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Abstract

In many applications researchers are typically interested in testing for inequality constraints in the 

context of linear fixed effects and mixed effects models. Although there exists a large body of 

literature for performing statistical inference under inequality constraints, user friendly statistical 

software for implementing such methods is lacking, especially in the context of linear fixed and 

mixed effects models. In this article we introduce CLME, a package in the R language that can be 

used for testing a broad collection of inequality constraints. It uses residual bootstrap based 

methodology which is reasonably robust to non-normality as well as heteroscedasticity. The 

package is illustrated using two data sets. The package also contains a graphical interface built 

using the shiny package.
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1. Introduction

Inequality constraints arise naturally in many applications. For example, to evaluate if a 

chemical is a toxin, a toxicologist may conduct a dose-response study to determine if the 

mean response is monotonic in dose. More precisely, suppose θi, i ≥ 2, are the mean 

responses of a chemical corresponding to p dose groups. In this case the null and alternative 

hypotheses of interest are H0 : θ1 = θ2 = … = θp, and Ha : θ1 ≤ θ2 ≤ …θp, with at least one 

strict inequality (known as the simple order constraint), respectively. Sometimes, when the 

doses exceed the maximum tolerated dose (MTD), it may result in a dose-related toxicity 

and the monotonicity is violated causing down-turn at some (unknown) dose i (Simpson and 
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Margolin 1986). In such cases, researchers are interested in testing for an umbrella 

alternative Hai : θ1 ≤ θ2 … ≤ θi−1 ≤ θi ≤ θi+1 ≥ … ≥ θp, with at least one strict inequality.

In a multi-center rat uterotophic assay conducted by the OECD (Organization for Economic 

Cooperation and Development), researchers were interested in studying the effect of 

exposure to estrogen like compounds in the uterine weights of pre-pubertal rats. They were 

interested in testing if the mean uterine weights of animals exposed to estrogen like 

compounds increased in comparison to the uterine weights of control animals (Kanno et al. 

2003). Thus the alternative hypothesis of interest is Ha : θ1 ≤ θi, i ≥ 2, with at least one strict 

inequality, known as the simple tree order. Here θ1 is the mean of the control group and θi, i 
≥ 2, are the means of the treatment groups.

In cancer trials, it is common for researchers to be interested in evaluating a cocktail of two 

or more experimental drugs in combination, each tried at low, medium and high doses. In 

such cases, the typical order restriction of interest is the loop order denoted by 

θcontrol, control ≤ θcontrol, low ≤ θcontrol, medium ≤ θℎigℎ, ℎigℎ
⋃ θcontrol, control ≤ θlow, control ≤ θmedium, control ≤ θℎigℎ, ℎigℎ

, where θa,b denotes the mean 

response corresponding to ath dose of the first treatment and bth dose of the second 

treatment. The above null and alternative hypotheses can in general be expressed as 

H0:Cθ = c and Ha:Cθ ≥ c, respectively, where A is a suitable matrix of zeros, ones and 

negative ones of appropriate order, θ = (θ1, θ2, … , θp)⊤ and c is a suitable vector of known 

scalars, for example a vector of zero’s. Some examples of C and c are provided later, and an 

illustration of some common orders is given in Figure 1.

It is of common interest to perform statistical inference under inequality constraints, such as 

those described above, in a linear mixed effects model setting, especially in the context of 

repeated measures design where a researcher may be interested in detecting trends. 

However, despite the existence of a large body of literature on constrained inference 

spanning over five decades and three books on testing for order restrictions (Barlow et al. 

1972; Robertson et al. 1988; Silvapulle and Sen 2005), it was only recently that researchers 

developed methods for performing constrained inference in linear mixed effects models 

(Davidov and Rosen 2011; Rosen and Davidov 2011; Farnan et al. 2014). While Davidov 

and Rosen (2011) and Rosen and Davidov (2011) developed likelihood ratio based methods, 

Farnan et al. (2014) developed a residual bootstrap based method that is designed to be 

robust to non-normality as well as to heteroscedasticity. Furthermore, Farnan’s methodology 

allows for modeling categorical as well as continuous covariates.

Surprisingly, not even the popular statistical analysis program SAS (SAS Institute Inc. 2011) 

has the capability to perform tests under general inequality constraints in a linear fixed 

effects model, let alone in the context of mixed effects models. As demonstrated in Farnan et 

al. (2014), statistical methods that are specifically designed for testing inequality constraints 

are expected to enjoy substantially higher power than the usual omnibus procedures (e.g., 

ANOVA) which are designed for two-sided alternatives. This observation, together with the 

fact that there does not exist a general software for performing statistical tests under linear 

inequality constraints in linear mixed effects models, motivates the current work. In this 

paper we introduce an R package, called CLME (‘Constrainted Linear Mixed Effects’) 
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based on the distribution-free residual bootstrap methodology developed in Farnan et al. 

(2014). There are several packages in R which offer constrained fixed effects models, 

including glmc (Chaudhuri et al. 2006) and ic.infer (Grömping 2010), but neither of these 

appear to offer support for mixed models; the present work fills this void. Furthermore, since 

the methodology is based on residual bootstrap, CLME does not depend on normality or 

homogeneity of variances for the residuals or random effects.

The rest of the paper is organized as follows: Section 2 provides a brief description of the 

constrained inference for linear mixed effects (LME) models presented by Farnan et al. 

(2014). Section 3 describes the contents of the package CLME along with implementation 

details. Section 4 provides some illustrative examples using the package, and Section 5 

concludes the paper with a summary and some comments on planned developments of 

CLME.

2. Linear mixed effect models under inequality constraints

2.1. Definition of the model

Let

Y = X1θ1 + X2θ2 + Uξ + ϵ (1)

denote a linear mixed effects (LME) model where Y is the N × 1 response vector, X1 is a 

design matrix of order N × p1 and θ1 is the corresponding p1 × 1 vector of coefficients (often 

treatment effects). X2 is an N × p2 a known matrix of covariates, θ2 is the p2 × 1 vector of 

regression coefficients, and U is a N × c matrix of known constants (random effects). For 

simplicity we write X = (X1 : X2) and U = U1:U2:…, :Ucq , where : denotes column-binding 

and Ui is an N × ci matrix, with ∑i = 1
q ci = c. We also denote θ = θ1

⊤, θ2
⊤ ⊤

 and p = p1 + p2.

The random vector ξ = ξ1
⊤, ξ2

⊤, …, ξq
⊤ ⊤

 is c×1, where each ξi is a ci×1 vector corresponding 

to Ui, for i = 1, … , q. The elements of ξ are independently distributed with mean 0 and 

covariance matrix T = diag τ1
2Ic1, τ2

2Ic2, …, τq2Icq . The residual term ϵ is similarly defined with 

mean 0 and covariance matrix Σ = diag σ1
2In1, σ2

2In2, …, σk
2Ink , where i = 1, … , k and 

∑i = 1
k ni = N.

Although the above model description and the methodology implemented in CLME allows 

for fairly general settings, in many applications one may not require the full available 

flexibility. For example, in most applications it may be sufficient to assume that T = τ2I, 

instead of the general heteroscedastic structure for T described above.

Let C be an r × p matrix so that Cθ represents the linear combinations which are subject to 

inequality constraints specified by the alternative hypothesis. Thus the hypotheses of interest 

are given by:
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Ho:Cθ = 0 versus Ha:Cθ ≥ 0, (2)

such that at least one of the r inequalities is strict. Farnan et al. (2014) suggested the pool 

adjacent violators algorithm (‘PAVA’) to implement the order constraints (isotonization). We 

depart from their methodology in that we use the package isotone (de Leeuw et al. 2009) for 

isotonization, and in particular the function activeSet. In some cases using active set 

methodology leads to the same results as using PAVA; though using active sets is a more 

general approach and enables easy specification of complex order restrictions. This also 

enables access to a number of solvers for activeSet, including least squares, least absolute 

deviation, and others.

CLME is designed to implement two general classes of statistical tests. The likelihood ratio 

type (LRT) statistic (Davidov and Rosen 2011) is the default setting, but the user may 

instead choose the Williams’ type test statistic (Williams 1971, 1977; Peddada et al. 2001; 

Farnan et al. 2014). In both cases, to keep the methodology robust to non-normality and 

potential heteroscedasticity, the p values are evaluated using the residual bootstrap 

methodology developed in Farnan et al. (2014). Thus, although our likelihood ratio type 

statistic is motivated by the likelihood ratio principle under the normality assumption, it does 

not use the normal theory based asymptotic distribution for the test statistic. Hence we use 

the phrase ‘likelihood ratio type test’ rather than ‘likelihood ratio test’, and results from 

CLME will not always align with those of a direct implementation of (Davidov and Rosen 

2011).

2.2. Performance of residual bootstrap methodology

Farnan (2011) and later Farnan et al. (2014) investigated the performance of the residual 

bootstrap based test using the above defined likelihood ratio type test (LRT) statistic and the 

following Williams type statistic (W) under a wide range of distributions and variance 

structures. For example, Farnan (2011) generated data from a wide range of non-normal 

distributions including, gamma, log-normal and mixture of normals and different patterns of 

variances to study the Type I error and power of these tests. A subset of these results were 

reported in Farnan et al. (2014). The residual bootstrap based methodology, using the above 

test statistics, generally performed well in terms of Type I errors and power. The Type I 

errors were generally close to nominal levels.

The Williams type statistic is defined in general as:

W = max ℬθ1 ⊙ diag ℬVar(θ )ℬ⊤ −1
, (3)

where ⨀ denote the Schur-product of vectors, i.e., a ⨀ b = (a1b1, a2b2, … , arbr)⊤, θ1
denotes the estimator of θ1 under the inequality constraint of interest, and θ1 denotes the 

unconstrained estimator of θ1 (e.g., the MLE). For a given order restriction specified by C, 

the contrast matrix ℬ is derived from the largest hypothesized difference(s); in the simple 

order this is the difference between θ1 and θp1. The structure of ℬ is similar to that of C, 

and is further described in the paragraph titled ‘Constraints’ in Section 3.1.
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3. Contents of CLME

In this section we describe the functions included in CLME and some notes on their 

implementation. We start by describing the main function of the package, clme. Afterwards, 

we detail some of the secondary functions which users may find useful.

3.1. Main function

The main function of CLME is clme. This function implements the order restricted residual 

bootstrap test described in Farnan et al. (2014). Among the arguments listed below, only the 

formula and the dataset are required for the model to run. A series of flowcharts are provided 

in the appendix (Figures 8–10) to guide a user through specification of the arguments for 

clme.

formula a formula expression; the constrained effect(s) must come before any 

unconstrained effects.

data data frame containing the variables in the model.

gfix optional vector of group levels for residual variances. Data should be sorted by 

this value.

constraints list containing the constraints.

tsf function to calculate the test statistic.

tsf.ind function to calculate the test statistic for individual contrasts.

mySolver solver to use in isotonization (passed to activeSet).

verbose logical, prints iteration step. Argument can be vector of multiple logicals; 

successive elements are passed to further functions.

levels list to manually specify labels for constrained coefficients.

ncon the number of constrained terms in the formula; the first ncon terms are 

constrained.

… space for additional arguments.

Several of the arguments to clme require further explanation.

Formula—The formula should be a formula object following typical specification in R. 

That is, it is a two-sided expression using a tilde operator to separate the dependent variable 

from the independent variables. For example, the formula y = x1 + x2 is interpreted as 

modeling y as a linear fucntion of x1 and x2. Random effects are specified in a similar 

manner as in the popular lme4 package (Bates et al. 2015), using parentheses. For example, 

the formula y = x1 + x2 + (1|u) is equivalent to the previous formula, but includes u as a 

random effect.

Note that clme runs a model without the intercept (and removes the intercept if it was 

requested). This is done so that the parameters are means of interest, rather than the intercept 

and offsets, thereby simplifing the computations involved.
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Constraints—The argument constraints is a list describing the order restrictions using the 

following elements:

order text string specifying the type of order. Allowed values are ‘simple’, ‘umbrella’, 

and ‘simple.tree’.

node numeric indicating which element of θ1 is the node.

decreasing logical indicating decreasing order. For simple orders, a decreasing order 

implies a downward trend. For umbrella or simple tree orders, a decreasing order 

implies a decrease from the node. See Figure 1 for an illustration.

A matrix describing the order restrictions in C.

B matrix of coefficients defining the Williams type statistic (only necessary if 

Williams’ type test is desired). This corresponds to ℬ in Equation (3).

The values of A and B use the same format as the argument isomat from the function 

activeSet in package isotone: each is a matrix with two columns where the rows define a 

specific constraints. For example, A and B are shown below for the decreasing umbrella 

order with p1 = 5 and a node at θ1,3 (the third element of θ1).

A =

1 2
2 3
4 3
5 4

and,

B = 1 3
5 3

The alternative hypothesis is Ha : θ1 ≤ θ2 ≤ θ3 ≥ θ4 ≥ θ5. The first row of A defines the 

constraint θ1 ≤ θ2, the second row defines the constraint θ2 ≤ θ3, and so on. The entries of 

the rows are the coefficient indices, and the parameter indexed in the left column is 

hypothesized to be less than or equal to that indexed by the right column. The B matrix is 

similarly structured, but defines only the contrasts for the largest hypothesized difference(s). 

Under the umbrella order, this will be the node compared to the first and last values; the 

specific form of the Williams’ type statistic from Equation 3 is:

W = max
θ3 − θ1

Var θ3 − θ1
,

θ3 − θ5
Var θ3 − θ5

,

hence the B matrix holds the contrasts θ3 − θ1 and θ3 − θ5.

Not all of the elements of constraints are necessary. There are three general formats by 

which to pass the constraints to clme.
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Specific Defaults—One may specify only the elements order, node, and decreasing. In 

this case the program will call an internal function to generate the values of A and B. 

Allowed values for order are ‘simple’, ‘umbrella’, and ‘simple.tree’; also, the node may be 

omitted for simple orders. Each of the three elements may also be vector-valued (e.g., 

order=c(‘simple’,’umbrella’)) to test multiple orders.

Custom constraints—Alternatively, the list of constraints may contain A directly. This is 

particularly useful for specifying custom order restrictions such as loop orders or block 

orders. When a custom A is passed, the program will ignore any values of order, node, and 

decreasing. If the Williams’ type test is selected, a custom B is also needed.

Unspecified

Finally, constraints may be left unspecified. In this case the program will search for both 

simple and umbrella orders with all possible nodes, both increasing and decreasing orders. 

As with the first case, the program will estimate the order using the maximum test statistic 

of all the tested orders.

When testing multiple orders the test statistic is taken as the maximum of all the tested 

orders, and the program will note the order which produced this value as the estimated order. 

The bootstrap null distribution of the test statistic is constructed from all the order patterns 

under consideration, not just the estimated order (that is, for each bootstrap sample, the test 

statistic is computed for all candidate orders, and the maximum is taken). For 

reproducibility, one may use seed argument to set the seed for the pseudo-random number 

generator.

Test statistic: tsf and tsf.ind—The argument tsf is a function which computes the 

desired global test statistic. This defaults to lrt.stat, the LRT statistic. Alternatively one may 

select the Williams’ type statistic from Equation 3 by setting tsf=w.stat. The related 

argument tsf.ind computes the test statistic to test the individual constraints. The Williams 

type test, w.stat.ind, is default. These two arguments are analogous to the global F test and 

pairwise t tests in the context of analysis of variance. For other test statistics, the user may 

submit a custom function function for tsf and/or tsf.ind. We refer to the documentation of 

lrt.stat for more details on the format of custom test statistic functions.

The output from any custom tsf should be numeric. Output with length greater than 1 

corresponds to multiple global hypotheses being tested. This should not be used for testing 

all the individual constraints from the A matrix, as these are calculated separately using the 

tsf.ind argument. If desired, the test statistic function should also specify the names attribute 

of the test statistic, for example naming the contrast. An example of testing multiple global 

hypotheses is shown in Section 4.2, a reanalysis of data from the Fibroid Growth Study 

(Peddada et al. 2008).

Homogeneity of variances: gfix—The model described in Section 2 permits flexibility. 

In particular, both ξ (if random effects are included) and ϵ may be modeled under the 

assumption of homogeneity or heterogeneity of variances. Currently, each random effect 

term is modeled with a separate variance component. The argument gfix defines groups for 
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the residual variance(s). By default, the data are modeled with a single residual variance. If 

gfix is supplied, then each group of gfix is modeled with a separate residual variance. For 

example if the constrained effect is the variable x1, defined as treatment groups, then 

gfix=x1 will produce a residual variance for each treatment group.

The output of clme is a list with elements:

• theta vector of estimates of fixed-effects coefficients, θ.

• theta.null vector of estimates of θ under the null hypothesis.

• ssq estimate of the residual variance(s), σi2, i = 1, … , k.

• tsq estimate of the random effect variance component(s), τi2, i = 1, … , q.

• cov.theta the covariance matrix of the unconstrained estimates of θ.

• ts.glb test statistic for the global hypothesis.

• ts.ind vector of test statistics for each of the constraints (each row of A).

• mySolver the solver used in activeSet.

• constraints List containing the constraints (A) and the contrast for the global test 

(B).

• dframe data frame containing the variables in the model.

• search.grid matrix containing the orders to perform a search over.

• cust.const logical, whether custom constraints were specified, or constraints were 

generated.

• ncon the number of constrained effects

• tsf function to calculate the test statistic.

• tsf.ind function to calculate the test statistic for individual contrasts.

• residuals matrix containing residuals. For mixed models three types of residuals 

are given.

• random.effects predicted values of the random effects.

• gfix group sample sizes for residual variances.

• gfix_group group membership to define residual variances.

• gran group sizes for random effect variance components.

• formula the formula used in the model.

• call the function call.

• P1 the number of constrained parameters.

• mq.phi initial values for the random effect variance componebts.

• order list describing the specified constraints.
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The function clme only fits the model. To run the bootstrap test, users should run 

summary.clme on the fitted object. The summary.clme method accepts arguments object (an 

object of class clme, the output from function clme) as well as nsim, the number of bootstrap 

simulations to perform, and for replicability, seed, the seed for the random number generator 

(RNG). Both nsim and seed can be passed to clme, in which case summary.clme will use 

those values. The output of summary.clme returns the same fitted object, but appends p-

values.

3.2. Secondary function

Typical use of CLME will involve fitting a clme object, and then calling summary.clme to 

conduct inference. In the course of its evaluation, the summary function calls several other 

functions, of which the primary one is resid_boot. This performs the integral function of 

obtaining the bootstrap samples for inference. Some of the arguments for resid_boot are 

equivalent to those of clme, but some additional arguments are provided to allow users 

greater flexibility. The arguments to resid_boot are:

formula a formula expression, the constrained effect should be the first term on the 

right-hand side.

data data frame containing the variables in the model.

gfix optional vector of group levels for residual variances.

null.resids logical, whether to generate bootstrap samples under the null hypothesis. 

Defaults to TRUE.

eps estimates of residuals.

xi predicted values of the random effects.

theta vector of fixed-effects coefficients.

ssq vector of residual variance estimate(s).

tsq vector of random effect variance component(s).

cov.theta covariance matrix of the unconstrained fixed effects estimates.

seed set the seed for the RNG

nsim number of bootstrap samples to generate (M).

mySolver the solver to pass to activeSet.

… space for additional arguments.

CLME constructs a bootstrap sample as follows:

Step 1: Obtain θ0, the estimate of θ under the null hypothesis.

Step 2: Compute the observed values of the random effects and residuals. Denote 

Ψ = UTU + Σ, where T and Σ are the estimates of T and Σ described in Section 2. Then 

compute:
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ϵ = I − X X⊤Ψ−1X
−1

X⊤Ψ−1 Y,

and

ξ = TU⊤Ψ−1ϵ .

Step 3: Standardize the observed values of the random effects and residuals. Define 

δi =
ξi

sd ξi
, i = 1, … , q and νi =

ϵi
sd ϵi

, i = 1, … , k, where sd(·) denotes the standard 

deviation of the elements in the vector.

Step 4: Obtain the bootstrap samples. Let ν * denote a bootstrap sample of ν and let δ *
denote a bootstrap sample of δ. Then define ϵ* = σiνi*, i = 1, … , k and ξ* = τ iδi*, i = 1, … , 

q. Finally, construct the final bootstrap sample as:

Y * = Xθ0 + Uξ * + ϵ * .

In typical use resid_boot will follow the above procedure, and the arguments will be 

specified appropriately. However, for greater flexibility, the user may submit any numeric 

vector of the appropriate length for several of the values. In particular:

Fixed effects—The vector of fixed-effects coefficients is represented with theta. By 

default this will be θ0, the estimate of θ under the null hypothesis. If the user wishes to 

center the bootstrap samples at a different location, they may submit an alternative vector for 

theta. For example, one may specify theta to be the fitted estimate of θ rather than the null 

estimate (a vector of length p). This will cause the bootstraps to be centered at the fitted 

alternative hypothesis rather than the null hypothesis (these two estimates of θ are availabled 

in a fitted clme object, elements theta and theta.null). Or the user may wish to center at an 

unconstrained point estimate, θ . Note that the only effect specifying theta will have is 

changing the fixed-effects estimate in Step 4 above. In particular, the observed random 

effects and residuals will not be affected. Also, null.resids must be set to FALSE for the 

specified value of theta to be used directly. Otherwise, theta will be projected onto the null 

hypothesis (so that Cθ = 0) using activeSet from package isotone.

Variance estimates—The argument ssq denotes the vector of estimated residual variance 

terms, σ1
2, …, σk

2 . If specified, then these values will be used in place of σi
2, i = 1, … , k in 

Step 4 above. If length(ssq) > 1 then the user should specify gfix as the residual variance 

groups as with the main function clme. The argument tsq is similarly defined, but containing 

the random-effect variance components τ1
2, …, τq

2 .
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Residuals—The observed residuals are denoted by eps. By default these are calculated as 

shown for ϵ  in Step 2 above, the residuals from an unconstrained point estimate (e.g., 

generalized least squares). The user may supply an N × 1 vector containing residuals 

calculated in some other fashion. Similarly, the observed random effects are denoted with xi, 

and by default are calculated as shown for ξ  in Step 2 above. Again, the user may submit a 

vector with alternative values for the observed random effects.

The only necessary arguments for resid_boot are formula and data, these will be used to 

obtain the model matrices. If provided, the values of theta, ssq, tsq, eps and xi will be used 

for bootstrapping. Any of these values that are left unspecified will be computed as 

described in Steps 1–4 above.

3.3. Other package contents

Shiny application—The shiny package (RStudio and Inc. 2014) offers the ability to 

develop a graphical user interface (GUI) which implements CLME. A GUI developed in 

shiny can be run locally or deployed online. This is particularly beneficial to researchers 

who are not as familiar with R, or programming in general, but wish to use the methods 

described here. The package CLME includes a shiny application to run clme. After 

installing the package, a user may run the command shiny_clme() to call the GUI and begin 

using CLME without any need for further programming.

Figure 2 shows the GUI for clme with the arguments filled in. This example uses the 

rat.blood dataset (which was printed to a comma-delimited file). The column headers are: id, 

time, temp, sex, wbc, rbc, hgb, hct, spun, mcv, mch, mchc, plts, and grp ord. The final 

column was added to the dataset, it contains the values ‘0 Hour’, ‘6 Hour’, ‘24 Hour’, ‘48 

Hour’, and ‘72 Hour’. This column was added so that the proper order of groups for the 

constrained effect can be defined. A screenshot of the first 15 rows of this file can be seen in 

Figure 3.

First the user should browse to the dataset (which should be a CSV file with the first row 

being a header), and then select the desired function arguments. Some arguments are 

provided by default (e.g., the global test statistic and the type of solver for isotonization). 

There are several checkboxes to define the order, and then the user must tell the application 

which variables to use. The variables are identified using either their column number or 

column letter (e.g., 1 or A). Multiple variables may be separated by a comma (e.g., 1,2,4 or 

A,B,D), a range of variables may be defined with a dash (e.g., 1–4 or A-D), or a 

combination of the two can be used. These values should be set to ‘None’ to indicate no 

covariates or random effects. Group levels for the constrained effect may not be read into R 

with the correct order; an extra column may contain the ordered group levels (it may 

therefore have different length than the rest of the dataset). The user is recommended to 

inspect the bottom of the summary output to verify the ordering of the group levels.

If we wish to model hct, we specify column 8 for the response variable. Then the 

constrained effect is time, which is in column 2. The other covariates, temp and sex, are in 

columns 3 and 4, so we type ‘3–4’ (alternatively, we could have typed ‘3,4’, or ‘C,D’), and 

finally the random effect, id, is in column 1. Since this is just for illustration, we specified 
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only 10 bootstrap samples. Figure Figure 2 shows the first panel of output, which contains 

summary information on the dataset: a boxplot of the response variable for each level of the 

constrained effect (if the constrained effect is a factor), and a table of descriptive statistics. 

The other three panels are: ‘Model Summary’, which provides the summary printout of the 

fitted model (several examples are shown in Section 4); ‘Model Plot’, which provides a plot 

of the fitted means with indication of significance (e.g., Figure 5); and ‘Model Data’ prints 

the data used for the analysis.

Figure Figure 4 shows several of the optional parameters in the GUI. By clicking the 

‘Format Output’ checkbox, one can request a confidence interval to show on the plot, adjust 

the Type I error rate, and force the constrained effect to be a factor (not all file imports will 

bring in text variables as a factor). The ‘Heteroscedasticity’ box bring up another input field 

to select a variable, which allows one to set the gfix parameter of clme. In this case, we have 

entered ‘2’, which corresponds to the variable time. This has the effect of assuming each 

time group has a unique variance.

The checkbox ‘Define order of constrained groups’ will bring up another input field. Here 

we enter 14, to select the ‘grp ord’ variable which was discussed above. Note on the boxplot 

in Figure 2 that the groups are out of order: Without this column, the time periods would be 

out of order: the ‘6 Hour’ group would be placed between the ‘48 Hour’ and ‘72 Hour’ 

groups. By specifying this input, we correct the order (output not shown). The checkbox 

‘Select Control Parameters’ allows one to set the seed for the RNG, as well as the maximum 

number of iterations and the convergence threshold for both the EM algorithm and the 

MINQUE algorithm.

Methods—The function clme outputs an object of the S3 class clme. The methods 

available for this class are briefly described in Table 1.

4. Sample implementation

In this section we demonstrate the use of CLME by applying it to two real-world data sets. 

Some of the analyses mimic those performed in the original papers but in the context of 

order-restricted inference. Other analyses are intended to exhibit certain features of the 

package or compare the available options. We emphasize that these analyses are intended not 

as a scientific reanalysis, but as an illustration. Consequently some modeling choices, the 

assumption of homogeneity of variances in particular, are not thoroughly investigated. The 

data analyzed are included in the package as the datasets rat.blood and fibroid.

4.1. Hematologic parameters from Sprague-Dawley rats

In a recent study on the effect the amount of time a sample is stored has on various 

hematological parameters, Cora et al. (2012) conducted a time course study using blood 

samples drawn from Sprague-Dawley rats. Blood samples from 11 female and 11 male rats 

were kept at either room temperature 21 °C (the control group) or refrigerated at 3 °C for 6, 

24, 48 or 72 hours (see Cora et al. (2012) for more details). Although the authors obtained 

data on a variety of hematological variables in this repeated measure time course study, we 

shall focus on hematocrit (HCT) and the white blood cell (WBC) count over time. In the 
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case of HCT we shall illustrate some of the options of CLME while testing for simple order 

with an increasing trend in time. In the case of WBC we test for simple tree order the mean 

WBC count in the freezer group was at least as high as that of the 0 hour.

First, we load the package and the data.

R> library(“CLME”)

R> data(“rat.blood”)

Hematocrit—We illustrate CLME using three different settings. In the first case (Case A) 

we test the following hypotheses:

H0:θ1 = θ2 = θ3 = θ4 = θ5

Vs.

HaA:θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5, (A)

with at least one strict inequality, here θi is the mean corresponding to either 0, 6, 24, 48 or 

72 hours. In the second case (Case B), we test for a union of umbrella alternatives. If the null 

hypothesis is rejected then the algorithm selects the pattern that has largest value of test 

statistic:

H0:θ1 = θ2 = θ3 = θ4 = θ5

Vs.

HaB: ⋃
i = 1

5
θ1 ≤ θ2 ≤ … ≤ θi ≥ … ≥ θ5 ∪ ⋃

i = 1

5
θ1 ≥ θ2 ≥ … ≥ θi ≤ … ≤ θ5 . (B)

Thus in (B) the order is unspecified but limited to either umbrella or inverted umbrella 

orders. Note that simple orders (increasing or decreasing) are a special case of umbrella 

orders, where the peak is the first or last parameter. The peak or the trough of each umbrella 

is specified using the specification of node. Case (C) is a repeat of case (A), but there we 

will assume heteroscedasticity of variances between the time groups.

We initially use the default arguments as far as possible. We use the gender of the rat and the 

storage temperature of the sample as covariates. The R code to test case (A) is provided 

below along with the results.

R> const <- list(order = “simple”, node = 1, decreasing = FALSE)

R> hct1 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood,
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+    constraints = const, levels = list(2, levels(rat.blood$time)))

R> hct1b <- summary(hct1, seed = 42)

R> hct1b

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) − 1

Order specified: increasing simple order

log-likelihood: −296.6

AIC:             611.3

BIC:             624.3

(log-likelihood, AIC, BIC computed under normality)

Global test:

 Contrast       Statistic p–value

 Bootstrap LRT       0.17  0.0020

Individual Tests (Williams’ type tests):

 Contrast           Estimate  Statistic  p–value

 6 Hour – 0 Hour       1.342      4.862   0.0000

 24 Hour – 6 Hour      0.086      0.399   0.1480

 48 Hour – 24 Hour     0.180      0.829   0.0550

 72 Hour – 48 Hour     0.150      0.693   0.1070

Variance components:

Source            Variance

 id                2.2006

 Residual          1.0314

Fixed effect coefficients (theta):

          Estimate  Std. Err  95% lower  95% upper

 0 Hour    40.9121    0.5226     39.888     41.936

 6 Hour    42.2542    0.5055     41.263     43.245

 24 Hour   42.3405    0.5055     41.350     43.331

 48 Hour   42.5201    0.5055     41.529     43.511

 72 Hour   42.6701    0.5055     41.679     43.661

 tempRT     0.5023    0.1531      0.202      0.802

 sexMale   −1.8333    0.6804     −3.167     −0.500

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour
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Model based on 1000 bootstrap samples

R> plot( hct1b, ci = TRUE, legendx = “bottomright”, inset = 0.08)

We find strong evidence (p = 0.002) of an increasing pattern in mean HCT. The coefficients 

are plotted in Figure 5 with indications of significance for the individual contrasts.

To test case (B) we simply need to omit the constraints from the call to clme. The code and 

results are given below.

R> hct2 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood,

+    levels = list(2, levels(rat.blood$time)))

R> summary(hct2, seed = 42)

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) − 1

Order estimated: increasing simple order

log-likelihood: −296.6

AIC:             611.3

BIC:             624.3

(log–likelihood, AIC, BIC computed under normality)

Global test:

 Contrast       Statistic  p–value

 Bootstrap LRT       0.17   0.0070

 

Individual Tests (Williams’ type tests):

 Contrast           Estimate  Statistic  p–value

 6 Hour – 0 Hour       1.342      4.862   0.0000

 24 Hour – 6 Hour      0.086      0.399   0.1480

 48 Hour – 24 Hour     0.180      0.829   0.0550

 72 Hour – 48 Hour     0.150      0.693   0.1070

Variance components:

Source            Variance

 id                2.2006

 Residual          1.0314

Fixed effect coefficients (theta):

          Estimate Std. Err 95% lower 95% upper

 0 Hour    40.9121   0.5226    39.888    41.936

 6 Hour    42.2542   0.5055    41.263    43.245
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 24 Hour   42.3405   0.5055    41.350    43.331

 48 Hour   42.5201   0.5055    41.529    43.511

 72 Hour   42.6701   0.5055    41.679    43.661

 tempRT     0.5023   0.1531     0.202     0.802

 sexMale   −1.8333   0.6804    −3.167    −0.500

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

Model based on 1000 bootstrap samples

Observe that the alternative hypothesis in (B) is much larger than the alternative hypothesis 

in (A). Thus, while the conclusions of tests for (A) and (B) are the same: that the parameters 

satisfy an increasing simple order, the p value associated with (B) is larger because the 

alternative hypothesis in (B) is larger than the alternative in (A).

Accounting for heteroscedasticity is simple in CLME. For example, suppose we wish to 

model each of the time points with a different residual variance. To do this we pass the time 

groups as the argument gfix, as shown below. We will call this case (C).

R> hct3 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood,

+    gfix = rat.blood$time, constraints = const,

+    levels = list(2, levels(rat.blood$time)))

R> summary( hct3, seed = 42 )

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) − 1

Order specified: increasing simple order

log–likelihood: −291.4

AIC:             608.9

BIC:             627.7

(log-likelihood, AIC, BIC computed under normality)

Global test:

 Contrast        Statistic  p–value

 Bootstrap LRT       0.266   0.0010

Individual Tests (Williams’ type tests):

 Contrast           Estimate  Statistic  p–value

 6 Hour – 0 Hour       1.326      4.937   0.0000

 24 Hour – 6 Hour      0.086      0.465   0.1250
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 48 Hour – 24 Hour     0.180      0.902   0.0430

 72 Hour – 48 Hour     0.150      0.823   0.0890

Variance components:

Source           Variance

 id               2.13092

 0 Hour           1.22617

 6 Hour           0.54469

 24 Hour          0.97074

 48 Hour          0.77105

 72 Hour          0.69144

Fixed effect coefficients (theta):

          Estimate Std. Err 95% lower 95% upper

 0 Hour    40.9258   0.5032    39.940    41.912

 6 Hour    42.2521   0.4625    41.346    43.159

 24 Hour   42.3385   0.4729    41.412    43.265

 48 Hour   42.5180   0.4681    41.601    43.435

 72 Hour   42.6680   0.4661    41.754    43.582

 tempRT     0.5341   0.1273     0.285     0.784

 sexMale   −1.8511   0.6345    −3.095    −0.608

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

Model based on 1000 bootstrap samples

White blood cell count—Using the white blood cell count data of Cora et al. (2012), we 

now illustrate our package for testing a simple tree order. Here the nodal parameter is taken 

to be the population mean corresponding to the 0 hour group. Since boxplots of the residuals 

(not shown) suggested the variances were potentially equal across the groups, we assume 

homogeneity of variances. For illustration, in this example we use the Williams’ type test 

statistic. The code and results are below, and the coefficients are plotted in Figure 6.

R> const <- list( order = “simple.tree” , node = 1 , decreasing = FALSE)

R> wbc <- clme(wbc ~ time + temp + sex + (1|id), data = rat.blood,

+    constraints = const, levels = list(2, levels(rat.blood$time)),

+    tsf = w.stat )

R> summary( wbc, seed = 42)

Linear mixed model subject to order restrictions 

Formula: wbc ~ time + temp + sex + (1 | id) − 1
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Order specified: increasing tree order with node at 1

log-likelihood: −236.3

AIC:             490.5

BIC:             503.6

(log–likelihood, AIC, BIC computed under normality)

Global test:

 Contrast          Statistic  p–value

 72 Hour – 0 Hour 5.207  0.0000

Individual Tests (Williams’ type tests):

 Contrast          Estimate  Statistic  p–value

 6 Hour –  0 Hour     0.000      0.000   1.0000

 24 Hour – 0 Hour     0.409      2.240   0.0120

 48 Hour – 0 Hour     0.574      3.150   0.0000

 72 Hour – 0 Hour     0.949      5.207   0.0000

Variance components:

Source            Variance

 id                1.51920

 Residual          0.45017

Fixed effect coefficients (theta):

          Estimate  Std. Err  95% lower  95% upper

 0 Hour     5.4262    0.4007      4.641      6.212

 6 Hour     5.4262    0.3910      4.660      6.193

 24 Hour    5.8348    0.3910      5.068      6.601

 48 Hour    6.0007    0.3910      5.234      6.767

 72 Hour    6.3757    0.3910      5.609      7.142

 tempRT    −0.1947    0.1011     −0.393      0.004

 sexMale    1.8229    0.5336      0.777      2.869

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

Model based on 1000 bootstrap samples

R> plot(wbc, legend = “topleft”, inset = 0.08)

Our results are consistent with those of Cora et al. (2012), but we have in addition detected 

the 0 hour - 48 hour and 0 hour - 24 hour contrasts as being significant, which were not 

identified by Cora et al. (2012). There does appear to be an increasing pattern over time, but 

the differences from control are not statistically significant until sufficient time has passed.
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As an alternative to Williams’ type test, we repeated the analysis using the LRT (results not 

provided) and discovered that the LRT did not reject the null hypothesis at the 5% level of 

significance (p = 0.252). This discrepancy between Williams’ type and LRT is not surprising 

in view of the simulation study reported in Farnan et al. (2014), which indicated that 

Williams’ type test can be more powerful than LRT in some cases.

4.2. Fibroid growth rates

Peddada et al. (2008) investigated growth rate of of uterine leiomyomata (fibroids) in black 

and white women. Since fibroids are hormonally mediated and there is a drop in estrogen 

levels as women age, it may be reasonable to hypothesize a reduction in fibroid growth rates. 

Interestingly, Peddada et al. (2008) reported that for white women the rate of growth of 

fibroids decreased with age (i.e., simple order with decreasing pattern), whereas they did not 

find any reduction in the average growth rate of fibroids with age for black women. They 

defined the three age groups as follows: Young (< 35), Middle (35 − 44), and Old (≥ 45). We 

shall now re-analyze their data using the methodology available in our package CLME 
where the alternative hypothesis for women of each race group is a decreasing simple order. 

Note that for confidentiality, we use a subset of the data from the Fibroid Growth Study, 

excluding cases which may be personally identifiable, particularly those with only one 

fibroid analyzed in the study. This subset of the data represents 240 fibroids on 54 women. 

The original analysis in Peddada et al. (2008) represented 262 fibroids on 72 women.

The interest in this case is to test for a simple order for each race using a linear mixed effects 

model. This analysis serves as a useful illustration of customizing the order restrictions, 

because it cannot be performed with the default settings of CLME. First we load the data 

and perform some manipulations to get a factor that we can use. We define the variable 

race.age to encode the interaction of the race and age variables; with six levels ordered as: 

young black, middle-age black, older black, young white, middle-age white, and older 

white.

R> data(“fibroid”)

R> race.age <- factor(paste0( fibroid$race, “.”, fibroid$age ) ,

+    levels = c(“Black.Yng”, “Black.Mid”, “Black.Old”,

+    “White.Yng”, “White.Mid”, “White.Old”) )

R> fibroid$race.age <- race.age

We performed our analysis adjusting for the initial fibroid volume as a covariate, which was 

grouped into three categories: < 14,14−65cm3, ≥ 65cm3 with the < 14 category taken to be 

the baseline. To deal with repeated measurements, we took subject ID as the random effect.

R> initVol <- rep(“small”, nrow(fibroid))

R> idx1 <- (14000 <= fibroid$vol & fibroid$vol < 65000)

R> idx2 <- (65000 <= fibroid$vol)

R> initVol[idx1] <- “medium”
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R> initVol[idx2] <- “large”

R> fibroid$initVol <- factor(initVol, levels = c(“small”, “medium”, “large”))

For the interaction between the Age and Race terms, we require constraints which define a 

decreasing simple order over age for both blacks and whites, but do not impose any order 

restriction between blacks and whites. We do this as follows:

R> const <- list()

R> const$A <- cbind( 2:6 , 1:5 )[−3, ]

R> const$B <- rbind( c(3, 1), c(6, 4) )

R> const

$A

      [,1] [,2]

[1,]     2    1

[2,]     3    2

[3,]     5    4

[4,]     6    5

$B

      [,1]  [,2]

[1,]     3     1

[2,]     6     4

To understand the construction of these matrices, recall the parameter vector θ1 is ordered 

as: young black, middle-age black, older black, young white, middle-age white, and older 

white. The groups of the constrained effect are transformed into column indicators, meaning 

there will be six parameters: (θY B, θMB, θOB, θYW, θMW, θOW), where YB denotes "young 

black," MB denotes "middle-aged black," and so on. Hence, the first three elements of θ 
correspond to the blacks, and the last three elements correspond to the whites.

The A matrix must define the proper order restriction on these elements. The first row 

defines the constraint θMB ≤ θY B, the first row defines the constraint θOB ≤ θMB. The 

second two rows define similar constraints for the white women. None of the rows define a 

restriction between any of the first three elements (blacks) and any of the last three elements 

(whites); hence there is no order restriction imposed between the two races.

To test for a decreasing simple order for both blacks and whites, we must also define a 

function to compute the Williams’ type test statistic of Farnan et al. (2014) for both blacks 

and whites separately. While the matrix of contrasts is provided above, by default the 

Williams’ type test will take the maximum and report a single test statistic. We require a test 

statistic for each of these contrasts. This is similar to the function w.stat.ind which calculates 

the test statistics for the individual constraints. However, submitting tsf=w.stat.ind will test 
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all of the constraints in the matrix constA instead of the contrasts in constB. To correct this, 

we make a small modification to w.stat.ind.

R> w.blk.wht <- function (theta, cov.theta, B, A, …) {

+    stats <- vector(“numeric”, length = nrow(B))

+    ctd <- diag(cov.theta)

+    stats <- apply(B, 1, FUN = function(a, theta, cov, ctd) {

+      std <- sqrt(ctd[a[1]] + ctd[a[2]] − 2 * cov.theta[a[1], a[2]])

+      (theta[a[2]] - theta[a[1]])/std

+    }, theta = theta, cov = cov.theta, ctd = ctd)

+    names(stats) <- c(“Black.Yng - Black.Old”, “White.Yng - White.Old” )

+    return(stats)

+ }

All we have done is replace calls to A with calls to B; this will accomplish our goal of 

producing a global test for both blacks and whites individually.

We are then ready to run the analysis. For simplicity, we assume homogeneity of variances. 

Results of the analysis are shown in Figure 7. The code for this figure is given below, since it 

cannot be produced through CLME.

R> fib <- clme(lfgr ~ race.age + initVol + (1|id), data = fibroid,

+    constraints = const, tsf = w.blk.wht, levels = list(10, 

levels(race.age)))

R> summary( fib, seed = 42 )

Linear mixed model subject to order restrictions

Formula: lfgr ~ race.age + initVol + (1 | id) − 1

Custom order constraints were provided

log-likelihood: −1085

AIC:             2189

BIC:             2206

(log-likelihood, AIC, BIC computed under normality)

Global tests:

 Contrast               Statistic  p-value

 Black.Yng - Black.Old      1.116   0.1880

 White.Yng - White.Old 2.270 0.0150

Individual Tests (Williams' type tests):

 Contrast               Estimate  Statistic  p-value
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 Black.Yng - Black.Mid    8.7520      1.454   0.0580

 Black.Mid - Black.Old    0.0000      0.000   1.0000

 White.Yng - White.Mid    10.391      1.217   0.0640

 White.Mid - White.Old    7.7030      1.059   0.0830

Variance components:

Source            Variance

 id                107.58

 Residual          419.15

Fixed effect coefficients (theta):

                Estimate Std. Err 95% lower 95% upper

 Black.Yng        21.471    5.087    11.501    31.441

 Black.Mid        12.719    3.910     5.055    20.383

 Black.Old        12.719    6.277     0.416    25.023

 White.Yng        21.795    6.746     8.573    35.016

 White.Mid        11.403    5.751     0.132    22.674

 White.Old         3.700    4.872    −5.848    13.249

 initVolmedium    −4.720    3.201   −10.995     1.554

 initVollarge     −3.641    3.854   −11.194     3.912

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

Black.Yng, Black.Mid, Black.Old, White.Yng, White.Mid, White.Old

Model based on 1000 bootstrap samples

R> plot(x = 1, y = 0, col = 0, ylim = c(−6, 22), xlim = c(0.9, 3.1),

+    xlab = “”, ylab = “Estimated Coefficient”, xaxt = “n”)

R> axis(side=1, at=1:3,

+    labels = c(“Young (<35)”, “Middle aged (35–44)”, “Older (>45)”) )

R> for( y1 in seq(−15, 25, 5) ){

+    lines( x = c(0, 7), y = c(y1, y1), col = “grey”, lty = 2 )

+ }

R> lty1 <− 1 + (fib$p.value.ind[1]<0.05)

R> lty2 <− 1 + (fib$p.value.ind[2]<0.05)

R> lty3 <− 1 + (fib$p.value.ind[3]<0.05)

R> lty4 <− 1 + (fib$p.value.ind[4]<0.05)

R> points(c(1, 2), fib$theta[1:2], col = 1, type = “l”, lwd = 2 , lty = lty1)

R> points(c(2, 3), fib$theta[2:3], col = 1, type = “l”, lwd = 2 , lty = lty2)

R> points(c(1, 2), fib$theta[4:5], col = 3, type = “l”, lwd = 2 , lty = lty3)

R> points(c(2, 3), fib$theta[5:6], col = 3, type = “l”, lwd = 2 , lty = lty4)

R> points(1:3, fib$theta[1:3], col = 1, cex = 1.5, pch = 21, bg = “white”)

26 CLME: An R package for constrained LME models
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R> points(1:3, fib$theta[4:6], col = 3, cex = 1.5, pch = 24, bg = “white”)

R> legend(“bottom”, lty = c(1, 1), pch = c(21, 24), col = c(1, 3), pt.bg = 0,

+    pt.cex = 1.1, lwd = 2, inset = 0.03, cex = 0.9,

+    legend = c(“Blacks    ”,  “Whites”))

The global tests found significant evidence of a decreasing simple order for white women (p 
= 0.0150) but not for black women (p = 0.1880). In particular, fibroid growth in older white 

women was found to be less than that of younger women. Neither of the individual 

constrasts for the white women (Young-Middle and Middle-Old) were significant at the α = 

0.05 level. The significant decreasing trend confirms the conclusions of Peddada et al. 

(2008).

4.3. Comparison with other packages

In this section we provide some comparisons of CLME to lme4, which is a popular package 

for the analysis of linear mixed models. We will use the rat.blood data, and in particular the 

response varibale hct. We chose this variable because the observed means at each time point 

happen to be ordered according to a simple order. Hence, the fitted means will not be 

changed by clme, so the results between clme and lmer will be more comparable.

R> library(“lme4”)

R> cons  <- list(order = “simple”, decreasing = FALSE, node = 1 )

R> clme_out <- clme( hct ~ time + temp + sex + (1|id),

+               data = rat.blood, constraints = cons )

R> lmer_out1 <- lmer( hct ~ time + temp + sex + (1|id) − 1, data = 

rat.blood )

R> lmer_out2 <- lmer( hct ~ time + temp + sex + (1|id) − 1,

+               data = rat.blood, REML = FALSE )

R> rbind(fixef(clme_out), fixef(lmer_out1), fixef(lmer_out2))

     time0 Hour time6 Hour time24 Hour time48 Hour time72 Hour    tempRT

[1,]   40.91212   42.25417    42.34053    42.52008    42.67008 0.5022727

[2,]   40.91212   42.25417    42.34053    42.52008    42.67008 0.5022727

[3,]   40.91212   42.25417    42.34053    42.52008    42.67008 0.5022727

       sexMale

[1,] −1.833333

[2,] −1.833333

[3,] −1.833333

R> VarCorr(clme_out)

         Variance

id       2.200622

Residual 1.031353

attr(,“class”)
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[1] “varcorr_clme”

R> VarCorr(lmer_out1)

 Groups   Name       Std.Dev.

 id      (Intercept) 1.55933

 Residual            0.90356

R> VarCorr(lmer_out2)

 Groups   Name        Std.Dev.

 id       (Intercept) 1.48486

 Residual             0.89063

R> c( AIC(clme_out), AIC(lmer_out1), AIC(lmer_out2) )

[1] 611.2926 613.7119 605.7245

These results indicate that, when the observed means do not violate the assumed order, clme 

produces results that are similar to those of lmer. The variance estimates (and hence the log-

likelihood and AIC) differ somewhat but, as shown, this is also true when using lmer by 

specifying a different optimization criterion (REML=FALSE).

Users should be aware that clme is less computationally efficient than lmer. This should not 

be entirely surprising, as lme4 includes functions written in C++, while CLME is written 

entirely in R. While computation times depend on computer specifications, we provide some 

time relative time benchmarks between the packages using rbenchmark (Kusnierczyk 2012). 

First we compare the relative time for model fitting.

R> library(“rbenchmark”)

R> set.seed( 42 )

R> BMclme <- function(x=0){

+   clme(hct ~ time + temp + sex + (1|id), data = rat.blood,

+        constraints = cons)

+ }

R> BMlmer <- function(x=0){

+   lmer(hct ~ time + temp + sex + (1|id), data = rat.blood )

+ }

R> benchmark(BMlmer(), BMclme(), replications=100 )[,1:4]

      test replications elapsed relative

2 BMclme()          100  89.157   24.083

1 BMlmer()          100  3.702     1.000
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As one can see, clme is significantly slower relative to lmer, though note that the elapsed 

time is over 100 runs of each functions; in this test an average run of clme evaluated in less 

than 1 second. Additionally, we tested the speed of the bootstrap functions of CLME and 

lme4. Note that for simplicity we used 100 bootstrap samples for each, and only performed 

10 replications for time benchmarks.

R> set.seed( 42 )

R> beta_sum <- function(.) {

+   beta=fixef(.)

+ }

R> BMclme <- function(x=0){

+   summary( clme_out, nsim = 100, seed = 42 )

+ }

R> BMlmer1 <- function(x=0){

+   bootMer(lmer_out1, FUN=beta_sum, nsim = 100, seed = 42, type = 

“parametric”)

+ }

R> BMlmer2 <- function(x=0){

+   bootMer(lmer_out2, FUN=beta_sum, nsim = 100, seed = 42,

+           use.u=TRUE, type = “semiparametric”)

+ }

R> benchmark( BMclme(), BMlmer1(), BMlmer2(), replications=10 )[,1:4]

       test replications elapsed relative

1  BMclme()           10  64.178    2.830

2 BMlmer1()           10  22.675    1.000

3 BMlmer2()           10  22.809    1.006

While lmer still evaluates much faster than clme, the relative difference is not as extreme as 

for the model fitting.

5. Summary

In this paper we have introduced the R package CLME for performing statistical tests under 

linear inequality constraints. It allows the user to choose either the likelihood ratio type 

statistic or Williams’ type statistic. Since it is based on the residual bootstrap methodology it 

is not dependant on any Normality assumption. As demonstrated in the paper, the package is 

simple to implement with default settings (Section 4.1), and more complex hypotheses 

(Section 4.2) can be accommodated with relatively little effort.

Due to the flexibility and distribution-free nature of the model, as well as the ease of use, we 

anticipate that many researchers may benefit from using the order-restricted model 

implemented in CLME instead of standard ANOVA models. Other than this package, there 

does not appear to be any software which offers constrained inference for linear mixed 

effects models.
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While the current release is stable, the authors have an interest in further developing the 

functionality of CLME. There are many potential improvements that we foresee. On the 

methodological side these include: adding more models, such as logistic models; 

implementing an automated choice of the number of bootstrap samples (see Jiang and 

Salzman 2012); allowing for correlated random effects; and adding the ability to perform 

power or sample size calculations. Furthermore, the software does not currently allow for 

complex covariance structures for the variance components, such as the AR(1) process, 

although it may be extended to accommodate such structures. Other projected developments 

include enabling the program to take advantage of parallel processing to speed up the 

repetitive calculations for each bootstrap sample. Finally, as noted, the shiny offers the 

ability to create apps, making complex models easily available to researchers without the 

need to write R codes. The included app can be run locally, but shiny apps can be hosted on 

a server and deployed online. A well-designed and web-based application could put the 

power and flexibility of CLME at a researcher’s fingertips. Future developments include 

improving the app and deploying it online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of order restrictions. Each circle represents a parameter of interest. Inequalities 

between two parameters (i.e., circles) are provided by the lines. The vertical axis denotes 

relative magnitude of connected parameters. No relationship (either <, =, or >) is known 

among parameters that are not connected. A nodal parameter is a parameter whose order 

relationship with every other parameter is known a priori or given by the hypothesis that is is 

being tested. For example, θ3 is the nodal parameter in the umbrella orders.
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Figure 2: 
Screenshot of the GUI for clme, build in shiny.
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Figure 3: 
Screenshot of the top several rows of the dataset used in Figure 2.
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Figure 4: 
Some additional control parameters available in the GUI for clme.
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Figure 5: 
Plot of estimated coefficients of mean hematocrit (HCT) from Case (A). The model assumed 

an increasing simple order and homogeneity of variances across treatment groups. Solid 

lines denote no significant difference, while dashed lines denote statistical significance.
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Figure 6: 
Plot of estimated coefficients of white blood cell (WBC) count. Solid lines denote no 

significant difference, while dashed lines denote statistical significance.
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Figure 7: 
Plot of estimated coefficients of 6-month mean fibroid growth by race and age group. Black 

lines with circles correspond to Blacks, green lines with triangles correspond to Whites. 

Growth rates for each fibroid were averaged over the 2–4 time points. None of the individual 

constraints were significant. The global tests found a significant decreasing trend for white 

women, but not for black women.
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Figure 8: 
Main flowchart to determine arguments (left) and flowchart to determine groups for residual 

variance (right).
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Figure 9: 
Flowchart to determine constraints.

Jelsema and Peddada Page 36

J Stat Softw. Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
Flowcharts to determine arguments defining the test statistic.
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Table 1:

List of methods currently defined for objects of class clme. All methods extracting some value (e.g., fixef) will 

also work on the result of summary results of an object of class clme.

Generic name Description

AIC Computes Akaike information criterion.

as Coerces an object to class clme.

BIC Computes Bayesian information criterion.

confint Computes individual confidence intervals for fixed effects parameters. Intervals are centered at the constrained estimates, but 
use standard errors of the unconstrained estimates.

fixef Extracts estimates fixed-effects coefficients, θ (also, fixed.effects and coef).

formula Extracts the formula for the model.

is Tests if an object is of class clme

logLik Computes the log-likelihood under the assumption of Normality.

model.frame Data frame with the variables in the model.

model.matrix The fixed-effects design matrix.

nobs Number of observations.

plot Produces a plot of the constrained coefficients and denotes statistical significance.

print A basic printout of the model results.

ranef Extracts predictions of the random effects (also, random.effects).

residuals Extract various types of residuals.

sigma The residual variance(s).

summary Obtains inference (e.g., p-values) for objects of class clme.

VarCorr Estimates of variance components.

vcov The variance-covariance matrix of the fixed-effects estimates.
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