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a b s t r a c t 

A simple analytical model for modeling the evolution of the 2020 COVID-19 pandemic is presented. 

The model is based on the numerical solution of the widely used Susceptible-Infectious-Removed (SIR) 

populations model for describing epidemics. We consider an expanded version of the original Kermack- 

McKendrick model, which includes a decaying value of the parameter β (the effective contact rate), inter- 

preted as an effect of externally imposed conditions, to which we refer as the forced-SIR (FSIR) model. We 

introduce an approximate analytical solution to the differential equations that represent the FSIR model 

which gives very reasonable fits to real data for a number of countries over a period of 100 days (from 

the first onset of exponential increase, in China). The proposed model contains 3 adjustable parameters 

which are obtained by fitting actual data (up to April 28, 2020). We analyze these results to infer the 

physical meaning of the parameters involved. We use the model to make predictions about the total ex- 

pected number of infections in each country as well as the date when the number of infections will have 

reached 99% of this total. We also compare key findings of the model with recently reported results on 

the high contagiousness and rapid spread of the disease. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

The recent pandemic due to the COVID-19 virus has created un-

recedented turmoil and changed the daily life of people over the

ntire planet. It has also yielded a grim toll of victims that suc-

umb to its attack. While there is great expertise in the medical

ommunity and the community of statisticians in dealing with epi-

emics, less is known about this particular disease to make reliable

redictions for the evolution of the current pandemic. 

In studying past epidemics, scientists have systematically ap-

lied “random mixing” models which assume that an infectious in-

ividual may spread the disease to any susceptible member of the

opulation, as originally considered by Kermack and McKendrick

1] . More recent modeling approaches considered contact networks

n which the epidemic spreads only across the edges of a contact

etwork within a population [2–4] , Bayesian inference models [5] ,

odels of spatial contacts in real cities or countries or in large-

cale artificial cities and synthetic populations [6–8] , and compu-
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ational predictions of protein structures [9] , to name just a few of

he modeling effort s. 

In the case of COVID-19, there is considerable uncertainty in the

ata collected about infected individuals due to the difficulty of

esting large numbers of suspected cases. Although an avalanche

f research studies are currently investigating the COVID-19 epi-

emiological characteristics [10–14] , it appears that a simple model

hich can capture the basic behavior of the pandemic phe-

omenon, in spite of the large uncertainty in the data, can possibly

ffer useful guidance for its near-term and longer-term evolution.

his paper aims to provide such a simple model with very few ad-

ustable parameters. 

. The model 

.1. Derivation of the model 

The original mathematical description of the spread of an in-

ectious disease in a population is the so-called SIR model, due to

ermack and McKendrick [1] which divides the (fixed) population

f N individuals into three compartments (groups, classes): 

• S ( t ) the number of individuals susceptible but not yet infected

with the disease; 
• I ( t ) the number of infected individuals; 

https://doi.org/10.1016/j.chaos.2020.110114
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110114&domain=pdf
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• R ( t ) the number of individuals removed (recovered) from the

infected group, either by becoming healthy again with long-

term immunity or by passing away. 

Models that involve additional compartments can be con-

structed by considering more detailed stages of the infection or

flows among the various compartments. The choice of the com-

partments is related to the disease that is being studied. For ex-

ample, in the SIS model, susceptible individuals can become in-

fected/infectious but when they are recovered/removed they can

become susceptible again, that is, no permanent immunity is ac-

quired. In the SEIR model, individuals are grouped in four com-

partments, one more than in the SIR model: the additional com-

partment is the group of “Exposed” (E) individuals, who have be-

come infected but not yet infectious themselves. A recent model

[15] considers eight stages of infection: susceptible (S), infected

(I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed

(H) and extinct (E), collectively termed SIDARTHE. In the present

study we have chosen to focus on the SIR model, which is the

simplest model incorporating the Covid-19 epidemic dynamic. We

are thus effectively combining the exposed and the infectious com-

partments of the SEIR model into one group; I ( t ) = infected and/or

infectious individuals (referred hereafter as infected individuals).

Although this combination of compartments misses some details

of the disease evolution, in light of the approximate analytical so-

lution we introduce later, it should not substantially affect the con-

clusions to be drawn from the approximate model. 

The SIR model involves two positive parameters, β and γ which

have the following meaning: - β describes the effective contact

rate of the disease: an infected individual comes into contact with

β other individuals per unit time (the fraction that are susceptible

to contracting the disease is S / N ); 

- γ is the mean removal (recovery) rate, that is, 1 
γ is the mean

period of time during which an infected individual can pass it on

before being removed from the group of the infected individuals. 

This model obeys the following differential equations: 

dI 

dt 
= βI 

S 

N 

− γ I (1a)

dS 

dt 
= −βI 

S 

N 

(1b)

dR 

dt 
= γ I (1c)

Many recent studies (e.g. [16–18] ), have attempted to model

the data of the COVID-19 pandemic by imposing time-dependence

conditions (or by data assimilation) on the rates β and γ involved

in the original SIR model, in order to account for the imposi-

tion of social-distancing measures, quarantine of infected individu-

als, and other interventions designed to slow down the spread of

the disease. Motivated by such considerations, we will introduce

a variation of the original model in which the parameter β is a

time-dependent, monotonically decreasing function. This change can

drastically affect the evolution of the populations. We give below a

specific example to illustrate this point. Since the presence of time-

dependence in β introduces a forcing term, which for reasonable

parameter values lowers the number of infected individuals (“flat-

tens the curve”). 

The system of equations that describe the SIR, with or with-

out the time-dependence in the parameter β , can be easily solved

numerically, as shown in Fig. 1 , giving the three group populations

( S, I, R ) as a function of time. Kermack and McKendrick pointed out

that “it is impossible from these equations to obtain I ( t ) as an ex-

plicit function of t ” (p. 713, [1] ), but provided approximations valid

under certain conditions. Here we aim to give a simple approxi-

mate analytical solution inspired by the numerical solution. 
We observe from the numerical solution of the SIR model,

hown in Fig. 1 , that both the susceptible and the removed pop-

lations ( S and R , respectively) behave like sigmoids, which is the

ypical behavior of solutions to differential equations that involve

xponential growth and decay. Moreover, the infected population

s always given by the following expression 

(t) = N − S(t) − R (t) (2)

rom these observations, we take the approximate solutions to be

iven by: 

˜ 
 = N − N 

′ 
1 + e −α1 (t−t 1 ) 

(3a)

˜ 
 = 

N 

′ 
1 + e −α2 (t−t 2 ) 

(3b)

˜ 
 = N − ˜ S (t) − ˜ R (t) = 

N 

′ 
1 + e −α1 (t−t 1 ) 

− N 

′ 
1 + e −α2 (t−t 2 ) 

(3c)

here N 

′ , α1 , α2 , t 1 , t 2 are treated as adjustable parameters, with

 1 and t 2 representing the times at which the ˜ S and 

˜ R populations

each their sigmoid midpoint values, respectively. Interestingly, the

nalytical expressions introduced above fit even better the numer-

cal solution of the model with a time-dependent β parameter. In

ig. 1 we give examples of how well the approximate analytical ex-

ressions fit the “exact” numerical ones. In these examples, for the

odel with time-dependent β we assumed β(t) = β0 exp (−t/λ) ,

lthough we emphasize that this assumption is for illustrative pur-

oses only and does not affect the general behavior of the model.

ndeed, as we show below, β( t ) takes in our solution the behav-

or of a sigmoid. For the SIR model in the example of Fig. 1 , the

t to the analytical expression of Eq. (3) has an RMSE value of 9.4

nd the integral of the I ( t ) values differs from the exact result by

9 . 5 %. For the model with time-dependent β in the example we

onsidered, the fit to the analytical model of Eq. (3) has an RMSE

alue of 8.3 and the integral of I ( t ) differs from the exact result by

.3%. 

Since the analytical model of Eq. (3) can capture the behavior

f the SIR model including a time-dependent β , which represent

he “forcing” or “flattening” of the curve of infected individuals, we

efer to it as the “FSIR” model. 

.2. Analysis of the model 

Here we derive relations between the parameters used in the

odel of Eq. (3) , and the parameters of the original set of differ-

ntial equations, Eq. (1) . To keep the expressions simple, we will

ssume α1 = α2 = α and define �t = t 2 − t 1 . By inserting the ex-

ressions for ˜ S and 

˜ I in Eq. (1b) we find: 

(t) = 

α

e α�t − 1 

(
1 + e −α(t−t 1 ) e α�t 

1 − n 

′ + e −α(t−t 1 ) 

)
(4)

here we have defined n ′ = N 

′ /N. Similarly, by inserting the ex-

ressions for ˜ R and 

˜ I in Eq. (1c) we obtain: 

(t) = 

α

1 − e −α�t 

(
1 + e −α(t−t 1 ) 

1 + e −α(t−t 1 ) e α�t 

)
(5)

hus, in the approximate model described by Eq. (3) , the parame-

ers β and γ of the original SIR model become time-dependent, if

e treat α as constant to be determined by fitting the data (see

ext section). In the FSIR model the effect of interventions and

easures can be inferred from the values of the adjustable pa-

ameters t 1 , �t and N 

′ , as will be explained in the next section,

o that there is no need to impose specific time-dependent con-

itions on the model parameters themselves. It should be noted

hat the time-dependence of the coefficients β( t ) and γ ( t ) is an
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Fig. 1. Numerical solution of the models, giving the susceptible S ( t ) (blue points), infected I ( t ) (red points) and removed R ( t ) (green points) populations as functions of time t 

in days; the corresponding colored lines give the approximate solutions obtained by the analytical expressions, Eq. (3) . Left : The SIR model, with parameter values β = 0 . 25 

and γ = 1 / 10 ; the parameter β is constant. Right : The SIR model with a time-dependent parameter β with exponential decay and parameter values β0 = 0 . 25 , γ = 1 / 20 , 

λ = 50 (see text for details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nherent property of the proposed analytical model described by

q. (3) ; β( t ), as a monotonically decreasing function of time, can

elate to the populations decreased mobility, lock-downs and other

on-pharmaceutical interventions, which decrease the contact rate

mong susceptible individuals [19,20] . 

The quantity n ′ = N 

′ /N we defined in the expression of β( t )

s the fraction of the original susceptible population that was in-

ected, and thus does become part of the removed population.

here are two possible limiting values for this quantity: n ′ → 1,

he limit in which the entire susceptible population was exposed

nd eventually becomes removed population, and n ′ → 0, the limit

n which only a tiny fraction of the susceptible population was ex-

osed. In the first limit we obtain: 

 

′ → 1 ⇒ β1 (t) = 

α

e α�t − 1 

(
e α(t−t 1 ) + e α�t 

)
(6)

hile in the second limit we obtain: 

 

′ → 0 ⇒ β2 (t) = 

α

e α�t − 1 

(
1 + e −α(t−t 1 ) e α�t 

1 + e −α(t−t 1 ) 

)
(7)

rom the first expression we see that for t � t 1 the value of

1 ( t ) increases exponentially, which is an unphysical result. From

he second expression, we see that β is a monotonically decreasing

unction of time and for t � t 1 tends to the constant value 

im 

�t 1 
β2 (t) = α/ (e α�t − 1) , 

hich is the expected behavior in the FSIR model. 

For t � t 1 and assuming that α�t > 1 we find that 

2 ≈ α
e α�t 

e α�t − 1 

≈ α, 

hich relates the adjustable parameter α of the analytical model

o the value of the parameter β appearing in the original SIR

odel. 

The quantity R 0 = β/γ of the SIR model is used to estimate the

alue of the basic reproduction number of an epidemic. From our

nalytical model, in the limit n ′ → 0, the quantity β/ γ takes the

orm 

/γ = e −α�t 

(
1 + e −α(t−t 1 ) e α�t 

1 + e −α(t−t 1 ) 

)2 

(8) 
or t = 0 , and assuming that αt 1 � 1 (as is the case for the fits

o reported data discussed in the next section), this quantity be-

omes 

 = 0 : β/γ = e −α�t 

(
1 + e αt 1 e α�t 

1 + e αt 1 

)2 

≈ e α�t . 

or t � t 2 , the quantity β/ γ becomes 

 � t 2 : β/γ ≈ e −α�t . 

he first number is very large for typical values of the parameters

n the FSIR model obtained from fits to reported data, while the

econd value is very small, close to zero. Neither result is realistic.

n the important range t 1 < t < t 2 , we find from numerical results

hat this quantity is approximately described by a decaying expo-

ential in time 

 1 < t < t 2 : β/γ ∼ e −t/λ, 

ith λ ≈ 1/2 α. This result implies that in this range we would

xpect β ∼ e −αt (the functional form we assumed for illustrative

urposes in Fig. 1 ), and γ ~ e αt . From this last expression, taking

he time average of γ in the range t 1 < t < t 2 = t 1 + �t, which we

all γ , we find 

= 

1 

t 2 − t 1 

∫ t 2 

t 1 

γ2 e 
α(t−t 2 ) dt = 

γ2 

α�t 

[
1 − e −α�t 

]
≈ 1 

�t 

here we have used 

2 ≈ α

1 − e −α�t 

rom the expression of Eq. (5) , a reasonable approximation for

 � t 2 . The last relation for the average value of γ is obeyed to

 good approximation for each case of reported data we examined.

Using the preceding analysis that led to the relations β ≈ α
or the initial value of β and γ ∼ 1 / �t for the average value of γ ,

e suggest that a reasonable representation of the quantity β/ γ is

iven by the value of α�t . Thus, we will use this value as a proxy

or R 0 , and will refer to it as R 0 . The parameters estimated from

he fit of our analytical model to reported data give a value of R 0 
hich is in agreement with the recently reported median value of

 for the pandemic. 
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3. Application to reported data 

We use our analytical FSIR model to fit the behavior of infected

populations of different countries, as obtained from the European

Centre for Disease Prevention and Control (ECDC) [21] , for a period

ending on April 28, 2020 which corresponds to 100 days from the

onset of the exponential growth of reported cases in China. 

In order to obtain a meaningful fit, we had to consider data

for each country that show a monotonic increase at the beginning.

This means that a few data points in each case were excluded, as

they corresponded to sporadic reports of very few isolated cases,

typically 1 to 10 in a given day, interspersed by several days of

zero cases. In practice this means that the fitting begins at a cer-

tain cutoff day denoted as t 0 . In order to make the fit more robust

and simpler, we chose α1 = α2 = α. Moreover, we found by trial-

and-error that the value α = 0 . 25 is the optimal choice for all the

countries we considered. This leaves three adjustable parameters

in the model that can be varied to obtain the best fit to the data,

namely t 1 , t 2 and N 

′ ; instead of t 1 and t 2 , we elected to use instead

as independent parameters t 1 and �t = t 2 − t 1 . The best fit here is

defined in the Root-Mean-Square (RMS) sense. 

We were able to obtain reasonable fits for 50 countries from

the entire database [21] . The resulting values for the parameters

t 1 , t 2 , are shown in Fig. 2 ( �t = t 2 − t 1 is the distance between

each pair of values). The averages and standard deviations for

this set are 〈 t 1 〉 = 17 . 81 ± 6 . 58 , 〈 �t〉 = 29 . 20 ± 9 . 16 , giving 〈 t 2 〉 =
〈 t 1 〉 + 〈 �t〉 = 47 . 19 . The values of the parameters involved span a

wide range. For other countries in the database, the data are either

too noisy or have not reached the point where the FSIR model can

provide a good fit: specifically, the model needs to include data up

to the maximum of the curve, otherwise it does not give meaning-

ful values for the fitting parameters. 

Instead of including all 50 countries in the following discussion,

we have chosen to focus on 10 countries that span the whole range

of parameter values and could hopefully provide some insight to

the behavior of the pandemic. The choice of the 10 countries also

aims to represent parts of the world more heavily or less heav-

ily impacted by the disease, as well as more typical cases. Here

we defined the impact as the total number N T of infected individ-

uals during the first wave of the pandemic, as predicted by the
Fig. 2. The values of the parameters t 1 and t 2 = t 1 + �t for 50 countries, obtained by fitti

values of the parameters, 〈 t 1 〉 (red) and 〈 t 2 〉 = 〈 t 1 〉 + 〈 �t〉 (blue) of the FSIR model defin

model in more detail. (For interpretation of the references to colour in this figure legend,
SIR model; this number is scaled by the population of the coun-

ry, N P , in Fig. 3 . In particular, we have included 3 countries in

hich the impact was small, China, Greece and Australia for which

 N T / N P ) < 500 infected per million, 3 countries in which the im-

act was moderate, Denmark, Germany and France for which 1,

 0 0 < ( N T / N P ) < 2,0 0 0 infected per million, and four countries

here the impact was large, Switzerland, Italy, USA and Spain for

hich ( N T / N P ) > 3, 0 0 0 infected per million. The average value

or t 1 for this set of 10 countries is 〈 t 1 〉 = 20 . 04 and for �t it is

 �t〉 = 27 . 31 . 

In Fig. 4 we give some examples of the actual fits for the “out-

ier” countries (China, Greece, USA and Spain). To have a measure

f the fit that is comparable between different countries, we de-

ned the “quality of fit” as: 

 fit = 

1 

N 

′ RMSE (9)

hich is expressed as a percentage (multiplied by a factor of 100).

he resulting values of the parameters, including our choices of t 0 ,

re given in Table 1 . 

The values of the parameters obtained reveal interesting behav-

or. 

• t 0 : The value of this parameter is similar for all countries, ex-

cept for China with t 0 = 17 . This simply reflects the fact that

the pandemic originated in China and then spread through the

rest of the world. The rest of the countries have starting dates

of the exponential increase within one week from the earliest,

Italy (with t 0 = 53 ) to the latest, such as Greece and Denmark

(with t 0 = 65 , and 75, respectively). The time lag between most

countries and China is approximately 6 weeks. 
• t 1 : This value indicates the position of the mid-point of the sig-

moid representing the behavior of the susceptible population,

S. The shorter it is, the sooner the country experiences the ex-

ponential increase in the infected cases, thus urgently neces-

sitating the introduction of health interventions and measures

to limit the spread of the disease. The three countries with the

shortest t 1 values are Greece, Denmark and China; unsurpris-

ingly, these countries also have of the lowest number of cases

per million, as shown in Fig. 3 . 
ng the FSIR model with data up to 28 April 2020. The dashed lines give the average 

ed by Eq. (3) . The countries with labels are used to examine the behavior of the 

 the reader is referred to the web version of this article.) 
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Fig. 3. Left : the estimated total cases ( N T ) scaled by the population of each country. Right : t 1 and t 2 values (dots) in 10 countries, as obtained in the FSIR model by fitting 

the raw data reported in [21] , including data up to April 28, 2020 (see also Fig. 4 for specific examples). 

Table 1 

The values of the various parameters that enter in the FSIR model of Eq. (3) , for the 10 countries considered (see text for details). The countries 

have been indexed according to their N T values, scaled by the population of each country. The next-to-last column includes the values for 

the expected total number of cases N T when the number of infections has dropped to near zero, and is an extrapolated value (rounded to the 

nearest 100). The last column includes the number of days D (counting from April 28) until the value of N T has reached 99% of its final value; 

a negative number (for China, Australia, Switzerland, and Greece) indicates that this date has already passed. 

Index Country (Symbol) t 0 t 1 �t N ′ Q fit N T D 

(days) (days) (days) (%) (days) 

0 China (CHN) 17 18.5 11.1 7343 16.19 81,100 −59 

1 Greece (GRC) 65 11.0 30.1 79 36.91 2400 −4 

2 Australia (AUS) 61 23.8 5.7 1143 6.61 6500 −14 

3 Denmark (DNK) 75 9.63 32.0 258 21.30 8200 7 

4 France (FRA) 57 24.4 29.2 4272 20.97 124,800 1 

5 Germany (DEU) 57 22.6 29.7 5246 17.22 156,000 0 

6 Switzerland (CHE) 59 19.1 24.7 1142 14.62 28,100 −6 

7 Italy (ITA) 53 19.0 42.8 4774 15.13 204,000 3 

8 United States (USA) 59 27.9 38.7 31,314 12.58 1,210,300 14 

9 Spain (ESP) 56 24.3 28.7 7417 14.42 212,800 0 
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• �t : This value indicates the lag between the sigmoid that de-

scribes the recovered population ( ̃  R ) and the sigmoid of the

susceptible population ( ̃  S ). As such, it can be interpreted as the

effective rate of removal ( γ in the SIR model). In Table 1 we

present the values of �t for each country. The average of �t

is close to 27.5 days ( ~ 4 weeks), a value consistent with a

recently reported estimated median time of approximately 2

weeks from onset to clinical recovery for mild cases, and 3–6

weeks for patients with severe or critical disease [22–24] . Aus-

tralia and China show an unusual low value, �t = 5.7, and 11.1

days, respectively. The value of this parameter has a significant

effect on the total expected number of cases (see below). 
• N 

′ : the value of this parameter is representative of the number

of daily cases near the peak of the ˜ I curve. It is close to reported

values for this quantity for all the countries. Interestingly, if we

assume that the total number of susceptible individuals is close

to the population of each country, which in all cases is in the

range of N ∼ 10 7 − 10 9 , then the ratio n ′ = N 

′ /N → 0 , as we as-

sumed for the FSIR model earlier. 

In Table 1 we also include the values for the quality of the fit,

hich range from 6.6 (AUS) and 12.6 (USA) to 36.8 (Greece), rep-

esenting a measure of the relative noise in the data; the noise is

argest for Greece because the numbers are rather small. We have

lso considered fitting the FSIR model to seven-day running aver-
ges of the reported cases, and this in general makes almost no

ifference to the value of the parameters or the quality of the fit

see Fig. 4 for examples). 

Using the analytic expression for ˜ I (t) we can extrapolate to long

imes and try to obtain an estimate for the total value of cases

ver a long period, when the number of daily cases of infection

ave essentially dropped to negligible levels (this corresponds to
˜ 
 (t) ≈ 0 ). We call this asymptotic value N T and report it in Table 1 .

The average (over all countries in the set) of �t is 27.31 ± 11.35

median of �t is 29.48), the average of γ is 0.058 ± 0.042, and

he average of 1/ �t is 0.052 ± 0.047, (all numbers reported to 3

ignificant digits). It should be noted that the average of �t over

he set of the 50 countries mentioned earlier is 29.20 ± 9.16. 

The FSIR-estimated average of �t = 27.31 ± 11.35 yields an av-

rage reproduction number of R 0 ≈ 6 . 83 ± 2 . 84 (7.37, if we con-

ider the median value of �t ). Initial estimates of the early dy-

amics in Wuhan, China, suggested a value for R 0 in the range

.2–2.7. For China, the FSIR model estimates R 0 = 2 . 77 . However,

he FSIR estimates for the rest of the countries in the set, suggest

uch higher values of R 0 . By conducting an elaborate analysis of

atasets and data sources, estimating distributions of epidemiolog-

cal parameters, and integrating uncertainties in parameters values,

anche et al. [10] reported a median R 0 = 5 . 7 (95% CI 3.8 – 8.9) for

hina. The FSIR estimated values of R 0 for the countries we study

all almost entirely within this range. 
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Fig. 4. Data for China (CHN), Greece (GRC), USA and Spain (ESP) and the United States of America (USA). Red dots are the daily data reported in [21] , the green lines are 

the fits by the FSIR model. The blue dots are seven-day running averages and the blue dashed lines are the fits by the FSIR model; in all cases the green and blue-dashed 

lines are essentially indistinguishable, except for USA near the end of the examined period. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 5. Left : Estimates of γ (filled x symbols) and 1/ �t (filled circles) for the 10 countries considered in Table 1 ; these values are useful in estimating the reproduction 

number R 0 . Right : Estimated values for the reproduction number R 0 for the 10 countries considered, as obtained from the FSIR model. The larger the value R 0 , the more 

adversely affected by the disease the country is. 
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The estimated R 0 values correspond to the models fitted pa-

ameters for actual data. Since β = α = 0 . 25 , a fixed value as ex-

lained above, the adjustable fitted parameter �t is the one essen-

ially yielding the value of R 0 through the relation R 0 = β/ γ ≈ α�t

with �t ≈ γ ). Large values of R 0 have been reported in the liter-

ture [10,25] . However, fitting real country data tends to produce

igher values of �t because a seemingly single epidemic wave in a

ountry can be the aggregate result of the superposition of smaller

r larger sub-epidemics [26] . 

Fig. 5 depicts the FSIR-obtained values of γ , plotted in conjuc-

ion with the 1/ �t values, for the 10 countries considered. For each

ountry, the values are very close in magnitude, as was explained

n a previous section. It should be noted that γ is calculated as the

ime average of the coefficient γ ( t ), as presented in Eq. (5) , over

he time period starting from t 0 until the expected total number of

nfected people, N T , has reached 99% of its final value. Fig. 5 also

epicts the R 0 values for each country (calculated as R 0 ≈ α�t,

here α ≈ 0.25 and the value of each country’s �t is presented

n Table 1 ). 

As measured by the estimate of the basic reproduction num-

er R 0 , Italy is the country most adversely affected by the dis-

ase ( R 0 ≈ 10 . 69 ), followed by the USA ( R 0 ≈ 9 . 78 ), Denmark ( R 0 ≈
 . 0 ), Greece ( R 0 ≈ 7 . 53 ), Germany ( R 0 ≈ 7 . 44 ), France ( R 0 ≈ 7 . 30 ),

nd Spain ( R 0 ≈ 7 . 17 ). Greece, although it suffered relatively small

umber of cases, has a large value for the basic reproduction num-

er ( R 0 ≈ 7 . 53 ). USA, Spain, and Italy suffer the highest numbers

f expected total cases ( N T ), whereas in the case of Greece the ex-

ected total number of cases is one of the lowest in the set, pre-

umably due to the fast implementation of measures imposed by

he government and followed by the citizens. It should be noted

hat Greece has one of the smaller t 1 values. Australia, with R 0 ≈
 . 42 , has the lowest value of R 0 . 

. Assessment and conclusions 

The model presented here offers several advantages, but also

as certain limitations. As a model of the simple SIR type, it

estricts the compartmentalization of the population in only 3

lasses ( S, I, R ). It is a simple deterministic model, which does not

ake into consideration age, gender, spatial position or any other
actors. It assumes homogeneous mixing, that is, individuals make

ontact at random, the transmission and recovery rates are posi-

ive and the same for all individuals, there is no vaccine available,

he total population size is constant and large, and any recovered

erson obtains permanent immunity. 

Its main strength is the simplicity and the insight it offers

o how the pandemic affects large populations such as countries,

tates, or cities. The model relies on only three parameters all of

hich are obtained by directly fitting the reported data of daily

opulations of infected individuals. The effect of interventions and

easures can be inferred from the values of the adjustable pa-

ameters t 1 , �t , and N 

′ , so there is no need to impose specific

ime-dependent conditions on the model parameters themselves

it should be noted that the time it takes for infectious individu-

ls to recover is independent of non-pharmaceutical interventions).

s such, it is particular useful in obtaining adjustable parameters

t the beginning of the an epidemic, but not after different non-

harmaceutical interventions are applied, or if there is a second

eak or multiple waves (sub-epidemics) in the number of infec-

ious individuals at later times. 

An additional advantage of the model is that the values of the

arameters derived from the data for different countries can be

sed to estimate the quantity R 0 , a crucial measure of how each

ountry has been affected. This is again in reasonable agreement

ith the picture described qualitatively in news reports about each

ountry, and offers a quantitative assessment of the severity of the

ituation. For instance, as Fig. 5 shows, low values of the parame-

ers γ and 1/ �t , which are directly obtained from the model, are

ndicative of high R 0 values, as in the cases of Italy, USA and Spain,

ll of which have suffered relatively large effects. In contrast, high

alues of these parameters are indicative of relatively mild effects,

s is the case for China and Australia. Greece seems to be an ex-

eption, having average values for these parameters (similar to sev-

ral other countries), yet suffered relatively mild effects as judged

y the total number of infected and the fatalities. In this respect,

ur model can also offer useful insight: it is not just the value of

 0 that matters, but also how soon measures are adopted, as de-

cribed by the parameter t 1 , and how strictly they are enforced, as

escribed by the parameter �t . Thus, the model can provide some

uidance on the relative merits of different approaches. 
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Fig. 6. Left : Case fatality ratios as reported in [27] for 10 countries. Right : Deaths per 100K inhabitants for each country; these values closely follow the trends of the 

expected total number of infections scaled by the population, see Fig. 3 . 
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Finally, the projections of the total amount of infected indi-

viduals for the first wave, as predicted by extending the time

evolution of the model to the future, are quite sensible. In this

sense, the model offers useful estimates of when the total num-

ber of infections of the first wave will be reached in each

country. 

Nevertheless, the model has important limitations. 

First, it contains no information on, and therefore can make no

predictions about, the case mortality rate. The number of fatali-

ties (case fatality) is roughly proportional to the total number of

infected cases, although the constant of proportionality varies in

each country, ranging from a high of about 0.15 for Belgium, 0.14

for France, 0.13 for Italy, to a low of about 0.01 for Australia, and

about 0.05 for Greece, China, and Denmark [27] . Fig. 6 presents

the case fatality ratio and the deaths (COVID-related deaths) per

100K of the population, for each country. The case fatality ra-

tio represents the mortality per absolute number of cases, that

is, the total confirmed cases within a country. Greece, Denmark,

and China have low values of case fatality ratios and deaths per

100K of the population, and so have Germany and the USA. Aus-

tralia has the lowest ratio. In the other end, France, Italy, and Spain

have the highest ratios. Additional information is ndeed to ex-

plain these results, possibly having to do with the capabilities of

the health care system in each country, which is not related sim-

ply to the dynamics of the disease spread in the population; such

factors are not contained in the mathematical model considered

here. 

Second, the extrapolation to future cases of infection is only a

lower limit . This point has been discussed in an elegant mathemat-

ical analysis of the data by Fokas et al. [28] . We emphasize here

that this shortcoming is not traced to the analytical FSIR model,

but rather to the underlying differential equations assumed to de-

scribe the phenomenon (the original SIR model). The reason is that

any set of linear differential equations that describe exponential

decay and growth, as those of Eq. (1) do, will necessarily have ex-

ponential (logistic) behavior of the tails; this is captured by our

analytical model, but apparently does not represent the actual data

for the long-term behavior of the total number of infected indi-

viduals. This is evident in Fig. 4 : in the countries that have long

passed the peak of the reported cases, the tail does not asymptote

to a constant value, as the sigmoid (logistic) model predicts, but

the number actually keeps growing at a slow rate. To capture this
ehavior, non-linear terms are needed in the underlying differen-

ial equations (see [28] ). 

We suggest that, despite its limitations, the simple analytical

odel presented here can be useful for a quantitative evaluation

f different effort s to contain the pandemic. 
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