
 

A role for Arabidopsis myosins in sugar-induced hypocotyl elongation
Damilola Olatunji1 and Dior R Kelley1§

1Iowa State University
§To whom correspondence should be addressed: dkelley@iastate.edu

Figure 1: (A) Schematic gene structure of ATM1 (AT3G19960) indicating the T-DNA insertions assayed in this study:
SAIL_405_B08 (atm1-1), SALK_127305 (atm1-2), GABI_209H11 (atm1-3), and SALK_022962 (atm1-4). Black boxes
and lines depict exons and introns respectively. Scale bar is 100 bases. (B) ATM1 transcript levels in different alleles
(atm1-1, atm1-2, atm1-3, and atm1-4) compared to Columbia Ecotype (Col-0) assayed by quantitative PCR (qPCR). (C)
Average hypocotyl length of seedlings grown on 0.5X Murashige and Skoog (MS) medium with or without 15 mM
sucrose in the dark for 5 days. A total of 30-40 seedlings were evaluated and the assay was replicated three times (panel
shows the results from one experiment). Error bars show standard error. P values are calculated using one- or two-way
ANOVA followed by Tukey multiple comparisons; ns: not significant. (D) Hypocotyl phenotypes after 5 days of
incubation in continuous darkness. Scale bar: 5mm

Description
The ability of developing seedlings to respond and adapt to diverse environmental conditions including light is critical for
their emergence and establishment (Benvenuti et al., 2001; Forcella et al., 2000; Salter et al., 2003; Yu and Huang, 2017).
Cell expansion within the hypocotyl optimizes light and energy capture by the cotyledons, and enables the transition to
autotrophic status (Botterweg-Paredes et al., 2020; Dowson‐Day and Millar, 1999; Oh et al., 2013). Hypocotyl elongation
is regulated by multiple factors including temperature, phytohormones, circadian clock and light (Dowson‐Day and Millar,
1999; Ma et al., 2016; Procko et al., 2014; Reed et al., 2018; Yu and Huang, 2017). Endogenous and exogenous sugars are
also important regulators of hypocotyl cell expansion (Lilley et al., 2012; Liu et al., 2011; Pfeiffer and Kutschera, 1995;
Simon et al., 2018b; Singh et al., 2017; Zhang et al., 2010, 2015). Under constant darkness, the interaction between plant
hormones such as brassinosteroid and gibberellin and sugar signalling is proposed to stimulate increase in hypocotyl
length (Simon et al., 2018b; Zhang et al., 2010, 2015). Hypocotyl phenotypes are important tools in plant biology as they
have been used to screen for mutants with altered responses to light and sugar signalling and some of the identified genes
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have revolutionized plant research (Nakano, 2019). In multicellular organisms, actomyosin-dependent transport
constitutes an essential component of the cellular structure and dynamics (Duan and Tominaga, 2018; Kurth et al., 2017;
Peremyslov et al., 2010). The Arabidopsis genome encodes 17 myosins classified into two distantly-related groups
comprising 4 class VIII myosins and 13 class XI plant myosins (Haraguchi et al., 2019; Reddy and Day, 2001; Ryan and
Nebenführ, 2018). The plant-specific-myosin XI has been implicated in diverse developmental processes (Cai et al.,
2014), but the contribution of members of class VIII myosins including myosin1/ATM1 to plant development stills
remains elusive.

Here, we analyzed the role of plant myosins in sucrose-induced hypocotyl elongation under continuous darkness
conditions. To start the molecular characterization of ATM1 (AT3G19960), we analyzed four T-DNA insertional alleles
(Fig. 1A), and mutations were confirmed via PCR-based genotyping. We also performed RT-qPCR to quantify ATM1
transcripts in the four alleles, of which atm1-1 (SAIL_405_BO8 previously described by Haraguchi et al., 2014) showed
reduced ATM1 expression among these alleles compared to the wild type (Fig. 1B). Notably, atm1-3 exhibits increased
mRNA levels and may be a overexpression allele. Since atm1-1 had the lowest ATM1 transcript level, and was previously
described as a null (Haraguchi et al., 2014) we decided to use this allele for further phenotypic analysis. To understand the
contribution of plant myosins in sugar-regulated hypocotyl cell expansion we performed growth assays using Col-0 (WT:
wild-type), atm1-1, a class XI myosin single gene mutant (xik) and the triple knockout line (3KO; xi1 xi2 xik). This triple
mutant was previously generated using SALK insertion lines in XI-K (SALK_067972; At5g20490), XI-1
(SALK_019031; At1g17580) and XI-2 (SALK_055785; At5g43900) (Prokhnevsky et. al., 2008; Valera et. al., 2010). All
genotypes were grown on 0.5X Murashige and Skoog (MS) medium without or with 15 mM sucrose under constant
darkness for 5 days. Under the sucrose-free condition (control), all the three myosin mutants showed reduced hypocotyl
length compared to the WT plants (Fig. 1C and D), suggesting the role of myosins in cell elongation. Specifically, the
3KO mutant was severely impaired in hypocotyl cell expansion in the absence of sucrose when compared to the single
mutants, hinting that this gene family may redundantly regulate plant development. In the presence of sucrose under
constant darkness, the short hypocotyl phenotype was not fully rescued when compared to the WT plants except for atm1-
1.

Altogether our findings suggest that plant-specific myosins may be involved in sugar-regulated hypocotyl elongation
under continuous darkness. These myosins have diverse subcellular localization patterns (Haraguchi et al., 2014;
Peremyslov et al., 2012, 2008) and thus may represent a new downstream signaling output following sucrose signals
within the developing shoot. Sucrose-induced hypocotyl elongation has been linked to brassinosteroid, gibberellins,
phytochrome interacting factors (PIFs) and SnRK1 (Sucrose Nonfermenting Kinase 1) signaling (Laxmi et al., 2004; Liu
et al., 2011; Simon et al., 2018a; Zhang et al., 2015, 2010; Zhang and He, 2015). Other proteins that are important for this
process include TANG1 (Zheng et al., 2015), a WD40 protein AtGHS40 (Hsiao et al., 2016), a plant-specific protein
SR45 (Carvalho et al., 2010), and HIGH SUGAR RESPONSE 8 (HSR8) (Li et al., 2007). Further studies will be needed
to determine how these molecular factors work in concert or parallel to regulate skotomorphogenesis.

Methods
Plant materials

Arabidopsis thaliana plants used in this study were Columbia (Col-0) ecotype: SAIL_405_B08 (atm1-1), SALK_127305C
(atm1-2), GABI_219H11(atm1-3) and SALK_022962C (atm1-4) and previously described (xik) and 3KO triple knockout
line (xi1 xi2 xik) (Peremyslov et al., 2012, 2010, 2008). Seeds were surfaced sterilized using 50% bleach and 0.01% Triton
X-100 for 10 min and then washed five times with sterile water. Seeds were then imbibed in sterile water for 2 days at 4
°C and then transferred to 0.5X Murashige and Skoog (MS) medium plates supplemented without/with 15mM sucrose.
For hypocotyl elongation, plates were incubated in the light for 6 hours prior to incubation in the dark for 5 days at 22 °C.
PCR based genotyping of the mutants was performed with primers listed in Table 1 and 2X DreamTaq polymerase master
mix (Thermo Fisher Scientific).

Real time quantitative PCR (RT-qPCR)

Plant materials were harvested from 7-day old seedlings in three biological replicates. RNA samples were extracted with
ZYMO RESARCH Direct-zol RNA Miniprep Plus Kit and quality was spectrophotometrically measured with the
Nanodrop. cDNA synthesis was performed with SuperScript IV Reverse Transcriptase kit according to manufacturer’s
instruction. The samples were run on BIO RAD CFX Connect Real-Time PCR Detection System with the following
components per reaction of 20µL volume: 10µL iTaq Universal SYBR Green Supermix, 0.6 µL Forward Primer F
(300nM), 0.6 µL Reverse Primer F (300nM) and 3µL cDNA (5ng/ul). No cDNA samples (water) were included as
negative control. Cycling conditions were 5 min at 95 °C, followed by cycles of 15 s at 95 °C, 30 s at 60 °C and 30 s at 72
°C. Data acquisition was done at the end of every cycle. The samples were prepared in three biological and two technical
repeats. The Comparative CT Method (ΔΔ CT Method) was used for the analysis of Ct values whereby the amount of
target, normalized to an endogenous reference and relative to a calibrator and is given by 2 –ΔΔCT.

Hypocotyl length and statistical analysis
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Five-day old dark-grown seedlings were imaged using an Epson Perfection V600 Photo Scanner. Hypocotyl length was
measured with ImageJ. For each experimental treatment, 30-40 seedlings were measured for each genotype. The assays
were repeated three independent times with similar results. GraphPad Prism (GraphPad Software, version 8.4.2) was used
for statistical analysis. To compare treatments effects on the mean value of wild type and mutants, either or one- or two-
way ANOVA was performed using Tukey’s test for multiple comparison.

Gene diagram annotation

The diagram of ATM1 (AT3G19960) was created using the Exon-Intron Graphic Maker (http://wormweb.org/exonintron)
using current gene model sequence from TAIR (www.arabidopsis.org). The position of all T-DNA alleles examined was
obtained from the SALK SIGnAL T-DNA express Arabidopsis Gene Mapping tool (http://signal.salk.edu/cgi-
bin/tdnaexpress).

Reagents
Table 1: Primers used in this study.

Primers 5′ > 3′ Sequence Purpose

SAIL_405_B08 LP TTCGTGTGAACGTTGATTCTG

Genotyping

SAIL_405_B08 RP TCCAGCTTGAATAGATGACGG

SALK_127305_LP TCCTCAAGCATCACCGTTAAC

SALK_127305_RP GCAGAGAGCTCAAGTGTTTGG

GABI_219H11_LP TAAGAGCGAGACAGAGAACCG

GABI_219H11_RP TCGTGGTTGGTTGGTTAGAAG

SALK_022962_LP GGGGAAACAGAGAGAAATTGG

SALK_022962_RP TTTGCTTTGGCATTAACCAAC

Sail-LB2 GCTTCCTATTATATCTTCCCAAATTACCAATACA

LBb1.3 ATTTTGCCGATTTCGGAAC

GABI-8474 ATAATAACGCTGCGGACATCTACATTTT

ATM1_qPCR_Fw CAGACAGAGAACTGAGGAGGC

RT-qPCR
ATM1_qPCR_Rv CATCGAACCACTGCTCTCTTCG

AT1G13320_Fw GCGGTTGTGGAGAACATGATACG

AT1G13320_Rv GAACCAAACACAATTCGTTGCTG
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