TABLE IV.
Quantitative comparison of DCN-Net with Self-Training strategies in dentate and interposed nuclei segmentation.
| Target | Dentate | Interposed | ||||||
|---|---|---|---|---|---|---|---|---|
| Metric | CMD (mm) | MSD (mm2) | DC | Volume (mm3) | CMD (mm) | MSD (mm2) | DC | Volume (mm3) |
| Manual labels | 0.514±0.35 | 0.380±0.11 | 0.873±0.05 | 736±165 (668±159) | 1.085±0.92 | 0.514±0.35 | 0.682±0.16 | 53±18 (53±24) |
| Self-training strategy #1 (pre-training) | 0.613±0.46 | 0.373±0.12 | 0.872±0.05 | 713±155 (668±159) | 1.029±0.76 | 0.486±0.22 | 0.676±0.15 | 52±16 (53±24) |
| Self-training strategy #1 (fine-tune) | 0.529±0.42 | 0.381±0.12 | 0.874±0.05 | 731±165 (668±159) | 1.003±0.78 | 0.424±0.24 | 0.686±0.14 | 67±24 (53±24) |
| Self-training strategy #2 (model distillation) | 0.552±0.44 | 0.390±0.13 | 0.868±0.05 | 778±185 (668±159) | 1.005±0.94 | 0.468±0.43 | 0.701±0.16 | 60±23 (53±24) |
Bold indicates p<0.05 for paired t-tests with DCN-Net (trained on manual labels). () is ground truth volume.