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Abstract

Oncotator is a tool for annotating genomic point mutations and short nucleotide insertions/

deletions (indels) with variant- and gene-centric information relevant to cancer researchers. This 

information is drawn from 14 different publicly available resources that have been pooled and 

indexed, and we provide an extensible framework to add additional data sources. Annotations 

linked to variants range from basic information, such as gene names and functional classification 

(e.g. missense), to cancer-specific data from resources such as the Catalogue of Somatic Mutations 

in Cancer (COSMIC), the Cancer Gene Census, and The Cancer Genome Atlas (TCGA). For local 

use, Oncotator is freely available as a python module hosted on Github (https://github.com/

broadinstitute/oncotator). Furthermore, Oncotator is also available as a web service and web 

application at http://www.broadinstitute.org/oncotator/.

INTRODUCTION

Variant annotation, the aggregation and reporting of data relevant to a given genomic 

alteration, is a key step in a sequencing data analysis pipeline and is crucial for subsequent 

interpretation of detected variants. Genome sequencing of cancer samples typically reveal 

thousands to tens of thousands of somatic mutations per tumor that are often unique to the 

individual tumor (equivalent to ‘singletons’ in a germline analysis) (Lawrence et al., 2013). 

Therefore, researchers rely on annotations to filter variants to a subset of alterations that are 

most important to a given study or application. At the most basic level, variant annotations 

help researchers identify the genes, transcripts, and genomic regions pertaining to a given 

variant, as well as predict the impact an alteration has on the translated protein product of a 

gene. With the emergence of large databases of germline (Sherry et al., 2001; Landrum et 

al., 2013; NHLBI GO Exome Sequencing Project, 2014) and somatic (Forbes et al., 2010) 

variation, synthesis of all available clinical and biological information for single variants 
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greatly empowers researchers to distinguish driver mutations from passengers (Imielinski et 

al., 2014), link specific variants to patient phenotypes (Van Allen et al., 2013; Biesecker and 

Green, 2014), and uncover unexpected oncogenic mechanisms shared across diseases 

(Lawrence et al., 2013). For example, variant annotations such as the frequency of a 

mutation in published cancer genomic studies, or whether a significant functional effect is 

predicted by algorithms such as Polyphen-2 or SIFT (Kumar et al., 2009; Adzhubei et al., 

2010), can be utilized to interpret and prioritize variants. For clinicians, variant annotations 

can be of immense aid for clinical interpretation of variants as annotations can identify 

genetic events associated with cancer prognosis/diagnosis or drug sensitivity/resistance (Van 

Allen et al., 2013; Biesecker and Green et al., 2014).

Numerous tools, such as ANNOVAR, SnpEff, and Variant Effect Predictor, exist for 

annotating sequencing variants; however, many were developed for general non-cancer 

applications (Le Pera et al., 2010; McLaren et al., 2010; Wang et al., 2010; Cingolani et al., 

2011; Sana et al., 2011). Although cancer sequencing studies use many of these tools, 

variants may lack cancer-specific annotations that can aid in downstream interpretation.

Here we report Oncotator, a cancer variant annotation pipeline implemented as a command 

line tool, as well as a web application, which provides both an interactive user interface and 

a programmatic web service. As currently deployed, Oncotator allows users to annotate 

variants with a pre-packaged bundle of cancer-relevant information in a single step. 

Oncotator has been used internally in the Broad Institute’s Cancer Genome Analysis 

pipeline since 2011, resulting in its use in over 20 published cancer studies, including 

several large scale (>100 tumors) efforts conducted by TCGA, NHGRI, TARGET, and the 

Slim Initiative for Genomic Medicine collaboration (Bass et al., 2011; Berger et al., 2011; 

Cancer Genome Atlas Research Network, 2011, 2013, 2014; Chapman et al., 2011; 

Hammerman et al., 2011; Stransky et al.. 2011; Wang et al., 2011; Banerji et al., 2012; 

Barbieri et al., 2012; Barretina et al., 2012; Berger et al., 2012; Hodis et al., 2012; Imielinski 

et al., 2012; Lee et al., 2012; Lohr et al., 2012; Pugh et al., 2012, 2013, 2014; Ciriello et al., 

2013; Francis et al., 2013; Lawrence et al., 2013; Ojesina et al., 2013). The goal of this 

article is to make the scientific community aware of the first public release of Oncotator 

(version 1.3) that is free to non-profit users. In the past two years, large parts of Oncotator 

were refactored to support: (i) highly optimized annotations; (ii) customizable data sources; 

and (iii) deployment outside of the Broad Institute environment.

METHODS

As a starting point for annotation, Oncotator requires the genomic position, reference allele, 

and variant allele as input in TSV, VCF (Danecek et al., 2011), or muTect call_stats 

(Cibulskis et al., 2013) formats. Variants are currently annotated with data from 14 different 

resources (Table 1), described briefly below. Annotated variants can be output in TCGA 

MAF or VCF formats, regardless of which input format is used (with the unintended 

consequence that researchers often use the tool for format conversion).

Oncotator uses a local indexed database of reference transcripts derived from GENCODE to 

map variants to specific genes (Harrow et al., 2012). Each variant is assigned a “variant 
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classification” (e.g. “Splice_Site” or “Nonsense_Mutation”) based on the mutation’s 

position relative to an overlapping gene and the expected consequence, if any, that the 

mutation has on a translated protein product. The model of reference transcript selection 

used is user-defined by a command line argument or can be left to automatically use the 

model with the greatest deleterious effect. Variant classification terms defined by the TCGA 

are used and nomenclature adheres to specifications defined by the Human Genome 

Variation Society (http://www.hgvs.org/mutnomen) (Dunnen et al., 2000).

In addition to basic transcript annotations described above, Oncotator will annotate variants 

with annotations derived from sources that can be beneficial to researchers looking to 

prioritize variants. To identify common Single Nucleotide Polymorphism (SNP) variants 

(which are less likely to contribute to tumorigenesis), Oncotator utilizes data from dbSNP, 

1000 Genomes Project, and National Heart, Lung, and Blood Institute’s Exome Sequence 

Project (Sherry et al., 2001; 1000 Genomes Project Consortium. 2010; NHLBI GO Exome 

Sequencing Project, 2014). Oncotator can also annotate variants with the local GC content 

(within 100 base-pairs, by default) and surrounding nucleotide context (within 10 base-pairs, 

by default). Such annotations can be helpful for identifying biological mutational processes 

with sequence-specific mutation (Lawrence et al., 2013; Alexandrov et al., 2013) or 

artifactual mutation biases such as oxidation of guanine bases during sequencing library 

construction (OxoG) (Costello et al., 2013).

Predicting the functional impact of somatic mutations in cancer can be aided by mapping 

coding DNA sequence variants in genes onto amino acid sequences and proteins they 

encode. For example, knowledge of the specific protein regions that variants affect can be 

used to identify particular protein domains or active sites that are enriched for mutations 

across multiple samples or even across genes containing similar domains. To this end, 

Oncotator can annotate genomic variants with protein-specific annotations derived from 

UniProt human protein sequence records (UniProt Consortium, 2011). Oncotator maps 

genomic variants to protein position-based annotations derived from the feature table section 

of a UniProt record. Protein annotations added include “region” (e.g. protein kinase 

domain), “site” (e.g. ATP binding site), ”natural variation” (e.g. Y → F in Pfeiffer 

syndrome), and “experimental” (e.g. Y → F: 50% decrease in interaction with PIK3C2B) 

data, if available. Furthermore, UniProt records are utilized to derive Gene Ontology (GO) 

annotations, describing the biological process, cellular component, and molecular function 

of a gene; and DrugBank annotations, pertaining to small molecules known to target the 

protein of interest (Knox et al., 2011). Through the dbNSFP (Liu et al., 2011) Oncotator 

datasource, variants can also be annotated with pre-computed results derived from many 

functional prediction and conservation score algorithms (PolyPhen-2, SIFT, MutationTaster, 

Mutation Assessor, FATHMM, LRT, SiPhy, GERP++ and PhyloP), which can be used to 

classify variants most likely to have an impact on a protein’s function (Siepel et al., 2006; 

Chun and Fay, 2009; Garber et al., 2009; Kumar et al., 2009; Adzhubei et al., 2010; 

Davydov et al., 2010; Schwarz et al., 2010; Reva et al., 2011; Shihab et al., 2013).

Oncotator also annotates variants with data from several cancer-specific resources that may 

aid in interpreting variants. Using data from COSMIC, Oncotator identifies variants reported 

in published studies and reports their observed frequency across all cancers and within each 
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tissue type (Forbes et al., 2010). Overlapping breakpoint and fusion genes in COSMIC are 

also provided. Cancer researchers can also benefit from knowledge of relevant cancer cell 

line models in which to perform follow-up in vitro experiments with. To this end, Oncotator 

utilizes data from the Cancer Cell Line Encyclopedia to identify if a variant has been 

previously observed in a cell line (Barretina et al., 2012) (http://www.broadinstitute.org/ccle/

home). Other cancer-specific resources utilized include the Cancer Gene Census (Futreal et 

al., 2004), ClinVar (Landrum et al., 2014), the Familial Cancer Database (http://

www.familialcancerdatabase.nl/), and a curated set of DNA repair genes (Wood et al., 2005).

IMPLEMENTATION

Oncotator is available as a command line tool written in the Python programming language 

(https://www.python.org/). This tool is recommended for advanced users and is ready for 

inclusion into automated pipelines, since the annotation options, selection of data sources, 

and file formats are more flexible. The Oncotator software is an annotation framework that 

is broken into a three-stage workflow: (i) convert the input data into an internal model of 

mutations; (ii) annotate the mutation objects with a collection of pre-processed datasources 

(which can be locus-, variant- or gene-specific); and (iii) render the mutations to the 

specified output format (VCF or MAF). The software architecture encapsulates each step, 

which allows easy implementation of input and output formats by decoupling file formats 

from the actual annotation engine. The encapsulation also eased the development of 

hundreds of automated test modules, some testing hundreds of scenarios, that allow 

developers to make code changes and be confident that their changes have not 

unintentionally broken previous functionality (regression tests).

We recognize that researchers would like to extend variant annotations beyond the current 

available datasources in Oncotator. Therefore, we included in Oncotator tools for creating 

new datasources from TSV, VCF, and GTF files. Most of the default Oncotator datasources 

were created using these tools. Users are encouraged to contribute to the project via a 

publicly available Github repository (https://github.com/broadinstitute/oncotator). Although 

the tool was initially developed for cancer researches, Oncotator can address non-cancer 

needs and additional non-cancer datasources can be easily introduced. Periodically, we make 

updated and new datasources available, as part of the versioned default corpus. In the future, 

we plan to add datasources specific to whole genome sequencing analysis, such as 

conservation scores outside of the exome, as well as add functionality for annotation of 

genomic regions.

Oncotator is also available as a web application at http://www.broadinstitute.org/oncotator/. 

Users can input a tab-delimited text file containing genomic coordinates and allele 

genotypes for each variant. Annotation results are presented as interactive tables. Users can 

also download a tab-delimited file containing multiple columns corresponding to the 

different annotations that are aggregated. The Oncotator web service is implemented using a 

REST-like architecture to facilitate integration with existing applications and pipelines. 

Users can also retrieve variant annotations programmatically using HTTP requests in the 

form http://www.broadinstitute.org/oncotator/mutation/
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<chromosome>_<start_position>_<end_position>_<reference_allele>_<observed_allele>. 

Results are returned as JSON objects (http://json.org/) which can be easily parsed by users.
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