Skip to main content
. Author manuscript; available in PMC: 2020 Jul 10.
Published in final edited form as: IEEE Access. 2020 May 29;8:101550–101568. doi: 10.1109/access.2020.2998537

TABLE V.

Quantitative comparison of U-Net with Self-Training strategies in dentate and interposed nuclei segmentation.

Target Dentate Interposed

Metric CMD (mm) MSD (mm2) DC Volume (mm3) CMD (mm) MSD (mm2) DC Volume (mm3)
Manual labels 0.616±0.53 0.431±0.13 0.853±0.06 724±184 (668±159) 1.148±0.95 0.574±0.43 0.659±0.15 49±18 (53±24)
Self-training strategy #1 (pre-training) 1.45±1.25 0.770±0.18 0.698±0.12 1216±267 (668±159) 1.000±1.01 0.598±0.60 0.688±0.17 42±14 (53±24)
Self-training strategy #1 (fine-tune) 0.668±0.56 0.462±0.17 0.837±0.08 793±213 (668±159) 0.977±0.78 0.511±0.36 0.687±0.15 51±19 (53±24)
Self-training strategy #2 (model distillation) 0.684±0.61 0.452±0.13 0.843±0.06 806±190 (668±159) 1.02±0.93 0.52±0.38 0.693±0.17 48±20 (53±24)
*

Bold indicates p<0.05 for paired t-tests with U-Net (trained on manual labels). ( ) is ground truth volume.