TABLE V.
Quantitative comparison of U-Net with Self-Training strategies in dentate and interposed nuclei segmentation.
| Target | Dentate | Interposed | ||||||
|---|---|---|---|---|---|---|---|---|
| Metric | CMD (mm) | MSD (mm2) | DC | Volume (mm3) | CMD (mm) | MSD (mm2) | DC | Volume (mm3) |
| Manual labels | 0.616±0.53 | 0.431±0.13 | 0.853±0.06 | 724±184 (668±159) | 1.148±0.95 | 0.574±0.43 | 0.659±0.15 | 49±18 (53±24) |
| Self-training strategy #1 (pre-training) | 1.45±1.25 | 0.770±0.18 | 0.698±0.12 | 1216±267 (668±159) | 1.000±1.01 | 0.598±0.60 | 0.688±0.17 | 42±14 (53±24) |
| Self-training strategy #1 (fine-tune) | 0.668±0.56 | 0.462±0.17 | 0.837±0.08 | 793±213 (668±159) | 0.977±0.78 | 0.511±0.36 | 0.687±0.15 | 51±19 (53±24) |
| Self-training strategy #2 (model distillation) | 0.684±0.61 | 0.452±0.13 | 0.843±0.06 | 806±190 (668±159) | 1.02±0.93 | 0.52±0.38 | 0.693±0.17 | 48±20 (53±24) |
Bold indicates p<0.05 for paired t-tests with U-Net (trained on manual labels). ( ) is ground truth volume.