Skip to main content
. Author manuscript; available in PMC: 2020 Jul 10.
Published in final edited form as: IEEE Access. 2020 May 29;8:101550–101568. doi: 10.1109/access.2020.2998537

TABLE IV.

Quantitative comparison of DCN-Net with Self-Training strategies in dentate and interposed nuclei segmentation.

Target Dentate Interposed

Metric CMD (mm) MSD (mm2) DC Volume (mm3) CMD (mm) MSD (mm2) DC Volume (mm3)
Manual labels 0.514±0.35 0.380±0.11 0.873±0.05 736±165 (668±159) 1.085±0.92 0.514±0.35 0.682±0.16 53±18 (53±24)
Self-training strategy #1 (pre-training) 0.613±0.46 0.373±0.12 0.872±0.05 713±155 (668±159) 1.029±0.76 0.486±0.22 0.676±0.15 52±16 (53±24)
Self-training strategy #1 (fine-tune) 0.529±0.42 0.381±0.12 0.874±0.05 731±165 (668±159) 1.003±0.78 0.424±0.24 0.686±0.14 67±24 (53±24)
Self-training strategy #2 (model distillation) 0.552±0.44 0.390±0.13 0.868±0.05 778±185 (668±159) 1.005±0.94 0.468±0.43 0.701±0.16 60±23 (53±24)
*

Bold indicates p<0.05 for paired t-tests with DCN-Net (trained on manual labels). () is ground truth volume.