circles on retraction of mica
surfaces. Schematics indicate possible layering structures for pure ILs and IL−IL mixtures. Reproduced with permission from ref 920. Copyright
2013 Royal Society of Chemistry.
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cations. Even if hydroxyl groups in octanol and dodecanol are
solvated in polar domains, alkyl chains in these two alcohols
can transverse apolar domains in PAN. In addition, dissolved
inorganic ions (Li+, Na+, Mg2+, and Al3+) compete effectively
with PA cations in coordinating negatively charged sites on
mica surface even at low ion concentrations, leading to distinct
interfacial structures at the IL−mica interface.914

Covalently tethering a hydroxyl group to the terminal
methyl unit in the EA cation leads to a dramatic change in the
oscillatory force profile for EtAN on the mica surface.908,911,912

EtAN exhibits less ordered interfacial structures and fewer
interfacial layers than EAN and PAN near the mica surface
(Figure 33). In addition, substitution of primary alkylammo-
nium cations with secondary and tertiary ones reduces the
number of solvation layers at the IL−mica interface and
weakens adsorption of cations onto the mica surface (Figure
33).908,912 These two variations are intrinsically related to
intermolecular cohesive forces between ions and preferential
coordinations of ions with the mica surface.
In comparison with EAN, [C2MIM][NTF2] exhibits distinct

interfacial structures as revealed by AFM experiments, which
are correlated with intrinsic molecular structures of constituent
ions and their abilities to self-assemble at the mica
surface.909,915−917 AFM imaging revealed that EAN self-
assembles in a wormlike liquid morphology at the mica
surface, whereas [C2MIM] cations adsorb in a more isolated
fashion but still in rows templated by the mica surface. In
addition, EA cations remain adsorbed to mica surface at high
forces, whereas [C2MIM] cations desorb at a relatively low
pressure, which is attributed to electrostatic attractions of
charged atoms on the mica surface with localized charges in
the EA cations being stronger than that with delocalized
charges in [C2MIM] cations. This indicates that for
applications where strong surface adsorption is desirable,
such as in tribology, ions with localized charges are preferred;
however, for applications where access to the solid interfacial
region is required, such as in electrochemical devices like dye-
sensitized solar cells (DSSCs), ions with delocalized charges
should be employed as the solutes are more readily diffused
from the solution to solid surfaces.
In another series of systematic studies, interfacial micro-

structures of [CnMIM][NTF2] ILs confined between neg-
atively charged mica sheets were studied using the SFB
technique,107,137−140 neutron reflectivity,107 X-ray scattering
spectroscopy,124,125 and atomistic simulations.124,125,918,919

Both [C4MIM[NTF2] and [C6MIM][NTF2] ILs exhibit
clear oscillatory forces with alternating repulsive and attractive
regions and increased amplitude with decreasing relative
distance between the two mica surfaces.137,920 The oscillation
period for [C4MIM][NTF2] is close to one ion pair dimension,
indicating that ions are arranged in alternating cation−anion
monolayers between mica surfaces (Figure 34A). [C6MIM]-
[NTF2] is more structured between mica surfaces with a larger
repeat distance although alkyl chain length is merely and
incrementally increased relative to [C4MIM][NTF2], indicat-
ing a structural transition from alternating cation−anion
monolayers for [C4MIM][NTF2] to tail-to-tail cation bilayers
for [C6MIM][NTF2] driven by solvophobic self-assembly of
[C6MIM] cations in confined environments (Figure 34B).
Furthermore, a combination of SFB and neutron reflectivity
experiments demonstrated that [C10MIM][NTF2] exhibits
clear evidence of interfacial layering structures between mica
surfaces. These results were later reproduced by atomistic

simulations138,919 and are rationalized by delicate electrostatics
and chemical interactions controlling interfacial structures of
ILs in confined environments.139,639,921

One thing should be mentioned is that the mica surface is
very reactive and readily adsorbs hydrocarbons and water
species, leading to the formation of a few Angstrom thick
contamination layer on the mica surface.904,915,922,923 XPS data
revealed that [C1MIM][NTF2] and [C4MIM][NTF2] ILs
exhibit complete dewetting behavior on a clean mica surface,
but they form thin IL films on a fully carbon-covered mica
surface.924 A considerable surface enhancement of [NTF2]
anions is detected at submonolayer coverage in the IL−mica
interfacial region, where [NTF2] anions are located above
imidazolium rings that are parallel to the mica surface. [NTF2]
anions adopt a cis conformation with CF3 groups pointing
away from the mica surface. These film growth and interfacial
structural features strongly differ from that found for
submonolayer coverage of ILs on the Au surface, where
confined cations and anions in [CnMIM][NTF2] ILs adsorb
next to each other.838,925 The presence of water in [CnMIM]-
[NTF2] ILs alters not only interfacial layering structures but
also lateral and orientation ordering and aggregation of cation
hydrophobic tails in the interfacial region. For [C4MIM]-
[NTF2] confined between mica surfaces, water weakens
adsorption of [C4MIM] cations onto mica surfaces and
displaces ions from mica surfaces, and therefore interfacial
layering structures nearly diminish. A general feature
concerning the effect of water on the IL interfacial structures
can be understood based on available experimental and
computational studies of IL−water−mica systems.915,922,923

In the presence of water, interfacial structures near the mica
surface are electrifiable via surface atom dissociation.
Electrification of the mica surface is correlated with self-
organization of interfacial ions and adsorption of water at the
IL−mica interface. Water often, but not always, weakens
interfacial layering structures, which can be traced back to the
fact that water is both a dielectric solvent and a molecular
liquid.918,926 For water-stable ILs, water may be leveraged to
improve functional performance of ILs in applications.
Therefore, adopting interfacial water is promising to
manipulate IL interfacial structures (and dynamics) and
potentially allows more flexibility in specific applications. In
this regard, encouraging results have already been reported for
using interfacial water to improve capacitive energy storage and
lubrication.756,927,928

Novel interfacial behaviors were also observed in a
h o m o l o g o u s s e r i e s o f [ C nMPYR R ] [ NT F 2 ]
ILs.421,920,926,929,930 [CnMPYRR] cations (n = 4, 6, and 8)
exhibit consistent stable alternating cation−anion layers, akin
to [CnMIM][NTF2] ILs with very similar film thickness.920,931

This implies a tendency for alkyl chains to lie more or less
parallel along the mica surface, leading to a decrease in the
number density of cations within the interfacial layers as the
alkyl chain length increases, a gradually increased mismatch in
maximum possible ion concentration of anion and cation
layers, and a frustration of overscreened alternating cation−
anion interfacial layering structures. These mismatches
contribute to a substantial lowering of oscillatory forces for
[C8MPYRR][NTF2] (Figure 34D) compared to [C4MPYRR]-
[NTF2] (Figure 34C) confined between mica surfaces. A
substantially different oscillatory force is observed in
[C10MPYRR][NTF2], which is attributed to a flip from
monolayer to bilayer interfacial structures (Figure 34E). This
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change is different from that for [C6MIM][NTF2] as C10
chains of [C10MPYRR] cations interdigitate and [NTF2]
anions reside between neighboring pyrrolidinium rings.926,929

It is noteworthy that the monolayer-to-bilayer transition and
the resulting bilayer architectures for [CnMIM][NTF2] and
[CnMPYRR][NTF2] ILs are intrinsically different in alkyl
chain length transition and interfacial bilayer thickness.920

Crossover from the anion−cation monolayer to cation bilayer
structures occurs between C4 and C6 for [CnMIM][NTF2] ILs
and between C8 and C10 for [CnMPYRR][NTF2] ILs. This
difference is attributed to distinct cation−cation interactions.
Planar imidazolium rings with delocalized charges can interact
favorably via π−π stacking interactions, allowing a close
approach of alkyl chains and favorable dispersion interactions
in apolar domains. Pyrrolidinium cations, on the other hand,
cannot stack at such close distances and, therefore, require long
alkyl chains to drive bilayer formation.932 In addition,
[CnMIM][NTF2] and [CnMPYRR][NTF2] ILs exhibit qual-
itatively different interfacial bilayer architectures in the IL−
mica interfacial region. A toe-to-toe bilayer structure is proposed
for confined [C6MIM][NTF2] with [NTF2] anions sitting on
top of imidazolium rings; however, C10 chains of [C10PYRR]
cations are significantly interdigitated with [NTF2] anions
positioned with pyrrolidinium polar groups in the same plane
in the bilayer structures.920

Furthermore, oscillatory structural forces for a
[C4MPYRR]0.5[C10MPYRR]0.5[NTF2] mixture confined be-
tween mica surfaces are distinct to those for pure IL
components with both [C4MPYRR] and [C10MPYRR] cations
being present in the confined IL film, rather than one
component being more substantially surface active than the
other and thus segregating from the bulk mixture in the thin IL
film (Figure 34F).920 The interfacial layer thickness of this
mixture differs appreciably from that of alternating ion layers
(monolayers) and is more similar to that of a bilayer structural
motif for [C10MPYRR][NTF2], indicating the formation of
b i l a y e r - l i k e i n t e r f a c i a l s t r u c t u r e s i n t h e
[C4MPYRR]0.5[C10MPYRR]0.5[NTF2] mixture. However, this
bilayer-like interfacial structure is slightly thinner than that for
pure [C10MPYRR][NTF2] and is substantially more compres-

sible and requires a low force to rupture or squeeze-out. In this
mixture, [C10MPYRR] cations dictate interfacial structures,
which are reminiscent of the effect of mixtures on bulk
nanostructures, where cations with long alkyl chains are
predominant in determining apolar domain sizes.225

It should be addressed that both anion sizes and shapes
(halides, [BF4], [PF6], [N(CN)2], [FSI], [NTF2], [FAP], etc.)
have a significant influence on oscillatory force profiles for ILs
confined between mica surfaces.140,237,916,917,933−935 [PF6]
anions appear to be more conducive to nanostructure
formation than [NTF2], [NO3], and formate anions, under-
lining the importance of anion features related to their
symmetries and charge distributions. This points to a new
avenue for molecularly designing IL architectures and,
thereafter, tuning interfacial phenomena for particular
applications, such as adhesion, lubrication, and electrokinetic
flows.917 Where mobility and transfer of ion species to and
from solid interface is desirable (heterogeneous catalysis,
batteries, supercapacitors, DSSCs, etc.), IL containing multiple
sterically hindered allylic functional groups can be considered
to maximize compressibility of IL solvation layers and
minimize IL−substrate associations in interfacial regions.
Conversely, in situations where adsorption of ILs to solid
surface is required (e.g., electrode surface restructuring and
lubrication), ions with symmetric shapes having localized
charge centers are preferable.934

5.7. IL−TiO2 Interface

TiO2 is a representative photoanode material in DSSCs,936 and
the IL−TiO2 interface is of particular interest in DSSC
research as detailed knowledge of interfacial structures may
shed light on device differences in regard to function and
durability.936 A combination of XPS and extended X-ray
absorption fine structure spectra showed that [C4MIM][BF4]
absorbs onto the anatase(101) surface, the most thermody-
namically stable and dominant surface exposed in the TiO2
substrate,937 in an ordering manner via electrostatic
interactions at a low coverage with imidizolium rings oriented
at 32 ± 4° from the anatase surface.938,939 With an increase in
coverage of [C4MIM][BF4] on the anatase(101) surface, the
influence of the TiO2 surface on interfacial orientations of

Figure 35. Adsorption geometries of ion species on the anatase(101) surface determined from DFT calculations. [B(CN)4] with (A) face
conformation, (B) edge conformation, and (C) vertex conformation. (D) [SCN] with “N coordination” conformation. [C1MIM] with (E) “flat”
conformation, (F) “vertical” conformation, (G) “H5 coordination” conformation, and (H) “H4 coordination” conformation. Labeled distances are
in picometers. Reproduced with permission from ref 943. Copyright 2015 American Chemical Society.
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confined ions at the uppermost IL−vapor layers is reduced and
interfacial ordering structures are partially or totally lost. Above
specific temperatures, both cations and anions undergo
surface-induced degradation on the anatase(101) surface,
leading to a production of varied ion species detected by
XPS.938,940 The decomposition mechanism of ILs on the
anatase(101) surface is distinct depending on ion structures
and temperatures. [BF4] anions most likely react with
interfacial atoms at oxygen-vacancy sites resulting in an
incorporation of fluorine atoms into oxygen vacancies at the
anatase surface.938

Atomistic simulations provided complementary results for a
thorough understanding of interfacial structures at the IL−
TiO2 interface.941−944 It was found that layering effect for
[C2MIM][NTF2] confined inside a rutile(110) slit is more
pronounced compared to its confinement in a graphitic slit
having the same slit width.725 Both [C2MIM] cations and
[NTF2] anions adopt multiple orientations and exhibit
significantly slower diffusion rates near rutile walls than near
graphite walls,725 which is attributed to specific interactions
between confined ion species and interfacial atoms of the rutile
walls. Strong electrostatic and dispersion interactions are
present between individual atoms in [C2MIM][NTF2] and Ti
and oxygen atoms on rutile walls, whereas only vdW
interactions are present between confined ions and carbon
atoms at graphitic walls.
Barbara and co-workers performed AIMD simulations to

study interfacial structures of [C2MIM][SCN] and [C2MIM]-
[B(CN)4] ILs on the anatase(101) surface.942−944 These two
ILs exhibit dense interfacial layers at the IL−TiO2 interface
with [C2MIM] cations being perpendicular to the anatase
surface because of HB interactions of C(2)−H atoms with
interfacial oxygen atoms on the anatase surface. Most
[B(CN)4] anions exhibit face conformation (Figure 35A),
where three CN groups have preferential interactions with the
anatase(101) surface. The less populated edge (Figure 35B)
and vertex (Figure 35C) conformations with two and one CN
groups in contact with the anatase(101) surface are also
observed. Favorable N−Ti interactions of [SCN] anions with
the anatase(101) surface result primarily in perpendicular
distributions of [SCN] anions with nitrogen atoms closest to
the anatase(101) surface (Figure 35D). In addition, absorbed
imidazolium cations exhibit varied adsorption geometries on
the anatase(101) surface (Figure 35E−H) and tend to cause
an energetic downward shift of TiO2 band levels by accepting
electron density from the anatase surface. Anions are observed
to raise energy levels by donating electron density to the
anatase surface.942 Both effects take place simultaneously and
counteract each other, leaving a complicated charge transfer
phenomenon at the IL−TiO2 interface. In general, if it aims to
achieve a maximum energetic upward shift, the adopted ILs
should consist of cations with highly delocalized or screened
positive charges, and their interactions with the TiO2 surface
should be minimal. Additionally, ILs can be changed
systematically to increase or decrease the band edge position
to match the band levels appropriately. If alignment of the
band levels is satisfactory, different ILs that yield similar band
shifts can be employed to improve other aspects for peculiar
applications, such as compatibilities of electrolytes with dye
molecules, redox mediators, and solar cell sealing materials.945

Furthermore, there are some sporadic experimental and
computational investigations on absorption of ILs on various
metal oxide surfaces including CeO2,

946,947 ZnO,948,949

VO2,
950,951 SrTiO3,

952,953 CoO/Co3O4,
954 FeO,955,956

ZrO2,
957 and even on some metal sulfide surfaces, like

GeS2
958 and MoS2.

959,960 These studies illustrated that delicate
intermolecular interactions between IL ions and metal oxide
surfaces and acidity of the metal oxide surfaces have a
significant effect on short- and long-term thermal stabilities of
supported ILs. A detailed elucidation of these interactions
offers new opportunities for rational design of materials, such
as solid catalysts on supported IL layers for heterogeneous
catalysis and supported IL membranes for gas separation.

6. CONCLUSIONS AND OUTLOOK
Over the last 2 decades, ILs have attracted increasing attention
in academia and industrial communities owing to their
numerous useful physicochemical and structural properties.
Due to a countless number of combinations of cation−anion
moieties and mixtures with cosolvents, a thorough under-
standing of their hierarchical structures and dynamics is highly
significant for rational selection and design of ILs with desired
properties and thereafter maximizing their functionalities in
applications including catalysis, gas capture and separation,
energy storage and harvesting, and lubrication. This is a uniting
theme across different IL types including alkylammonium,
imidazolium, pyrrolidinium, pyridinium, piperidinium, and
tetraalkylammonium and tetraalkylphosphonium cations with
either organic or inorganic anions. An important feature of
these ILs is that they are more complex than molecular
solvents and show rich diversities in various aspects ranging
from molecular structures of constituent ions, intra- and
intermolecular interactions, dynamical quantities, and self-
assembled liquid morphologies of ILs in bulk liquids.
Therefore, ILs have been extensively investigated in different
ways including free ions, ion pairs, ion clusters, ion continuum,
HB networks, and bicontinuous sponge structures with
interpenetrating polar and apolar networks via advanced
experimental techniques and molecular simulations. In
addition, nanoconfined ILs, owing to distinct spatial confine-
ment and dominant surface forces at short length scale, offer
new and attractive features, such as distinct phase transitions
and depressed transport properties. These microstructural,
dynamical, and transport properties are attributed to a complex
interplay of constituent ions with surrounding ions in bulk
liquids, with cosolvent molecules and inorganic salts in IL
mixtures, and with solid surfaces in confined environments. A
specific feature of ILs, either in bulk liquids or in interfacial
regions, is microstructural and dynamical heterogeneities,
which are hallmark characteristics of their unique properties.
These heterogeneities of ILs arise because ILs are composed of
cations and anions or, alternatively, polar and apolar groups,
leading to repeating and correlated microstructures in bulk
liquids and in interfacial regions on nanometer dimensions.
The diversified solvent structures of ILs are the origin of much
past, current, and future interest in ILs, which are implicated in
almost all aspects of their chemistry.
At the current stage, the IL research field has reached an

astonishing level, enriched with an unexpected diversity of ions
with distinct capacities for self-assembly in bulk liquids and in
confined environments. This diversity has catalyzed IL
research, and their chemical and self-assembled structures
can be used to unlock their potential to impact many areas of
scientific research and technological applications. As this field
matures, there needs to be increasing economic cost/benefit
analysis of ILs, how to select and how to design appropriate
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ions to achieve peculiar microstructures, distinctive mesoscopic
liquid morphologies, and specific macroscopic functions, which
will be critical for ILs to compete with established liquids and
materials. Multiscale modeling approaches, including f irst
principle calculations and ab initio, atomistic, and CG MD
simulations, provide not only complementary results but also
critical physical insights for understanding spectacular
phenomena taking place in bulk liquids and in interfacial
regions under harsh conditions. In future work, molecular
simulations will be generally adopted in two modes within the
IL community: accurate prediction of physicochemical and
structural quantities of IL systems and providing qualitative
insights into the structure−property relationship for max-
imizing their utilization in applications. It is anticipated that in
a long period of time in the future, multiscale modeling
simulations will be on an equal footing with experimental
investigations to explore important properties of ILs in a wide
range of applications. An integration of multiscale simulation
results and experimental characterizations is expected to unveil
fundamental mechanisms governing distinct microstructural
and dynamical heterogeneities of ILs in a wide range of
physical and chemical environments and to fine-tune these
properties in an intelligent fashion. A comprehensive under-
standing of fundamental properties of ILs can provide
unprecedented guidance for preselection and design of
appropriate IL candidates and advancing their functionalities
in industrial applications while minimizing environmental
effects for a sustainable future.
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ABBREVIATIONS

1D one-dimensional
2D two-dimensional
3D three-dimensional
AIMD ab initio molecular dynamics
ACN acetonitrile
AFM atomic force microscopy
BAN butylammonium nitrate
B(CN)4 tetracyanoborate
BF4 tetrafluoroborate
BMB bis(mandelato)borate
BMLB bis(malonato)borate
BOB bis(oxalato)borate
BScB bis(salicylato)borate
BzMIM 1-benzyl-3-methylimidazolium
C1C1PO4 dimethylphosphate
(C1OC1)2MIM 1-methoxyethoxymethyl-3-methylimidazo-

lium
C2C1MIM 1-ethyl-2,3-dimethylimidazolium
C2HIM 1-ethyllimidazolium
C2OH-MIM 1-(2-hydroxyethyl)-3-methylimidazolium
C4C1MIM 1-butyl-2,3-dimethylimidazolium
CF3SO3 triflate
CG coarse-grained
CH 2-hydroxyethyl-trimethylammonium (choli-

nium)
CnCmIM dialkylimidazolium
CnCmPYRR dialkylpyrrolidinium
CnMIM 1-alkyl-3-methylimidazolium
Cn(MIM)2 di-imidazolium
CnMPIP 1-alkyl-methylpiperidinium
CnPYRI N-alkylpyridinium
CnSO4 alkylsulfate
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CNT carbon nanotube
DFT density functional theory
DLVO Derjaguin-Landau-Vervey-Overbeek
DMEAF dimethylethylammonium formate
DRS direct recoil spectroscopy
DSC differential scanning calorimetry
DSE Debye−Stokes−Einstein
DSSCs dye-sensitized solar cells
EAC ethylammonium chloride
EAF ethylammonium formate
EAN ethylammonium nitrate
EDL electrical double layer
EPSR empirical potential structure refinement
EtAN ethanolammonium nitrate
FAP tris(pentafluoroethyl)trifluorophosphate
FSDP first sharp diffraction peak
FSI bis(fluorosulfonyl)imide
FT Fourier transform
HB hydrogen bonding
IL ionic liquid
IR infrared
MAN methylammonium nitrate
MD molecular dynamics
N2,2,2,(2O2O2) 2-ethoxyethoxy-ethyltriethylammonium
N(CN)2 dicyanamide
Ni,j,k,l tetraalkylammonium
NMR nuclear magnetic resonance
NO3 nitrate
NTF2 bis(trifluoromethanesulfonyl)imide
OAc acetate
OHD-OKE optical-heterodyne-detected optical Kerr ef-

fect
OHD-RIKE optical-heterodyne-detected Raman-induced

Kerr effect
OLC onion like carbon
PAC propylammonium chloride
PAN propylammonium nitrate
PC propylene carbonate
PF6 hexafluorophosphate
PhSiMIM 1-dimethylphenylsilylmethyl-3-methylimida-

zolium
Pi,j,k,l tetraalkylphosphonium
PSPP polarization sensitive pump−probe
PZC potential of zero charge
SANS small-angle neutron scattering
SAXS small-angle X-ray scattering
SCN thiocyanate
SeCN selenocyanate
SEIRAS surface-enhanced infrared absorption spec-

troscopy
SFA surface force apparatus
SFB surface force balance
SFG sum frequency generation
SiMIM 1-methyl-3-trimethylsilylmethylimidazolium
SiOSiMIM 1-methyl-3-pentamethyldisiloxymethylimida-

zolium
STM scanning tunneling microscopy
TFA trifluoroacetic acid
TFO trifluoromethylsulfonate
UCST upper critical solution temperature
vdW van der Waals
VFT Vogel−Fulcher−Tammann
WAXS wide-angle X-ray scattering

XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
XRR X-ray reflectivity
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(98) Peñalber-Johnstone, C.; Adamova,́ G.; Plechkova, N. V.;
Bahrami, M.; Ghaed-Sharaf, T.; Ghatee, M. H.; Seddon, K. R.;
Baldelli, S. Sum Frequency Generation Spectroscopy of Tetraalkyl-
phosphonium Ionic Liquids at the Air-Liquid Interface. J. Chem. Phys.
2018, 148, 193841.
(99) Santos, C. S.; Baldelli, S. Alkyl Chain Interaction at the Surface
of Room Temperature Ionic Liquids: Systematic Variation of Alkyl
Chain Length (R = C1−C4, C8) in Both Cation and Anion of
[RMIM][ROSO3] by Sum Frequency Generation and Surface
Tension. J. Phys. Chem. B 2009, 113, 923−933.
(100) Martinez, I. S.; Santos, C.; Baldelli, S. Structural Study at the
Gas-Liquid Interface of 1-Alkyl-3-methylimidazolium Alkylsulfates
Using Surface Potential Measurements. ChemPhysChem 2012, 13,
1818−1824.
(101) Baldelli, S. Interfacial Structure of Room-Temperature Ionic
Liquids at the Solid−Liquid Interface as Probed by Sum Frequency
Generation Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 244−252.
(102) Yan, C.; Thomaz, J. E.; Wang, Y.-L.; Nishida, J.; Yuan, R.;
Breen, J. P.; Fayer, M. D. Ultrafast to Ultraslow Dynamics of a
Langmuir Monolayer at the Air/Water Interface Observed with
Reflection Enhanced 2D IR Spectroscopy. J. Am. Chem. Soc. 2017,
139, 16518−16527.
(103) Humphreys, E. K.; Allan, P. K.; Welbourn, R. J. L.; Youngs, T.
G. A.; Soper, A. K.; Grey, C. P.; Clarke, S. M. A Neutron Diffraction
Study of the Electrochemical Double Layer Capacitor Electrolyte
Tetrapropylammonium Bromide in Acetonitrile. J. Phys. Chem. B
2015, 119, 15320−15333.
(104) Niemann, T.; Neumann, J.; Stange, P.; Gar̈tner, S.; Youngs, T.
G.; Paschek, D.; Warr, G. G.; Atkin, R.; Ludwig, R. The Double-Faced
Nature of Hydrogen Bonding in Hydroxy-Functionalized Ionic
Liquids Shown by Neutron Diffraction and Molecular Dynamics
Simulations. Angew. Chem., Int. Ed. 2019, 58, 12887−12892.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.9b00693
Chem. Rev. 2020, 120, 5798−5877

5853

https://dx.doi.org/10.1103/PhysRevLett.110.047801
https://dx.doi.org/10.1103/PhysRevLett.110.047801
https://dx.doi.org/10.1021/jp501631m
https://dx.doi.org/10.1021/jp501631m
https://dx.doi.org/10.1021/jp512851v
https://dx.doi.org/10.1021/jp512851v
https://dx.doi.org/10.1021/jp512851v
https://dx.doi.org/10.1021/jp512851v
https://dx.doi.org/10.1021/acs.jpcb.6b08410
https://dx.doi.org/10.1021/acs.jpcb.6b08410
https://dx.doi.org/10.1021/acs.jpcb.7b06376
https://dx.doi.org/10.1021/acs.jpcb.7b06376
https://dx.doi.org/10.1021/acs.jpcb.7b06376
https://dx.doi.org/10.1039/c1cp20910h
https://dx.doi.org/10.1039/c1cp20910h
https://dx.doi.org/10.1039/c1cp20910h
https://dx.doi.org/10.1021/jp3020673
https://dx.doi.org/10.1021/jp3020673
https://dx.doi.org/10.1021/jp3020673
https://dx.doi.org/10.1021/la990589j
https://dx.doi.org/10.1021/la990589j
https://dx.doi.org/10.1039/b101952j
https://dx.doi.org/10.1039/b101952j
https://dx.doi.org/10.1039/C5CP03412D
https://dx.doi.org/10.1039/C5CP03412D
https://dx.doi.org/10.1039/C5CP03412D
https://dx.doi.org/10.1002/anie.201605633
https://dx.doi.org/10.1002/anie.201605633
https://dx.doi.org/10.1002/anie.201605633
https://dx.doi.org/10.1063/1.3273206
https://dx.doi.org/10.1063/1.3273206
https://dx.doi.org/10.1063/1.3273206
https://dx.doi.org/10.1063/1.4913239
https://dx.doi.org/10.1063/1.4913239
https://dx.doi.org/10.1063/1.4913239
https://dx.doi.org/10.1021/jp072836v
https://dx.doi.org/10.1021/jp072836v
https://dx.doi.org/10.1021/jp071755w
https://dx.doi.org/10.1021/jp071755w
https://dx.doi.org/10.1021/jp071755w
https://dx.doi.org/10.1021/jp911950q
https://dx.doi.org/10.1021/jp911950q
https://dx.doi.org/10.1021/jp911950q
https://dx.doi.org/10.1021/jp911950q
https://dx.doi.org/10.1021/je400841s
https://dx.doi.org/10.1021/je400841s
https://dx.doi.org/10.1039/C5CP02748A
https://dx.doi.org/10.1039/C5CP02748A
https://dx.doi.org/10.1039/C5CP02748A
https://dx.doi.org/10.1039/C5CP02748A
https://dx.doi.org/10.1063/1.4890529
https://dx.doi.org/10.1063/1.4890529
https://dx.doi.org/10.1063/1.4890529
https://dx.doi.org/10.1063/1.4890529
https://dx.doi.org/10.1063/1.4890529
https://dx.doi.org/10.1021/jp209942r
https://dx.doi.org/10.1021/jp209942r
https://dx.doi.org/10.1021/jp209942r
https://dx.doi.org/10.1016/j.cplett.2014.09.062
https://dx.doi.org/10.1016/j.cplett.2014.09.062
https://dx.doi.org/10.1063/1.4943390
https://dx.doi.org/10.1063/1.4943390
https://dx.doi.org/10.1021/acs.jpcb.8b01163
https://dx.doi.org/10.1021/acs.jpcb.8b01163
https://dx.doi.org/10.1021/acs.jpcb.8b01163
https://dx.doi.org/10.1063/1.5038563
https://dx.doi.org/10.1063/1.5038563
https://dx.doi.org/10.1063/1.5038563
https://dx.doi.org/10.1002/cphc.201200026
https://dx.doi.org/10.1002/cphc.201200026
https://dx.doi.org/10.1002/cphc.201200026
https://dx.doi.org/10.1021/jp014466v
https://dx.doi.org/10.1021/jp014466v
https://dx.doi.org/10.1021/jp014466v
https://dx.doi.org/10.1021/jp0563989
https://dx.doi.org/10.1021/jp0563989
https://dx.doi.org/10.1021/jp0563989
https://dx.doi.org/10.1021/jp0563989
https://dx.doi.org/10.1063/1.5009674
https://dx.doi.org/10.1063/1.5009674
https://dx.doi.org/10.1021/jp807924g
https://dx.doi.org/10.1021/jp807924g
https://dx.doi.org/10.1021/jp807924g
https://dx.doi.org/10.1021/jp807924g
https://dx.doi.org/10.1021/jp807924g
https://dx.doi.org/10.1002/cphc.201100985
https://dx.doi.org/10.1002/cphc.201100985
https://dx.doi.org/10.1002/cphc.201100985
https://dx.doi.org/10.1021/jz301835j
https://dx.doi.org/10.1021/jz301835j
https://dx.doi.org/10.1021/jz301835j
https://dx.doi.org/10.1021/jacs.7b06602
https://dx.doi.org/10.1021/jacs.7b06602
https://dx.doi.org/10.1021/jacs.7b06602
https://dx.doi.org/10.1021/acs.jpcb.5b08248
https://dx.doi.org/10.1021/acs.jpcb.5b08248
https://dx.doi.org/10.1021/acs.jpcb.5b08248
https://dx.doi.org/10.1002/anie.201904712
https://dx.doi.org/10.1002/anie.201904712
https://dx.doi.org/10.1002/anie.201904712
https://dx.doi.org/10.1002/anie.201904712
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.9b00693?ref=pdf


(105) Daillant, J.; Gibaud, A. X-ray and Neutron Reflectivity:
Principles and Applications; Springer-Verlag: Berlin-Heidelberg, 2008.
(106) Mars, J.; Hou, B.; Weiss, H.; Li, H.; Konovalov, O.; Festersen,
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A.; Saboungi, M.-L. Structure of a Prototypic Ionic Liquid: Ethyl-
methylimidazolium Bromide. J. Phys. Chem. B 2010, 114, 12623−
12628.
(277) Brüssel, M.; Brehm, M.; Pensado, A. S.; Malberg, F.; Ramzan,
M.; Stark, A.; Kirchner, B. On the Ideality of Binary Mixtures of Ionic
Liquids. Phys. Chem. Chem. Phys. 2012, 14, 13204−13215.
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Deutsch, M.; De Souza, E. J.; Okasinski, J. S.; Ocko, B. M.;
Honkimak̈i, V.; Dosch, H. Layering of [BMIM]-Based Ionic Liquids
at a Charged Sapphire Interface. J. Chem. Phys. 2009, 131, 094701.
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