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Chirality-induced bacterial rheotaxis in bulk shear flows
Guangyin Jing1,2*, Andreas Zöttl2,3*†, Éric Clément2, Anke Lindner2

Interaction of swimming bacteria with flows controls their ability to explore complex environments, crucial to 
many societal and environmental challenges and relevant for microfluidic applications such as cell sorting. Combining 
experimental, numerical, and theoretical analysis, we present a comprehensive study of the transport of motile 
bacteria in shear flows. Experimentally, we obtain with high accuracy and, for a large range of flow rates, the spatially 
resolved velocity and orientation distributions. They are in excellent agreement with the simulations of a 
kinematic model accounting for stochastic and microhydrodynamic properties and, in particular, the flagella 
chirality. Theoretical analysis reveals the scaling laws behind the average rheotactic velocity at moderate shear 
rates using a chirality parameter and explains the reorientation dynamics leading to saturation at large shear 
rates from the marginal stability of a fixed point. Our findings constitute a full understanding of the physical 
mechanisms and relevant parameters of bacteria bulk rheotaxis.

INTRODUCTION
The interaction of swimming microorganisms with flows determines 
their ability to move in complex environments such as biological 
channels, soils, or medical conducts. The understanding of the 
resulting dynamics is crucial for not only a number of societal and 
environmental challenges, such as infections, soil purification, and 
contamination of biomedical devices but also cell sorting and analysis 
(1–4). Particularly interesting are situations where microorganisms 
do not just follow the local flow velocity to be transported down-
stream along stream lines but orient with respect to the flow and 
show preferential transport up- or downstream or even a sidewise 
drift. This nontrivial organization under flow is expected to be at 
the origin of transport anomalies observed in the dispersion process 
in capillary tubes or porous media, which remains poorly understood 
today (5–7). From a fundamental point of view, these transport 
dynamics are determined by the microorganism shape, activity, and 
rotational (or run-and-tumble) noise in combination with the given 
flow properties.

Passive nonchiral rigid particles transported in viscous flows 
generally follow streamlines, even if complex orientation dynamics 
can be present as a function of the particle shape (8). For example, 
elongated passive objects in shear flows perform so-called Jeffery 
orbits (8, 9), periodically changing their orientation while being 
transported downstream along stream lines. These orbits have been 
observed in different experimental systems with and without Brownian 
noise (10–12), and the role of fluctuations on the orbits has been 
addressed theoretically (12).

For passive particles, drifts along velocity gradients have only 
been observed in more complex situations and in the presence of shear 
gradients, for example, in viscoelastic flows (13), in the presence of 
inertia (14), or for flexible particles (15, 16). When particle symmetry 
is broken by chirality, particles can migrate toward the vorticity 
directions, i.e., perpendicular to velocity gradients, as has been pre-
dicted and experimentally observed (17, 18). Whether a drift toward 
the right/left (positive/negative vorticity direction) is observed 

depends on the handedness of the particle and the sign of the local 
shear rate. For all these systems, drift velocities remain small com-
pared to flow velocities and their influence only becomes noticeable 
after long distances.

This changes fundamentally when particles become active. For 
motile microorganisms, orientation dynamics, mainly governed by 
Jeffery dynamics (9), directly translate into swimming directions 
and drift velocities become of the order of swimming velocities. In 
shear flow, microswimmers crossing streamlines lead to new families 
of “active Jeffery orbits.” In Poiseuille flow, “swinging” and “shear-
tumbling” trajectories (19, 20) were identified theoretically and 
numerically, and their existence was recently confirmed experi-
mentally for motile Escherichia coli bacteria (21). Moreover, in Poiseuille 
flow, kinetic theory (22) predicts that the interplay between stochastic 
reorientation, active swimming, and the varying local shear rate 
leads to preferred upstream and downstream swimming.

Microorganism transport has primarily been studied close to 
solid surfaces, mainly due to the fact that activity leads to surface 
accumulation (23). In addition, in these regions, transport velocities 
are small, while large velocity gradients, in combination with specific 
surface interactions, strongly influence microswimmer dynamics. It 
has been found half a century ago (24) that microorganisms can 
orient with respect to flow gradients to surfaces. Upstream orienta-
tion has been observed for sperm cells (24–26), for E. coli bacteria 
(27–30), and artificial microswimmers (31–34). This upstream 
motion has been analyzed theoretically (33–36) and is generally 
attributed to fore-aft asymmetry of the swimmer shape. In addition, 
organisms reorient, on average, toward the positive vorticity direc-
tion (27–29, 37), an effect attributed to the counterrotation of cell 
body and flagella. At high enough shear rates, the interplay of dif-
ferent effects can lead to oscillatory surface rheotaxis (38).

In the bulk, bacterial rheotaxis has been found by Marcos et al. 
(37) who have shown that surface interactions are not required to 
observe bacteria drift toward the vorticity direction but that a helical 
flagella shape leading to chirality-induced lift forces was sufficient. 
In combination with the viscous drag on the bacteria head, this 
leads to a rheotactic torque (37) reorienting bacteria in flow result-
ing in a net rheotactic drift, which has the opposite sign compared 
to the drift of passive helices (18) and has been experimentally ob-
served for swimming Bacillus subtilis at a specific fixed distance 
away from the walls of a microchannel Poiseuille flow (37).
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The rheotactic drift has been characterized in the form of a mean 
rheotactic velocity as a function of the local shear rate and was 
quantitatively reproduced using a hydrodynamic model of a 
microswimmer based on resistive force theory in combination with 
Brownian noise (37). Despite the fact that the numerical model pre-
sented by Marcos et al. (37) reproduces quantitatively, by parametric 
adjustment, the mean rheotactic drift velocity, the details of the 
underlying physical mechanisms were not fully revealed. Moreover, 
the absence of an analytical model did not allow retrieving the scaling 
laws of the dependence of the mean rheotactic velocity on the shear 
rate. In addition, no interpretation of the effect in relation with the 
relevant physical parameters could be established. Last, no experi-
mental data on the distribution of bacteria orientations were given 
by Marcos et al. (37), which we show is crucial to understand the 
observed mean rheotactic velocities.

To better understand the rheotactic phenomenology for swimming 
bacteria in shear flows, we combine an experimental, numerical, 
and theoretical analysis. Microfluidic experiments are performed 
using wild-type E. coli bacteria in wide channels, and a large number 
of bacteria tracks are recorded as projections into planes parallel to 
the bottom wall at different distances from the latter. Careful tracking 
of active bacteria, as well as passive tracers, allows them to obtain 
precise rheotactic velocity and orientation distributions at different 
positions of the Poiseuille flow at various flow rates. To quantita-
tively match the experimental results, we propose an extended ana-
lytical description of the swimming kinematics reflecting the chiral 
nature of the propelling flagella in addition to the standard Jeffery 
dynamics and rotational and run-and-tumble noise. The combined 
role of the drag on the bacterial body and the flagellar chiral structure 
are encoded into a single number, the chiral strength, reflecting the 
reorientation effect in response to the local velocity gradients. An 
empirical value of this coupling parameter is determined for a wild-
type E. coli.

Theoretical analysis reveals the scaling laws behind the average 
rheotactic velocities for a full range or shear rates. We define a 
dimensionless shear rate in the form of a chirality number combin-
ing the effects of chiral strength and rotational Péclet number, leading 
to a collapse of all experimental and numerical datasets obtained from 
a parameter study. At low and moderate shear rates, we reveal that 
the rheotactic drift velocity increases linearly with the chirality 
number. At larger chirality number, from a linear stability analysis 
around a marginally stable fixed point, we explain the reorientation 
dynamics leading to a very slow approach of the rheotactic 
drift toward the swimming velocity value. Our findings constitute 
a full characterization of bacteria rheotaxis under shear flow, span-
ning the complete space of the Poiseuille channel flow and a com-
prehensive understanding of the physical mechanisms and relevant 
parameters behind it.

RESULTS AND DISCUSSION
Mean rheotactic velocity
A dilute suspension of E. coli bacteria is injected at a given flow rate 
Q into a microchannel of width W = 600 m and height H = 100 m 
(Fig. 1A), which imposes to a very good approximation a planar 
Poiseuille flow Vx(z) = 4Vmaxz(H − z)/H2 sufficiently away from the side 
lateral walls, with Vmax, the flow velocity in the center of the channel. 
The local shear rate is then ​​ ̇ ​  =  ∂ ​V​ x​​(z ) / ∂ z  =  4 ​V​ max​​(H − 2z ) / ​H​​ 2​​. 
Using a high-magnification objective lens, bacteria tracks are re-

corded as projections into the x-y plane at different distances 
from the bottom wall (Fig. 1B) and far away (≳250 m) from 
lateral side walls. Exact calibration of the local flow velocities and 
channel orientation is obtained by the simultaneous recording of 
passive tracers for all experiments performed. This calibration 
step is essential for the determination of bacteria orientation and 
velocity distributions. Since we focus on bulk dynamics, bacterial 
trajectories close to the top and bottom channel walls are not in-
cluded in our analysis.

Figure 1 (C and D) show examples of bacterial trajectories in 
layers in the upper and lower parts of the microchannel Poiseuille 
flow. One clearly sees a bias toward the right with respect to the 
negative flow direction on (C) and toward the left on (D), confirming 
the rheotactic cross-streamline migration in the y direction induced 
by the chirality of the left-handed bacteria flagella (37) and being a 
function of the sign of the local shear rate.

Quantitative measurements of mean bacteria velocities (​​​v ̄ ​​ x​​​,​​​v ̄ ​​ y​​​) 
and transport velocities of passive tracers (Vx,Vy) for different flow 
rates Q are displayed in Fig. 2 (A and C) in the flow direction (x 
direction) and in the vorticity direction (y direction), respectively, 
as a function of the distance z from the bottom wall. The passive 
tracers (open symbols) follow a Poiseuille profile [Vx(z) in Fig. 2A] 
without a drift in the y direction (Fig. 2C), indicating the perfect 
alignment of channel and microscope, and the x axis is identical to 
the flow direction.

Different local shear rates ​​ ̇ ​​ can be obtained in two ways, either 
by varying Vmax via the imposed flow rate Q or by varying the position 
z inside the channel. For a systematic analysis of bacterial rheotaxis, 
allowing to independently investigate the role of local shear rate and 
positions within the Poiseuille flow, both Q scans and z scans are 
performed.

Mean bacteria velocities (filled symbols) deviate from the back-
ground velocities both in the parallel (x) direction and in the trans-
verse (y) direction. In the x direction, bacteria velocities are higher 
in the center of the channel and lower close to channel boundaries 
compared to the background flow. This is illustrated more clearly in 
Fig. 2B where the z-dependent relative velocities between bacteria 
and background flow are shown. This indicates a preferred orientation 
of bacteria downstream in the channel center and upstream closer to 
the channel walls for all considered flow rates. Mean bacteria velocities 
​​​v ̄ ​​ y​​​ confirm the visual observations from Fig. 1 (C and D) and have 
opposite signs in the lower and upper half of the Poiseuille flow. 
This rheotactic velocity ​​​v ̄ ​​ y​​​ increases with increasing flow rate Q and 
with decreasing distance z from the wall. Note that wall effects are 
visible for the data points at a distance of 0.1H (∼10 m) from 
both top and bottom walls and will be excluded from further analysis 
in this paper.

Figure 2C shows mean drift velocities ​​​v ̄ ​​ y​​​ as a function of local 
shear rates from different datasets, including the results from the 
three z scans from Fig. 2B and from two different Q scans. We note 
that we scale the velocities by the average bacteria velocity v0 = 
25 m s−1 in the absence of flow (see the Supplementary Materials). 
Representing the mean velocities as a function of the local shear rate 
leads to a reasonable data collapse, indicating that the local shear 
rate is the main control parameter of our system. Within our range 
of shear rates, the increase in mean drift velocity is first linear with 
local shear rate, similar to what was observed in (37), and then 
reaches a maximum of around half the average bacteria swimming 
velocity at the highest shear rate.
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Theoretical framework
To understand the physical mechanisms behind bacterial rheotaxis 
in microchannel flow, we develop a theoretical framework that 
captures the dynamics of individual noninteracting bacteria. We 

account for the elongated and chiral shape of the flagellated bacteria, 
their self-propulsion velocity v, tumbling, translational and rota-
tional noise, and their advection and rotation in Poiseuille flow. 
Denoting the instantaneous position of a bacterium by r and its 
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Fig. 1. Setup and typical trajectories of swimming bacteria in the upper and lower half of the channel. (A) A dilute bacterial suspension is injected into a polydimethyl
siloxane (PDMS) microchannel (width W = 600 m, height H = 100 m, and up to L = 20 mm in length) at a given flow rate Q. (B) Bacteria and passive tracers are recorded 
at 200 frames per second (fps) using a 63× lens (observation window in the x-y plane, 200 m by 100 m) at varying distances z from the bottom wall. The angle  defines 
the bacteria orientation in the x-y plane, and  is the out-of-plane angle. (C and D) Typical trajectories of swimming bacteria in the lower (C) and upper channel half (D). 
The circles represent the end of the bacteria trajectories. Bacteria drift toward the right with respect to the negative flow direction in (C) and in the opposite direction 
in (D).
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Fig. 2. Mean velocities for bacteria and passive tracer beads. (A) Bacteria [​​​v ̄ ​​ x​​(z)​] and bead [Vx(z)] velocities obtained by scanning through the z direction. Passive trac-
er beads with diameter d = 1 m (empty circles) and bacteria (filled circles) are represented at mean flow rates of Q = 5 (blue), 10 (red), and 20 nl/s (purple). (B) Difference 
between bacteria and flow velocities ​​​v ̄ ​​ x​​ − ​V​ x​​​. Results from simulations are shown by solid lines. (C) Corresponding mean rheotactic velocities ​​​v ̄ ​​ y​​​ and bead velocities Vy(z). 
(D) Rheotactic velocity ​​​v ̄ ​​ y​​​ normalized by the average bacteria swimming speed v0 as a function of local shear rate ​​ ̇ ​​ controlled by two methods: z scan, scanning through 
the channel height at given flow rates Q (5,10, and 20 nl/s), corresponding to the data of (B), and Q scan, varying flow rates at fixed channel height (0.11H and 0.21H). 
Results from simulations are indicated by open symbols and are given for heights 0.2H, 0.3H, and 0.4H.
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orientation by e, we can write the dynamics of a bacterium in 
Poiseuille flow as

	​​  dr ─ dt ​  =  ve + ​V​ x​​(z ) + ℋ · ​	 (1)

for the positional dynamics and

	​​  de ─ dt ​  =  [​​​ J​ + ​​​ C​ + ​√ 
_

 2 ​D​ r​​ ​ ​​​ r​] × e​	 (2)

for the orientational dynamics. For Poiseuille flow, these two equa-
tions are coupled, and Eq. 1 includes orientation-dependent 
self-propulsion, advection in Poiseuille flow, and anisotropic trans-
lational diffusion, and Eq. 2 includes position-dependent reorienta-
tion in flow. The random numbers i and ​​​i​ 

r​​ model Gaussian white 
noise (see Materials and Methods); ℋ is related to the anisotropic 
translational diffusion tensor (see Materials and Methods), and Dr 
is the rotational diffusion constant. We use the well-known Jeffery 
reorientation rate J to capture the rotation in flow due to elonga-
tion (9, 20, 21, 39)

	​​

​Ω​x​ J ​  = ​ γ ̇ ​ ​ 1 ─ 2 ​ G ​e​ x​​ ​e​ y​​

​  ​​Ω​y​ J ​  = ​ γ ̇ ​ ​ 1 ─ 2 ​​(​​1 + G(​e​z​ 
2​ − ​e​x​ 2​ )​)​​​​  

​Ω​z​ 
J ​  =  − ​γ ̇ ​ ​ 1 ─ 2 ​ G ​e​ y​​ ​e​ z​​

  ​​	 (3)

with the Bretherton shape factor G = (2 − 1)/(2 + 1) ≲ 1, where  
is the effective aspect ratio of the bacteria. The chiral strength  of a 
bacterium is related to the specific shape of the left-handed chiral 
flagella bundle and the size of the head (37, 38), leading to a chirality-
induced reorientation rate C, as derived in (38)

	​​  
​​x​ C​  =  − ​ ̇ ​ ​e​ z​​(2 ​e​x​ 2​ − 1)

​  ​​y​ C​  =  − 2​ ̇ ​ ​e​ x​​ ​e​ y​​ ​e​ z​​​  

​​z​ 
C​  =  − ​ ̇ ​ ​e​ x​​(2 ​e​z​ 

2​ − 1)

​​	 (4)

The same result has been rederived recently in (40). To model 
tumbling, we include tumble events that modify the bacterium 
orientation instantaneously at exponentially distributed times (see 
Materials and Methods). We note that we neglect a term in Eq. 1 
that captures a small passive rheotactic drift force but is negligible 
compared to the other terms for our regime of parameters.

The theoretical model (Eqs. 1 to 4) contains a number of parameters 
that need to be determined. The swimming speed v of individual 
bacteria is assumed to be normally distributed with mean v0 = 25 m s−1 
and SD of 8 m s−1 to closely match experimental conditions in the 
absence of flow (see the Supplementary Materials). While the value 
of Dr = 0.057 s−1 (41) and the tumbling statistics (42) can be estimated 
from the literature, we treat  and  as free parameters. These 
parameters can be adjusted using the precise experimental results. 
We thus perform Brownian dynamics simulations of the coupled 
Eqs. 1 and 2 including tumbling and simple steric repulsion for 
swimmer-wall interactions to be compared to the experimental re-
sults for the mean rheotactic velocities ​​​v ̄ ​​ y​​​ as a function of the local 
shear rate ​​ ̇ ​​ as shown in Fig. 2C.

The initial slope of ​​​v ̄ ​​ y​​(​ ̇ ​)​ can be used to adjust the mean chiral 
strength of the bacteria to  = 0.06, being of the same order as esti-
mated previously using resistive force theory (37, 38). The parameter  
only depends on the bacterial shape. In particular, its value depends 

nontrivially on the helical shape of the flagella bundle, is maximized 
for large cell bodies, and vanishes in the limit of very small cell body 
size. The effective aspect ratio  is determined from the devia-
tion from the linear regime toward the saturation of the rheotactic 
velocity at high shear rates, with the results not being very sensi-
tive to the value of the parameter . Here, we use  = 5, in agree-
ment with typical experimental values (21). These values for  
and  are used for all further comparison between experiments 
and simulations.

From Fig. 2D, we can see that by adjusting these parameters, the 
numerical model describes very well the experimental observations. 
As in the experiments, data obtained from different positions z in 
the channel and different flow strength collapse onto almost a single 
curve, but small deviations stem from the velocities obtained from 
different layers in the channel.

In Fig. 2B, we compare the longitudinal velocity differences be-
tween bacteria and the Poiseuille flow from numerical simulations 
with the experiments, which show the same results, i.e., a preferred 
upstream orientation near the walls and a downstream orientation 
in the center. This is in excellent agreement with a kinematic model, 
which neglects the swimmer chirality (22). This indicates that 
chirality does not influence, at least qualitatively, the polarization 
profile along the flow direction but mainly affects the bacteria 
orientations in the transverse direction.

Velocity and orientation distributions
We now turn to velocity and orientation distributions. Figure 3A 
shows the rheotactic velocity distributions P(vy) at a given height 
z = H/4 for different local shear rates corresponding to the mean 
values shown on Fig. 2C. As expected, without flow and for small 
shear rates, the velocity distribution is very broad and centered 
around zero. For increasing shear rates, the distributions are shifted 
more and more toward positive vy values, together with a small decrease 
of the width of the distribution. The experimental and numerical 
distributions are in excellent agreement and reinforce the validity of 
our model. Note that using a swimming velocity distribution matching 
the experimental results is crucial to obtain such an agreement, 
whereas it is sufficient to work with average values for  and .

The rheotactic velocity of each bacterium is a direct consequence 
of its three-dimensional (3D) orientation and its intrinsic swimming 
velocity v setting the instantaneous velocity vy(t) = vey = v cos (t) 
sin (t). Here, the angle  is linked to the orientation of the bacte-
rium in the z direction, ez = sin , and ex = − cos cos , and ey = 
cos sin  (see Fig. 1B). While bacteria orientations can directly be 
determined from the numerical simulations, only projections of 
bacteria trajectories into the x-y plane are accessible from the exper-
iments and the in-plane orientations are obtained from the orienta-
tion of the velocity vector (see Materials and Methods), defined by 
the angle . We thus show the corresponding orientation distribu-
tions P() for different local shear rates in Fig. 3B for the layer z = 
H/4. Figure 3C shows a sketch of the bacterium orientation  and 
relation to up- and downstream and left and right orientation. At 
zero shear rate, the orientation distribution is flat and remains so 
for small shear rates, indicating no preferred bacteria alignment under 
weak flow. With increasing shear rate, bacteria orient, on average, 
more and more toward positive values of  and thus toward the 
right with respect to the negative flow direction. In addition, a double 
peak is emerging, which is found to be mostly symmetric around 
 = /2, corresponding to a bacteria orientation perpendicular to 
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the flow direction. Bacteria are thus oriented up and downstream 
around the perpendicular orientation. These peaks become more 
pronounced and also move closer together with increasing shear 
rate. They correspond to a single peak in the velocity distributions 
as seen on Fig. 3A.

To represent a more complete picture of the orientation distri-
butions under flow, Fig. 4 shows the distributions layer by layer 
along the channel height. z scans have been performed at different 
imposed flow rates Q and are represented as a function of the wall 
shear rate ​​​ ̇ ​​ W​​  =  4 ​V​ max​​ / H​. Higher flow rates are displayed only for 
the simulation results, as at those large flow velocities, the time resolu-
tion of the experimental image capture is not sufficient to resolve 
the bacteria trajectories. The probabilities of the rheotactic velocity 
and orientation distributions are represented with a color code where 
yellow corresponds to a high probability and blue corresponds to 
low probability. Peaks in the distributions are thus easily identified 
as regions of yellow color. For low flow rates, the continuous shift of 
the peak velocity from zero toward higher velocities when moving 
away from the middle of the channel toward the channel walls (and 
thus with increasing local shear rate) is clearly visible, in agreement 
with Fig. 2C. For larger flow rates, in layers closer to the channel 
walls and thus for higher local shear rates, only a very weak increase 
or even a saturation of this peak value can be identified, in particular, 
from the numerical results. From the orientation distributions, the 
existence of a double peak is clearly visible for moderate flow rates 

and a decrease of the distance between the two peaks is observed when 
getting closer to the channel walls. At high flow rates, the simulation 
results show that the double peak merges into a single but wide peak.

These figures also show the up- and downstream orientations 
induced by the swimming dynamics of the bacteria in the Poiseuille 
flow, where bacteria cross multiple layers in the z direction during a 
trajectory (19, 21, 22, 43). This is, in particular, visible at small wall 
shear rates, where in the center of the channel, most bacteria are 
oriented downstream, as can be seen by the yellow peak close to . 
Closer to the channel walls, this peak is found around 0, corre-
sponding to an upstream orientation, in agreement with the relative 
bacteria velocities shown in Fig. 2B.

Theoretical understanding of the observed orientation 
distributions
To explain the orientation distributions P(, ) at the origin of the 
rheotactic behavior, we start by discussing a simple model system 
for bulk rheotaxis, namely nontumbling elongated bacteria in linear 
shear flow with constant shear rate ​​ ̇ ​​. In the absence of noise, the 
equations for the orientations of chiral microswimmers (Eq. 2) can 
be rewritten in terms of the angles  and  and read [see also (38)]

	​​  
​ ̇ ​  = ​  ​ ̇ ​ ─ 2 ​(1 + G ) sin  tan  + ​ ̇ ​ cos  ​ cos 2 ─ cos  ​

​    
​ ̇ ​  = ​  ​ ̇ ​ ─ 2 ​(1 − G cos 2  ) cos  + ​ ̇ ​ sin  sin 

​​	 (5)

A B

C

Upstream left Upstream right Downstream rightDownstream left

Fl
ow

Fig. 3. Velocity and orientation distributions. Experimental (symbols) and numerical (solid lines) results of (A) velocity vy and (B) orientation  distributions obtained 
by varying the flow rate Q at a given distance from the channel bottom wall (z ≈ H/4). Local shear rates have been closely matched between experiments and simulations. 
For better readability, the different curves are shifted in the vertical direction. (C) Sketch of the bacterium orientation  and relation to up- and downstream and left and 
right orientation.
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Both the Jeffery (first terms) and the rheotactic contributions 
(second terms) are linear in the shear rate ​​  ̇​​, which, as a consequence, 
only determines the time scale of the dynamics.

The orientation ((t), (t)) of nonchiral swimmers ( = 0) simply 
follow Jeffery orbits, which are solutions of Jeffery’s equations of 
motion (see also Eq. 3). The Jeffery orientation phase space is shown 
in Fig. 5A, and closed streamlines indicate the well-known periodic 
Jeffery solutions that depend on the initial orientation of the swimmer 
and correspond to a constant of motion, the so-called Jeffery constant 
(9). The arrows indicate the direction of motion on the unit sphere. 
Again, the shear rate ​​ ̇ ​​ does not alter the Jeffery orbits but only sets 
the time scale of how fast an elongated particle or bacterium rotates. 
Note that when a particle starts oriented to the left/right ( < 0/ > 
0), it never switches to the other side.

Adding the rheotactic term now breaks the left-right symmetry, 
and as can be seen in Fig. 5B, all orientations eventually end up on 
the right ( > 0), leading to the mean rheotactic velocity ​​​v ̄ ​​ y​​  >  0​. To 
understand the orientational behavior in more detail, we see that 
(* = ± /2, * = 0) are two fixed points of the system (Eq. 5), 
defined where ​(​​  ̇​​​ *​, ​​  ̇​​​ *​ ) = (0, 0)​. The eigenvalues of the stability matrix 
for the linearized system around the fixed points can be evaluated to

	​​ ​ 1,2​​  =  ± ​ i ─ 2 ​​ ̇ ​ ​√ 
___________

 1 − ​G​​ 2​ − 4 ​​​ 2​ ​  =  ± i​	 (6)

These Eigenvalues have a vanishing real part, which means that 
the fixed points are actually not stable/unstable but marginally stable. 
In other words, the typical time scale at which a bacterium orients 
toward the fixed point on the right diverges, and it will therefore 

never be reached. We observe that simulated trajectories without 
noise do not reach the fixed point but get trapped in periodic orbits 
around the marginally stable fixed point.

We now turn to the question of how rotational noise, always 
present in experiments, influences the orientational distribution of 
bacteria in flow. The rotational diffusion constant Dr of the bacterium 
compared to the strength of the shear rate ​​ ̇ ​​ now plays an important 
role. For nonchiral swimmers ( = 0), noise affects the dynamics 
similar to passive elongated particles (44). Because of noise, trajec-
tories now erratically move around between different Jeffery orbits 
(12), which strongly influences the orientation distribution function 
P(, ), as shown in Fig. 5C. Here, we show results of 1000 averaged 
steady-state trajectories started uniformly distributed on the unit 
sphere for a fixed rotational diffusion Dr = 0.057s−1 but for a broad 
range of different shear rates. Purple and blue correspond to low 
probability, while yellow and red correspond to high probability 
(see scale bar). The first row in Fig. 5C shows the case where noise 
is not yet important because of the high shear rate ​​ ̇ ​  =  1000 ​s​​ −1​​, 
and P(, ) almost follows the deterministic solution obtained 
from Eq. 5. The peaks at ( = 0,  = 0) and ( = ,  = 0) corre-
spond to particles aligned with the flow, upstream or downstream, 
respectively. These peaks are a consequence of the fact that elongated 
particles moving on a (typically kayaking) Jeffery orbit have a high 
probability to come close to these positions, which can be seen by 
the increased density of streamlines in Fig. 5A. Together with a decreased 
rotation rate near these points, this leads to the large probability 
observed. Note that the slowest rotation is near the log-rolling states 
( = ± /2), but hardly any initial condition leads to orbits 

Fig. 4. Color map of rheotactic velocity and orientation distributions as a function of channel height from experiments and simulations. (A) Probability density 
function (PDF) for the rheotacitic velocity vy. (B) PDF for the swimmer orientation . Different panels correspond to different applied flow rates, as indicated by the 
corresponding wall shear rates ​​​ ̇ ​​ w​​​.
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that come close to these states and precludes high probabilities 
around them.

As can be seen in the second row in Fig. 5C, reducing the shear 
rate by a factor of 10 does not change the distributions substantially, 
meaning that noise is still not important for nonchiral swimmers. 
This changes for smaller shear rates, ​​ ̇ ​ =  10 ​s​​ −1​​, where the peaks of 
the distributions become less pronounced. At even smaller flow 
rates, ​​ ̇ ​  =  1 ​s​​ −1​​ (last row), noise randomizes the orientations almost 
completely, and only very weak peaks remain. Note that both up-
stream and downstream peaks are not symmetrically distributed 
around  = 0 for small ​​ ̇ ​​ because of a subtle interplay between noise 
and flow, which leads to nonuniform microswimmer profiles in the 

z direction (22, 43, 44). In general, the important physical quantity 
that determines the nonchiral orientation distribution is the rota-
tional Péclet number ​​Pe​ r​​  = ​  ̇ ​ / ​D​ r​​​. As we will see in the following, the 
situation is less simple when particles are chiral.

For chiral microswimmers ( > 0), the signatures of the margin-
ally stable fixed point can be seen at high shear rates. As shown in 
the first row of Fig. 5D, even for very weak noise or high shear rates 
(​​ ̇ ​  =  1000 ​s​​ −1​​) the peak of the distribution is not a simple  peak but 
smeared out around the marginally stable fixed point at  = /2. 
For smaller shear rate ​​ ̇ ​​, when noise becomes more dominant, the 
probability distribution becomes even broader and develops bimodal 
peaks, which shift more and more toward orientations aligned (or 

C

B

D

Fig. 5. Orientation phase space and simulated probability distributions for nontumbling bacteria in simple shear flow. (A) The streamlines of a nonchiral swimmer 
simply follow Jeffery’s periodic solutions for passive ellipsoids. (B) Chirality breaks the left-right symmetry, which is the main reason for bacterial bulk rheotaxis. The green 
and blue dots correspond to marginally stable fixed points in the linear regime pointing to the left ( = − /2,  = 0) and to the right ( = /2,  = 0) side of the channel. 
(C and D) Orientation distributions for nonchiral (C) and chiral (D) swimmers at different shear rates using our standard parameters ( = 0.06, Dr = 0.057 s−1,  = 5).
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antialigned) with the flow when lowering ​​ ̇ ​​ further (second and 
third row in Fig. 5D). The positions of these peaks are triggered by 
a competition between the chirality-induced attraction to the right 
and the Jeffery peaks, which become more and more dominant for 
smaller shear rates, since noise then helps to move around in the 
phase space more easily. For low ​​ ̇ ​​ (last row), chiral migration to the 
right is very inefficient compared to noise, and the probability dis-
tributions look very similar to the nonchiral system.

Last, we note that the frequency of oscillation  (see Eq. 6) is 
comparable to the pure Jeffery frequency ​​​ J​​  = ​  ̇ ​ ​√ 

_
 1 − ​G​​ 2​ ​ / 2​ but is 

reduced by approximately 5% for our standard parameters  = 0.06 
and  = 5.

Universal scaling and master curve
We now analyze the dependence of the rheotactic drift on the system 
parameters. Therefore, we simulate the dynamics of different rota-
tional diffusion Dr, bacterium aspect ratio , and chiral strength  
for varying shear rates ​​  ̇​​. Figure 6A shows the scaled mean rheotactic 
velocities ​​​v ̄ ​​ y​​ / ​v​ 0​​​ as a function of the shear rate for different non-
tumbling bacteria in simple shear flow. As expected, none of the 
curves approach ​​​v ̄ ​​ y​​ / ​v​ 0​​  →  1​ even for very large shear rates because 
of the aforementioned trapping and oscillations of the swimmer 
orientations in the vicinity of the marginally stable fixed point 
(* = /2, * = 0).

As seen before, for small shear rates, all curves increase linearly 
with the shear rate (Fig. 2D). The reason is that for small shear rates, 
the peaks of the distributions are close to ± = {0, } and ± = 0 (see 
also Fig. 3B), and the peaks linearly shift away from them with 
increasing shear rate. The slope is stronger for larger chirality  or 
weaker rotational Brownian noise Dr.

To understand the behavior at small shear rates, we linearize Eq. 5 
around (±, ±), i.e., evaluate it at angles  = ± + ϵ and  = ± + 
ϵ with small ϵ and ϵ. To the lowest order in ϵ and ϵ, we then 
obtain ​​ ̇ ​(,  ) = ± ​ ̇ ​​ + h.o.t. and ​​ ̇ ​(,  ) = ​​​ J ​​ + h.o.t., where all 
higher-order terms (“h.o.t.”) are at least quadratic in the angles ϵ 
and ϵ and ​​​​ J ​​ is the Jeffery contribution to the angular velocity 
component . The reorientation rate ​​ ̇ ​​, which is responsible for 
the drift toward the right, is to the lowest order independent of G 
and linear both in ​​ ̇ ​​ and in . This suggests that the shifts of the 
peaks * of the probability distributions, and, hence, of the mean 
values ​​​v ̄ ​​ y​​​, should be a function of ​​ ̇ ​​, acting against the noise quan-
tified by Dr.

Our analysis and the results shown in Fig. 6A now suggest intro-
ducing a dimensionless chirality number

	​ C  = ​  ​ ̇ ​ ─ 
​D​r​ 

eff​
 ​​	 (7)

as the main relevant physical quantity, which regulates rheotaxis. 
Here, we use ​​D​r​ 

eff​​ as the effective rotational diffusion constant deter-
mined via the exponential decay of the bacterium orientation auto-
correlation function in the absence of flow, ​〈e(0 ) · e(t ) 〉 = ​ e​​ −2​D​r​ 

eff​t​​ 
(23). It is simply the rotational diffusivity Dr for nontumbling bacteria 
but larger for tumbling bacteria because of the extra tumbling 
reorientations and estimated to ​​D​r​ 

eff​  ≈  0.25 ​s​​ −1​​ in our experiments. 
Note that together with the experimentally explored range of local 
shear rates ​​ ̇ ​  ≈  0  to  50  ​s​​ −1​​, this corresponds to a range of Péclet 
number Pe ≈ 0 to 200.

In Fig. 6B, we now show the same data as in Fig. 6A but as a 
function of the chirality number 𝒞. As can be seen in the inset of 
Fig. 6B, for small shear rates, all curves fall on top of each other. At 
higher shear rates, only curves with the same  (and hence G) fall on 
top of each other.

This result is important, as it points in this weak shear regime, 
on the relevant parameters defining the rheotactic drift velocity for a 
microswimmer. The linear relation between mean transverse rheotactic 
velocity ​​​v ̄ ​​ y​​​ and shear rate ​​ ̇ ​​, ​​​v ̄ ​​ y​​  = ​ l​ 0​​​ ̇ ​​, also reveals a length l0 quanti-
fying how far a bacterium drifts in the vorticity direction at unit 
shear rate. For our bacterial strain, this length is l0 ≈ 0.75 m (see 
Fig. 2D), and we now know from Eq. 7 and the prefactors shown in 
the insets of Fig. 6 (B and C) that l0 is related to the bacteria parameters 
via ​​l​ 0​​  ≈  0.1 ​v​ 0​​  / ​D​r​ 

eff​​. We note that the prefactor of ∼0.1 is a purely 
numerical constant that does not depend on the system parameters.

At larger shear rates, the bacteria with lower aspect ratio ( = 3; 
diamonds) have a higher rheotactic velocity, and the swimmers 
with higher aspect ratio ( = 10; squares) have a lower rheotactic 
velocity. This can be understood by looking at higher orders of the 
stability around the locally marginally stable fixed point around 
 = /2. It can be shown that away from the linearly marginable 
stable fixed point, the attraction toward this point is stronger for 
smaller  and, hence, the rheotactic velocity is larger.

We also test our scaling for tumbling bacteria and compare the 
results to nontumbling bacteria in Fig. 6C. We can see that the scal-
ing also works well for tumbling bacteria, where all of the data 
(black symbols) collapse onto a single curve. The nontumbling and 
tumbling master curve do not exactly fall on top of each other, 
which suggests that the simple scaling with ​​D​r​ 

eff​​ is not perfect. Note 
that, as described before, we include tumbling not only as defining 
an enhanced effective rotational diffusion but also by adding random 
tumbling events on top of the continuous rotational diffusion. 
While, in the absence of flow, long-time dynamics may be captured 
by introducing an effective temperature from stemming from an 
effective diffusion constant (23), this concept fails to be the accurate 
measure in our situation, where the interplay of flow and tumbling 
prohibits a simple effective temperature scaling. Again, we obtain a 
linear regime for small ​​ ̇ ​​ (inset) where the slope is almost the same 
(but not exactly) as that for the nontumbling bacteria.

Now, we turn to the case of tumbling bacteria in Poiseuille flow 
by plotting the data extracted from different layers in the channel 
(and hence local shear rates), as shown in blue in Fig. 6C. The fact 
that this data collapses together with the simple shear data on a single 
curve reiterates the fact that, at least for our channel height (H = 100 m), 
bacterial rheotaxis is determined by the local shear rate.

Last, we show in Fig. 6D how the curves in Fig. 6C approach 
toward their asymptotic values. As discussed before, bacteria 
approach the infinite shear limit very slowly, which can be fitted, as 
a first approximation, to a power law ∼𝒞−0.5, as a consequence of the 
marginally stable fixed point at  = /2.

Comparison to experimental and numerical results
Our theoretical analysis allows us now to understand all the observed 
aspects of the rheotactic velocities in both experiment and Brownian 
dynamics simulations. First, the aforementioned result that the 
position of the peaks in P() for chiral bacteria move closer and closer 
together with increasing shear rate (Fig. 5D) is clearly observed in 
the experiments and simulations in Poiseuille flow using tumbling 
bacteria, as shown for P() in Figs. 3B and 4B.



Jing et al., Sci. Adv. 2020; 6 : eabb2012     10 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 12

Second, we can now understand why the plateau value of the 
mean rheotactic velocities obtained in experiments and simulations 
for high shear rates does not approach the mean free swimming 
speed v0 (Fig. 2C): The occurrence of a marginally stable fixed point 
traps bacteria in periodic-like orbits, resulting in broad orientational 
distributions.

Third, we are able to predict the linear increase of the mean rhe-
otactic velocity for small shear rates, as seen experimentally and in 
simulations in Fig. 2C, and to determine the dependence of the 
mean rheotactic velocities on the relevant parameters, resulting in a 
universal scaling law.

Fourth, we demonstrate that our analysis in simple shear flow 
qualitatively explains the behavior in Poiseuille flow. We find that 
the orientation probability distributions P(, ) in Poiseuille flow 
obtained from layers with local shear rate ​​ ̇ ​​ follow the respective 
distributions in simple shear flow. Tumbling allows bacteria to ex-
ploit nonpopular regions in phase space more frequently compared 
to nontumbling bacteria, but the qualitative results are comparable 
to the ones of nontumbling bacteria.

CONCLUSIONS
In this paper, we investigated bacterial rheotaxis in bulk flows using 
a combined experimental, numerical, and theoretical analysis. Precise 
microfluidic experiments using E. coli bacteria in channel flows 
provide not only average rheotactic velocities in the vorticity direc-
tion as a function of local shear rate in the Poiseuille flow but also 
accurate velocity and orientation distributions. These results are in 
perfect agreement with Brownian dynamics simulations and indicate 
a shift of the peaks of the velocity distributions toward increasing 

rheotactic velocities with increasing shear rates. These peaks tend 
toward a maximum rheotactic velocity equal to the bacteria swimming 
speed and correspondingly to a bacteria orientation perpendicular 
to the flow direction and thus aligned with the vorticity direction. 
However, the velocity distributions remain very broad, and average 
rheotactic velocities always remain significantly below the bacteria 
swimming speed.

By theoretically analyzing the bacteria orientation dynamics, we 
elucidate the mechanisms at the origin of the rheotactic behavior 
and comprehensively show how the interplay between Jeffery orbits, 
rheotactic torque, and noise leads to the observed rheotactic velocities. 
Chirality and bacteria geometrical features are encoded into a 
dimensionless chiral strength that can be used together with a rota-
tional Péclet number to rescale the shear rate. At small shear rate, 
the resulting chirality number proportionally affects the mean 
rheotactic drift velocity. Such a regime exists only in the presence of 
a strong stochastic reorientation process, limiting the natural 
tendency for the chirality-induced torque to reorient the swimmer 
in the positive vorticity direction.

When stochasticity is less important, i.e., at higher chirality number 
or shear rate, the complexity of the dynamical processes will play a 
central role and limits, in a subtle way, the alignment of the micros-
wimmers perpendicular to the flow. Our theoretical analysis based 
on a full set of kinematic equations provides a quantitative account 
for this original dynamical behavior and explains the reorientation 
dynamics leading to saturation at large shear rates from the marginal 
stability of a fixed point.

Our work provides a comprehensive understanding of the 
fundamental physical mechanisms of bacterial rheotaxis. Our ana-
lytical model is not specific to E. coli bacteria and can, in the future, 

A B

C D

Fig. 6. Universal scaling of the rheotactic velocity. (A) Dependence of the scaled mean rheotactic velocity vy/v0 on the shear rate ​​ ̇ ​​ for nontumbling bacteria in simple 
shear (simulations) for different parameter sets (rotational diffusion Dr, bacterium aspect ratio , chiral strength ). (B) Results as shown in (A) but plotted against the 
chirality number 𝒞. (C) Data in (B) for  = 5 compared to tumbling bacteria in simple shear flow and Poiseuille flow. (D) Slow algebraic saturation at high shear rates. Color 
code indicated in (D). Symbol code used in all subfigures: ⋆Dr = 0.057,  = 5,  = 0.06; ▯Dr = 0.057,  = 5,  = 0.006; ○Dr = 0.2,  = 5,  = 0.06; △Dr = 0.057,  = 5,  = 0.02; ▽Dr = 
0.057,  = 5,  = 0.1; ⊳Dr = 0.1,  = 5,  = 0.06; ◊Dr = 0.057,  = 3,  = 0.06; □Dr = 0.057,  = 10,  = 0.06.
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also be used to describe rheotaxis of other flagellated microorganisms 
or even a rheotactic torque of a different nature as might exist for 
artificial microswimmers. It might also be extended to more complex 
flow environments as soils or porous media and could open interest-
ing perspectives for the design of separation or filtration devices.

MATERIALS AND METHODS
Bacterial cultures
We use the wild-type bacteria strain RP437 with fluorescently 
stained cell bodies, emitting green fluorescence light. These bacteria 
perform run-and-tumble motion with a typical tumbling frequency 
of 1 Hz. A rich growth medium (M9G) is used for the bacterial cul-
ture and is prepared from 5.64 g of M9 salt, 2 g of glucose, 0.5 g of 
casamino acid, 50 ml of CaCl2 (1 M), and 1 ml of MgSO4 (1 M) in 
pure water in a total volume of 500 ml. Culturing with antibiotics 
(chloramphenicol, 25 g/ml) is performed in the oven at 30°C at a 
shaking rate of 200 rpm for about 16 hours until an optical density 
(OD) of ∼0.5 (measured by Eppendorf D30 at  = 600 nm) is 
reached. The uniformity of the bacteria shape and bacteria mobility 
are verified under the microscope, and subsequently, the bacterial 
suspension is centrifuged at 5000  rpm for 5 min and redispersed 
into a motility buffer (0.1 mM EDTA, 1 M l-methionine, 10 mM 
sodium lactate, and potassium phosphate buffer with 0.01 M at pH 7) 
also containing l-serine at a concentration of 0.04 g/ml. Bacteria and 
motility buffer are density matched by adding Percoll [23% (w/w) 
colloidal silica particles of 15- to 30-nm diameter in water, coated 
with polyvinylpyrrolidone] at a 1:1 volume ratio. We work with a 
very small final density of around 0.15% (v/v) (corresponding to an 
OD = 1.8).

Microfluidic devices
Rectangular polydimethylsiloxane (PDMS) channels with the height 
H = 100 m, width W = 600 m, and length of 20 mm are fabricated 
using standard soft lithography techniques. A small PDMS layer is 
spin-coated onto the bottom glass slide to obtain full PDMS channel 
walls and also to avoid bacteria sticking. A high-precision syringe 
pump (Cellix ExiGo, Ireland) is used to introduce the bacterial sus-
pension into the microchannel at well-controlled flow rates Q = 
0, 1, 2, 4, 8, 15, 20, 30, 40, and 50 nl/s, corresponding to wall shear 
rates of ​​​ ̇ ​​ wall​​  =  0, 1, 2, 4, 8, 15, 20, 30, 40, and 50 ​s​​ −1​​.

Microscope visualization
The bacterial suspensions are visualized using an inverted microscope 
(Zeiss Observer, Z1), with an air objective (63×/0.75 LD Plan) and 
equipped with a Hamamatsu camera (ORCA-Flash 4.0, C11440) at 
a frame rate of 200 frames per second (fps) at 1024 × 512 pixels 
(typical field-of-view size of 200 m by 100 m). Using a high frame 
rate is important to track bacteria at high flow rates since bacteria 
displacements in between two frames need to be small compared to 
a typical distance between two adjacent bacteria. Because of the use 
of an air lens, there is a mismatch of refraction index with the solu-
tion in the channel and height measurements need to be corrected 
by a factor of 1.3622. Two methods are used to control the local 
shear rates in the channel: varying the flow rate Q at a given distance 
from the bottom wall (z = 0.1H and z = 0.2H), called Q scan, and 
gradually increasing the distance from the bottom wall with steps z = 
5 × 1.3622 ≈ 6.8 m at the given flow rates Q = 5, 10, and 20 nl/s, 
called z scan. For each position at a given flow rate, 2000 frames are 

taken as one stack video for the following tracking process. The 
fluorescent intensity of the RP437 strain is sufficient to allow for a 
small exposure time of 3 ms.

Tracking and analysis
Passive polystyrene beads (diameter of 1 m, emitting red fluorescence 
light) are mixed with the bacterial suspension at very low concen-
tration (smaller than the bacteria concentration) and are introduced 
together into the PDMS channel. Bacteria and bead trajectories can 
now be recorded during the same experiment using either a red or 
a green filter at a frame rate of 200 fps. Considering the mean speed 
of bacteria of ∼25 m/s and a tumbling event about every second, 
the positions detected are used at time steps of t = 0.1 s (corre-
sponding to every 20 frames) to determine instantaneous bacteria 
velocities and orientations.

The depth of field of the used lens has been checked experimen-
tally to be around 2 m, and observations thus take place within a 
fluid layer of this thickness. During t = 0.1 s, bacteria can typically 
not displace over distances larger than the layer thickness. Hence, 
we do not filter specific trajectories that are oriented preferentially 
parallel to the observation plan but capture all trajectories independently 
of their orientation. The measured trajectories then represent pro-
jections of 3D trajectories into the plane of observation.

From the original video stack (2000 frames for each), using the 
TrackMate routine (Macro in FIJI), the positions of individual bacteria 
are identified and linked to smooth trajectories. The main parameters 
used for the tracking routine include Laplacian of Gaussian detector, 
a blob diameter of 5 pixels, and linear assignment problems (LAP) 
tracker (with maximum distance varying as a function of the flow 
rate). After detecting and linking the spots for every bacteria, all the 
trajectories are saved for the later extraction of the positions [xi(t), yi(t)] 
from the ith trajectory. Similarly, for the passive beads, the positions 
[Xi(t), Yi(t)] are measured, and the mean bead velocity in a specific 
z layer is obtained to be (Vx(z), Vy(z)) = 〈(Xi(t + t) − Xi(t), Yi(t + t) − 
Yi(t))/t〉, where we average over trajectories and time.

For two adjacent position pairs [xi(t), yi(t)], [xi(t + t), yi(t + t)] 
of the ith trajectory, the velocity in the x direction in a given z 
layer (composed of the swimming and the flow velocity) at time t as 
​​v​x​ 

i ​(t ) = [​x​​ i​(t + t ) − ​x​​ i​(t ) ] / t​, and the rheotactic velocity ​​v​y​ i ​(t ) = [​y​​ i​(t + t ) − ​
y​​ i​(t ) ] / t​, is calculated. The unit vector of the bacteria for this ith tra-
jectory at the time t is defined as ​​e​2D​ i  ​(t) = (​​   v ​​x​ i ​(t), ​​   v ​​y​ i ​(t)) = ((​v​x​ i ​(t) − ​V​ x​​(z))/ ​

v​2D​ i  ​(t), ​v​y​ i ​(t)/ ​v​2D​ i  ​(t))​ with ​​v​2D​ i  ​(t) = ​√ 
_____________________

  ​(​v​x​ i ​ − ​V​ x​​(z))​​ 
2
​(t) + ​(​v​y​ i ​)​​ 

2
​(t) ​​, where 

the background flow has been subtracted. The instantaneous orien-
tation angle is then defined as ​​​​ i​(t ) = arctan (​​   v ​​y​ i ​(t ) / ​​   v ​​x​ i ​(t ) )​.

Numerical methods
We approximate the shape of a swimming E. coli bacterium by an 
active, “chiral” ellipsoid of 1-m width and -m length, where  is 
the aspect ratio, and chiral strength . In addition to rotational dif-
fusion, tumbling bacteria tumble at exponetially distributed tumble 
times ∼ exp(−t/) with  = 1 s. This is performed by an instanta-
neous rotation about a random axis around a random angle  drawn 
from a Gaussian distribution with mean 0 = 1.082 rad and SD  = 
0.454 rad, in accordance with experimentally observed tumbling 
statistics (42).

The equations of motion of a bacterium in flow are given by 
Eqs. 1 and 2. ℋ is calculated from the translational diffusion tensor 
​𝗗(,  ) = ​D  ̄​1 + D𝗠(,  ) / 2 = ℋ · ​ℋ​​ T​ / 2​ via Cholesky decomposition, 
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where ​𝗠(, )​ is a symmetric 3 by 3 matrix [see (45)], and ​​D ̄ ​ = (​D​ 1​​ + ​
D​ 2​​)/2​, D = D1 − D2, where D1 = kBTa−1−1K1() and D2 = kBTa−1−1​
K2() are the respective longitudinal and transversal diffusion 
coefficients of an ellipsoid of aspect ratio  with shape functions 
K1() > K2() [see (12, 45)] and with the effective particle (bacterium) 
radius ​a = ​3 √ ─ 3 ​V​ p​​ / (4) ​​, where Vp is the volume of the particle (bac-
terium). We use room temperature; hence, kBT = 4.14 pN·nm 
and buffer viscosity  = 1.28 × 10−3 Pa·s. The random numbers i 
and ​​​i​ 

r​​ model Gaussian white noise with zero mean and ​〈 ​​ i​​ ​​ j​​ 〉 = 
〈 ​​i​ 

r​ ​​j​ r​ 〉 = ​ ​ ij​​​ (i = x, y, z). To compare results with the experiments, we 
determine the instantaneous velocity of the swimmer at time t by us-
ing v(t) = [r(t + t) − r(t)]/t, with t = 0.1 s, similar to that in the 
experiments.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/28/eabb2012/DC1
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