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SUMMARY

For almost 50 years, sleep laboratories around the world have been collecting massive amounts of 

polysomnographic (PSG) physiological data to diagnose sleep disorders, the majority of which are 

not utilized in the clinical setting. Only a small fraction of the information available within these 

signals is utilized to generate indices. For example, the apnea hypopnea index (AHI) remains the 

primary tool for diagnostic and therapeutic decision-making for obstructive sleep apnea (OSA) 

despite repeated studies showing it to be inadequate in predicting clinical consequences. Today, 

there are many novel approaches to PSG signals, making it possible to extract more complex 
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metrics and analyses that are potentially more clinically relevant for individual patients. However, 

the pathway to implement novel PSG metrics/analyses into routine clinical practice is unclear. Our 

goal with this review is to highlight some of the novel PSG metrics/analyses that are becoming 

available. We suggest that stronger academic-industry relationships would facilitate the 

development of state-of-the-art clinical research to establish the value of novel PSG metrics/

analyses in clinical sleep medicine. Collectively, as a sleep community, it is time to reinvent how 

we utilize the polysomnography to move us towards Precision Sleep Medicine.
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INTRODUCTION

One of the goals of Precision Medicine is to predict an individual’s risk of morbidity and 

mortality using different sources of data, from clinical history and physical examination, to 

physiological, imaging and molecular biomarkers, all to maximize health. Implementing 

“Precision Sleep Medicine” would utilize these principles and include the use of 

physiological data from the polysomnogram (PSG), both conventional and novel metrics, 

and combine them with imaging, questionnaires, genetic and -OMIC data to fully 

understand sleep and sleep disorders in the individual. One sleep disorder area where 

precision medicine is already being developed is obstructive sleep apnea (OSA) [1–7].

Statement of Problem.

When sleep medicine emerged as a new field in the 1960s, scoring criteria for sleep stages 

for analog PSG was established by Rechtschaffen and Kales [8], and was based on human 

visual inspection of physiological signals recorded during sleep. Since then, consensus on 

sleep stages and scoring rules by sleep experts culminated in the establishment of the 

American Academy of Sleep Medicine (AASM) Scoring Manual. Originally published in 

2007 [9], there has been one major update, Version 2.0 in 2012 [10], with six subsequent 

updates (Versions 2.1 to 2.6, last in January 2020) to standardize calibrations, nomenclature 

and other particular aspects of the test. While these scoring criteria allowed PSG data to be 

evaluated uniformly between labs, it has potentially oversimplified assessment of sleep 

disorders. One example of this is seen in OSA, where we have reduced the entire PSG to one 

main index, the apnea-hypopnea index (AHI), i.e. the average number of apneas and 

hypopneas per hour of sleep [10, 11]. The AHI allows hypopneas to have the same weight as 

apneas, and it does not differentiate whether the respiratory events are obstructive or central 

in nature, long or short, or whether they are associated with an arousal, an increase in heart 

rate or a drop in oxygenation. Furthermore, despite OSA being a heterogeneous disorder 

where patients have different symptoms [12, 13], pathophysiology [3–6] and clinical 

outcomes, patients are simply grouped into ‘OSA, adult’ or ‘OSA, pediatric.’ Lastly, 

irrespective of origin or severity, we tend to treat adult OSA patients with continuous 

positive airway pressure (CPAP) treatment as the first line of therapy, despite the availability 

of other treatments.
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Potential Solution.

As technology advances, it is inevitable that Sleep Medicine will undergo an evolution that 

changes current practices. Today, PSG signals are digitized and contain an enormous amount 

of information such that visual inspection is no longer enough to realize or analyze all the 

signals. Mathematical and computational methods that can more comprehensively and 

consistently analyze digitized PSG signals have been available for decades, yet we continue 

to use the same scoring criteria designed for analog based recordings. Thus, it is time to ask 

the question, how do we enhance clinical care by harnessing all the PSG information? In the 

example of OSA, one solution is to combine conventional and novel PSG metrics/analyses 

to identify more OSA subtypes that would better predict the best first line of therapy for an 

individual with the goal of preventing clinical consequences. With so many novel automated 

PSG tools and analysis methods available, now is the opportune time to consider how to 

conduct the necessary research to prove their validity as important physiological biomarkers.

Our goal with this narrative review is to outline how the PSG can be “reinvented” in the age 

of Precision Medicine using signals already being collected. We propose that there are two 

important advances to consider. First, is the identification of novel PSG metrics that can be 

obtained from raw PSG signals, such as sleep depth, sleep drive, arousal intensity and 

hypoxic burden. Our literature search strategy was to identify manuscripts that described 

new metrics that might contribute to assessment of the physiological consequences of OSA. 

Second, is the development of novel PSG analytical approaches to analyze multi-

dimensional data, for example, autoscore sleep stages or diagnose narcolepsy using the PSG 

(without the multiple sleep latency test) or score movement disorders on the 

polysomnogram. Here we searched for manuscripts that reported machine learning 

approaches to multi-dimensional data. It may be the role of sleep researchers that have 

expertise in signal processing and computational analyses of big data to further develop PSG 

metrics/analyses, but equally important is the academic-industry partnerships between 

software companies to make the novel PSG metrics/analyses readily available so clinician 

investigators can assess their value for the practice of sleep medicine. Only by working 

together as a sleep community, can we advance and realize “Precision Sleep Medicine” of 

the future.

Based on these concepts, this narrative review will: 1) Describe novel PSG metrics that have 

been proposed to assess physiological disturbances during sleep with a focus on sleep-

disordered breathing; 2) Explain different machine learning strategies; 3) Describe examples 

of application of machine learning approaches to the analysis of signals from the 

polysomnogram because both novel PSG metrics and new machine learning approaches are 

required to advance our understanding of sleep and sleep disorders; and 4) Outline future 

directions and steps needed to take advantage of the opportunities that these developments 

provide.

“PRECISION SLEEP MEDICINE”

Precision Medicine is an approach to healthcare, endorsed by the United States government 

[14], that aims to predict an individual’s risk using different sources of data – from genetic 

predisposition to environment and lifestyle choices, as well as symptoms/questionnaires, 
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physiological, molecular and imaging biomarkers – then tailoring an intervention to 

maximize benefit for individual subjects [15]. This is based on the concept that there are 

major individual differences between patients with the same disorder. Management of 

patients should be cognizant of these differences and treatment directed at the individual. 

Other fields, such as “Precision Oncology,” “Precision Psychiatry” and “Precision 

Pulmonary” have already made significant advances toward precision medicine with proven 

benefits in patient outcomes [16–19]. Understanding disease subtypes is one of the first steps 

towards precision medicine that subsequently allows clinicians to tailor management for 

each subtype.

An exciting shift towards “Precision Sleep Medicine” is already underway with most of the 

work so far being done within OSA [20]. For example, OSA is a heterogeneous disorder 

[21] for which the use of conventional PSG metrics to diagnose OSA has not changed much 

in the last 40 years. Consequently, OSA heterogeneity or OSA subtypes cannot be fully 

captured. While the AHI is the current measure clinicians use to diagnose OSA, it is of 

limited value to inform Precision Medicine [22–24]. The AHI cannot capture the 

heterogeneity of underlying pathophysiological mechanisms including arousal threshold, 

ventilatory instability, upper airway collapsibility, upper airway muscle responsiveness, heart 

rate variability, and changes in sleep depth [25]. Just as supine-dependent OSA is a 

recognized subtype that can be treated with positional therapy, there are likely many other 

OSA subtypes that exist based on the pathways to disease [21, 26], clinical symptom 

presentation [12, 27–29], physiological expression [30], susceptibility to comorbidities [31, 

32] and treatment response [20, 33, 34], but have not yet been clinically recognized. While 

we use conventional PSG parameters such as total sleep time, percentages of sleep stages, 

sleep latency, sleep efficiency and the arousal index to give context to a patient’s sleep 

history, these measures are rarely utilized to inform clinical decisions. Researchers have 

shown, PSG parameters such as oxygen desaturation indices (ODI) and total time spent with 

oxygen saturation less than 88%, are better than the AHI at informing clinical consequences 

and have been associated with excessive sleepiness and hypertension [35, 36] and 

cardiovascular/cerebrovascular regulation [37]. However, these associations are typically 

quite modest, suggesting that a more nuanced approach to assessment of physiological 

abnormalities could provide more robust identification. Furthermore, despite the known 

limitations of Positive Airway Pressure (PAP) as a first line therapy, irrespective of the OSA 

subtype, severity or risk of specific comorbidities, and the availability of alternative 

therapies, as a field, we still have not agreed on a validated clinical algorithm that tailors 

therapy to the individual’s endotype. By systematically understanding which OSA 

pathophysiological endotypes responds to specific therapeutic options [26], clinicians would 

be able to offer more individualized OSA therapy. In short, by condensing the rich 

physiological data of the PSG to the AHI, we have been unable to fully characterize OSA 

heterogeneity and identify meaningful subtypes. Thus, the first step to implementing 

precision sleep medicine for OSA is to recognize that the ‘one-size-fits-all’ approach is not 

effective, and a more comprehensive characterization of the disease is necessary. One 

important domain of a more comprehensive characterization of diseases like OSA are the 

physiological changes that occur during sleep.

Lim et al. Page 4

Sleep Med Rev. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NOVEL PSG METRICS

Recently, there have been major advances in the application of computational methods to 

derive novel physiological metrics that can be extracted automatically from the PSG. 

However, while the clinical value of these novel metrics is currently unknown, this review 

aims to provide reasons why and how more in-depth studies are needed to assess these novel 

PSG metrics. For us to understand the clinical value of these novel PSG metrics, we need 

more sleep clinicians to accept that novel PSG metrics could provide more clinical value and 

we need software companies to incorporate novel PSG metrics into existing software to 

make them more readily available for clinical research. Then, as a sleep community, we can 

perform the much-needed longitudinal studies to assess whether these novel PSG metrics 

provide enhanced prognostic information by identifying who is at increased risk of specific 

clinical outcomes. Given that novel PSG metrics provide information from different 

domains, it seems reasonable to argue that they will help identify subtypes of different sleep 

disorders and their underlying pathophysiological mechanisms. Examples of novel PSG 

metrics include sleep depth (e.g. Odds Ratio Products [ORP] [38] and cardiopulmonary 

coupling [39]), sleep drive (e.g. ORP-9) [40], arousal intensity and heart rate response to 

arousals [41], arousal threshold [42], and a more detailed characterization of respiratory 

events including hypoxic burden [43–46]. Collectively, novel PSG metrics will likely 

provide a more in-depth understanding of normal and abnormal sleep physiology. In this 

section we briefly review some novel PSG metrics and describe their potential role in 

assessment of sleep and characterization of sleep disorders, with a focus on OSA. Some of 

these are specific to OSA (e.g. hypoxic burden [44–47]), while others that assess sleep depth 

[39, 48] are relevant not only to OSA but other sleep disorders. While some studies have 

been performed to assess the clinical utility of these novel PSG metrics, larger validation 

studies are still necessary before applying them to clinical practice.

Sleep Depth (ORP and Cardio-pulmonary coupling) and sleep drive (ORP-9)

While sleep quantity is important for sleep health, sleep quality is equally important [49]. 

Critical to determining sleep quantity and sleep quality is scoring sleep stages. 

Conventionally, sleep stages are scored using EEG, EOG and EMG criteria for 30-second 

epochs that are a carryover from when scoring was performed on analog-based PSGs. Even 

though PSGs have been digitized for decades, we continue to use the 50% rule [9]. This 

means if wake EEG is present in less than half of a 30-second epoch, it is not accounted for 

in sleep fragmentation, sleep depth or sleep quality when in fact, sleep state changes 

continuously rather than an arbitrary 30-second epoch. Furthermore, the EEG delta, theta, 

alpha/sigma, and beta waves used to score a stage of sleep most likely does not capture the 

variability of sleep stages both within one patient and between patients. For example, a 

patient’s EEG signal patterns in stage 2 sleep may vary from the beginning to the end of the 

night and may vary when compared to another patient’s stage 2 sleep, yet currently, we 

equally classify it all as stage 2. In sleep disorders such as insomnia, OSA, and narcolepsy, 

where sleep becomes increasingly fragmented, the current scoring criteria fails to account 

for more rapidly changing sleep stages and sleep depth. This leads to the loss of clinically 

relevant data regarding sleep architecture, as well as masking the potential impact of arousal 

dynamics and the physiologic impact of arousals [25, 38, 40]. While traditional scoring rules 

Lim et al. Page 5

Sleep Med Rev. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 30-second epochs cannot capture this variability in staging sleep, if we used shorter 

epochs and automated scoring, we could capture this variability. Automated EEG-analysis 

using spectral analysis makes it possible to quantify EEG power density and develop novel 

sleep quality indices. This argues that a continuous measure of sleep depth and sleep drive is 

likely to be more informative.

Odds Ratio Product (ORP): Younes et al [38] initially set out to determine continuous 

measures of sleep depth specifically in OSA patients. Using Fourier transform of EEG 

signals, they developed a continuous index of sleep depth - the odds ratio product (ORP). 

ORP is based on spectral analysis from the Fourier transform of the EEG evaluating the 

relative power in different frequency ranges (delta, theta, alpha/sigma, and beta). Thus, the 

ORP moves beyond measuring delta power during sleep which has not become part of 

routine clinical assessment. With ORP, relative power is calculated for 3-second consecutive 

epochs, then each frequency range is ranked between 0 (less intense) and 9 (most intense). 

Each epoch is then assigned a 4digit number (Bin #), which represents, in order, the ranks of 

delta, theta, alpha/sigma, and beta powers. For example, an epoch with a Bin# 2189 

indicates a power spectrum with low delta and theta powers and high alpha and beta powers. 

For each Bin #, the probability of being “awake” in the next 30-second epochs staged awake 

is determined and scaled by 40 (wake epochs in the development files represented 40% of all 

epochs), resulting in a continuous measure of sleep depth – the ORP, ranging from 0 (always 

asleep) to 2.5 (always awake). ORP has recently been used by Goldschmied et al [50] to 

characterize sleep depth during recovery sleep after 36 hours of sleep deprivation in 200 

healthy subjects. They found that the ORP values remained lower throughout the first night 

of recovery sleep compared to baseline sleep, indicating that as expected, sleep is deeper 

during recovery sleep, supporting the concept that ORP is an adequate measure of sleep 

depth. Meza-Vargas et al. [51] measured ORP in 30 patients with overnight PSG and MSLT. 

They found that higher levels of ORP during non-REM sleep i.e., lighter sleep, correlated 

with excessive daytime sleepiness, as determined by the MSLT [51]. In addition, using a 

large sample of monozygotic (N=59 pairs) and dizygotic (N=41 pairs) twins, our group has 

evaluated ORP based on repeated overnight PSG before and after sleep deprivation 

(manuscript in preparation). We observed that ORP is at least moderately stable from night 

to night within an individual patient, with intraclass correlation coefficients (ICCs) of 0.55 

during non-REM and 0.70 during REM sleep. Thus, ORP behaves as an individual trait-like 

characteristic.

Cardio-pulmonary coupling: Cardio-pulmonary coupling is another measure of sleep 

depth, but it does not require EEG signals; thus, it will be easier to deploy in the ambulatory 

setting. Thomas et al [39] derived a sleep spectrogram from a single-lead electrocardiogram, 

which could then be used to track cardiopulmonary interactions. This cardio-pulmonary 

coupling during sleep was extracted from the normal-to-normal sinus inter-beat interval 

series and a corresponding electrocardiogram-derived respiration signal. Then using Fourier-

based techniques, coherence (or cross-power) of these 2 simultaneous signals was used to 

generate a spectrographic representation of cardio-pulmonary coupling dynamics during 

sleep. This technique showed that non-REM sleep in adults demonstrates spontaneous 

abrupt transitions between high- and low-frequency cardio-pulmonary coupling regimes, 
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which have characteristic EEG, respiratory, and heart-rate variability signatures in both 

health and disease. Since cardiopulmonary coupling demonstrates a closer relationship to 

cyclic and non-cyclic alternating pattern states (measure of sleep instability, further 

discussed below) than standard sleep staging, it represents a novel measure of sleep depth 

during non-rapid eye sleep. Cardio-pulmonary coupling has been used in the setting of 

mandibular advancement devices in OSA patients [52], and wearable devices [53]. Lee et al 

[52] compared baseline measures and after 3 months use of mandibular advancement 

devices. Not only did they find that all respiratory indices improved, but also, when using 

cardio-pulmonary coupling, sleep depth also improved. Thomas et al [53] evaluated a 

wearable device, the M1, and used novel computational analyses of cardiopulmonary 

coupling to estimate sleep quality over multiple nights. Focusing on night-to-night 

variability, both healthy participants and sleep apnea patients treated with PAP demonstrated 

stable breathing and stable sleep, while participants with insomnia demonstrated less stable 

sleep. This study demonstrated how the combination of wearable devices and novel analyses 

could provide new insights into the management of sleep disorders.

Odds Ratio Product (ORP-9): Using the ORP, Younes et al [40] also developed an 

index, called ORP-9 that averages the ORP, 9 seconds after an arousal/awakening. This 

reflects the ability to return to sleep after the arousal, i.e., sleep drive. Lower ORP-9 

indicates an ability to rapidly return to deeper sleep. Patients with higher ORP-9 are more 

susceptible to repeat arousals/awakenings within the next 30 seconds than those with lower 

values. This study suggests that determining an OSA patient’s ability to return to deep sleep 

following an arousal/awakening may characterize one’s susceptibility to sleep fragmentation 

and overall sleep depth. Collectively, ORP and ORP-9 can be used to evaluate patients’ 

depth of sleep and sleep drive, which may explain different symptom presentation and 

underlying pathophysiology in OSA, insomnia and narcolepsy patients.

Arousal intensity and heart rate response to arousals

Cortical arousals that occur at the end of respiratory events are a significant cause of sleep 

disruption and sleep fragmentation [54]. Conventionally, AASM scoring criteria for an 

arousal is based on an abrupt shift in the EEG to higher frequencies for at least 3 seconds 

preceded by at least 10 seconds of stable sleep [9, 55]. The issue with human scoring of an 

arousal is that its appearance may vary considerably between individuals and within an 

individual across the night resulting in poor inter-scorer reliability [56].

Arousal intensity: Azarbarzin et al [41] set out to automate arousal detection and devised 

an intensity scale to catergorize arousals. They applied a two-level discrete wavelet 

transform to all arousal episodes using the two central electrodes (C3/A2 and C4/A1) 

(Figure 1A). Then, every arousal was given an intensity scale between 0 (no relative change 

in EEG) and 9 (most intense arousal). The arousal intensity scale was strongly associated 

with arousal-related tachycardia (Figure 1B) and respiratory and pharyngeal muscle 

responses [57]. This strong association between arousal intensity and physiological 

consequences can not be captured using non-automated (e.g. visual inspection) arousal 

detection. This suggests that the intensity of cortical arousals is an independent trait that 

could reflect different underlying pathophysiologies of OSA (i.e., instability of respiratory 
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control) or different susceptibility to developing cardiovascular complications, or explain 

unrefreshing sleep in patients with insomnia. Furthermore, within healthy young adults, the 

arousal intensity was reproducible within an individual [58], and this trait has been shown to 

be heritable [59].

Heart rate response to arousals: Heart rate response to arousals is the difference 

between the maximum heart rate in the 8 seconds following arousal onset and the baseline 

pre-arousal heart rate. The magnitude of the heart rate response to arousal varies with 

intensity of arousal with more intense arousals resulting in larger increases in heart rate 

(Figure 1B). Thus, comparing heart rate response to arousal between subjects requires 

evaluating either the slope of the line describing heart rate response to intensity of arousal 

(on a scale of 1 to 9) or the heart rate response to arousal at a fixed intensity, e.g., arousal 

intensity 5, 8, etc. The heart rate response to arousal is quite stable within subjects when 

assessed on two separate nights of study but quite different between subjects, i.e., it is a 

biological trait [58]. Studies in twins for arousal intensity threshold of the change in heart 

rate controlled for age, sex, and race indicate that it is a heritable trait [59] as the intraclass 

correlations between monozygotic and dizygotic pairs is 0.449 and 0 respectively. Thus it 

seems likely, although currently unproven, that the heart rate response to arousals will be a 

measure of sympathetic response [60] and would be a clinically useful surrogate.

It is also relevant to note that arousals may not be the only determinant of heart rate increase 

after obstructive events in OSA patients. In a study conducted by Azarbarzin et al. [61], the 

authors placed 20 patients with severe OSA on CPAP and performed dial-down experiments 

that reduced CPAP pressure to produce different degrees of obstructive events. The authors 

evaluated arousals and heart rate changes following airway obstruction events terminated by 

an increase in CPAP pressure versus events terminated by the spontaneous opening of the 

airway. Dial-down obstructive events that demonstrated spontaneous opening were 

associated with arousals and the highest change in heart rate. Events that were terminated by 

increases in CPAP pressure also demonstrated increases in heart rate but without an arousal 

and had a dose-response behavior according to the severity of obstruction. This study 

suggests that arousals may not be the only contributor to increased heart rate after severe 

obstructive events.

Arousal threshold

An arousal threshold is interconnected with respiratory drive which may explain an arousal 

from sleep in response to obstructed breathing [21, 62] (apnea or hypopnea). The variability 

of arousal threshold between patients is most likely determined by one’s genetics or by the 

medications one takes for various diseases [63, 64]. Thus, individuals with low arousal 

thresholds may wake from very small respiratory perturbations contributing to the instability 

of sleep and could benefit from sedatives to increase arousal threshold thereby enhancing 

sleep stability and improving sleep quality [65]. Edwards et al [65] developed a novel 

noninvasive approach to estimate arousal threshold using data from PSG signals. They 

obtained the gold standard arousal threshold by instrumenting subjects with epiglottic 

pressure catheters in the supine position, while obtaining standard PSG measures. A low 

arousal threshold was correctly predicted in 84.1% of subjects using 3 standard PSG 
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variables (AHI < 30, oxygen saturation nadir > 82.5%, and fraction of hypopneas >58.3%) 

using a multiple logistic regression model. Utilizing leave-one-out cross-validation, the 

study confirmed the predictive ability of this simple algorithm with a sensitivity of 82.2% 

and a specificity of 84.0%. While of interest, this tool requires further validation in 

independent datasets to be implemented into clinical practice (see further below).

Cyclic Alternating Pattern

Cyclic alternating pattern (CAP) [66] are sequences of long-lasting periodic activity that 

alternates between two EEG patterns that has been associated with sleep instability. An 

increase in CAP rate (more frequent changes in EEG pattern) correlates with increased sleep 

instability and has been associated with fatigue and sleepiness in adults with upper airway 

resistance syndrome [67]. It has been demonstrated within OSA patients that an increase in 

CAP rate and duration [68] is better at detecting respiratory events compared to arousal 

related respiratory events [69]. Interestingly, CAP rate has also been found to correlate with 

symptoms of fibromyalgia [70] and periodic limb movement in sleep patients [68]. While 

combining CAP parameters with other features of EEG may yield higher performing 

metrics, the clinical utility of CAP to diagnosis and treat OSA or other sleep disorders is still 

uncertain. Larger studies are needed to determine whether CAP based measures during non-

REM sleep are beneficial before applying these algorithms clinically.

Respiratory events and hypoxic burden

Conventionally, all OSA respiratory events are treated equally when calculating the AHI, 

whether there is a complete cessation of breathing (apnea) or a partial flow limitation 

(hypopnea) that terminates with either an arousal or an oxygenation drop. Hypopneas that 

terminate with an arousal are counted based on early work by Douglas and Martin that 

demonstrated induced “arousals” in normal subjects increased blood pressure and sleepiness 

[71]. It is recognized that apneas and hypopneas differ in event duration and level of oxygen 

desaturation [43] that is heritable [72], as well as the total area under the oxygen 

desaturation curve [44]. At this point what degree of hypoxic burden is pathological or what 

is normal is still unclear but may depend on an individual’s genetic ability to respond to 

hypoxemia (e.g. antioxidant capacity, arousal threshold) and comorbidities (e.g. heart and 

lung disease).

Desaturation duration and event duration: A Finnish group set out to provide better 

characterization of respiratory events (apneas and hypopneas). First [45] they used linear 

modeling strategies to propose an adjusted AHI (AHIAdjusted) as a function of the severity of 

obstructive events, defined as

AHIAdjusted = 5.328 × ObsSev

The severity of the obstructive events (ObsSev) was defined as a function of the duration of 

the hypopnea and apnea events (HypDur, ApDur), the corresponding desaturation areas 

(DesArea), and the the total analysed time (T)
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ObsSev =
∑m = 1

M HypDurm × DesAream + ∑n = 1
N ApDurm × DesAream

T

where the number of hypopneas is M and the number of apneas is N. The authors 

demonstrated that the adjusted AHI was associated with all-cause mortality and non-fatal 

cardiovascular events. Most recently [73] they demonstrated that conventional AHI did not 

perform as well as the adjusted AHI in predicting all-cause mortality. Then, they calculated 

respiratory event duration and identified 2 novel features-desaturation duration (respiratory 

event was defined as having at least ≥3% drop in SaO2 and duration was measured between 

the onset of the SaO2 drop to the lowest SaO2 before the signal returned back to baseline), 

and event duration (defined as apneas/hypopneas divided into 8 different categories based on 

duration) [46]. They found that increased event duration correlated to increased drops in 

SaO2 desaturation and made a case for giving longer event duration more weight than 

shorter events when estimating OSA severity and associated long term cardiovascular risk.

Respiratory event duration: Koch et al [43] evaluated whether the presence of hypoxia 

during respiratory events were associated with different clinical outcomes, specifically, 

hypertension and sleepiness. They analyzed data from the Wisconsin Sleep Cohort and used 

an automated algorithm to mark respiratory events with desaturation (hypoxia-breathing 

disturbance index-H-BDI) and without desaturation (nonhypoxia-breathing disturbance 

index-NH-BDI) regardless of arousal. Increased H-BDI was associated with hypertension 

prevalence, defined as blood pressure ≥ 140/90 mmHg or requiring antihypertensives. In 

contrast, a two-fold increase of NH-BDI was associated with more objective sleepiness (β = 

−0.52 minutes on MSLT, p < 0.001), despite no difference in subjective sleepiness (β = 0.12 

on Epworth Sleepiness Scale score, p = 0.10). Thus, in sleep disordered breathing, NH-BDI 

could be an objective measure of daytime sleepiness, independent of hypoxia. Lastly, 

longitudinal analyses over a 4-year followup period found that baseline NH-BDI was 

associated with increasing H-BDI, suggesting that hypoxia severity may evolve over time.

Hypoxic burden: Azarbarzin et al [44] evaluated the hypoxic burden of sleep apnea as a 

way to quantify severity and associate it with clinical consequences. The investigators used 

data from 2 cohort studies, The Outcomes of Sleep Disorders in Older Men (MrOS) and the 

Sleep Heart Health Study (SHHS) and used all-cause and cardiovascular disease (CVD)-

related mortality as outcome measures. Hypoxic burden was determined by measuring the 

area under the oximetry desaturation curve associated with respiratory events. They found 

that in both cohorts, a higher hypoxic burden was associated with increased risk of CVD 

deaths. However, when using traditional measures of OSA severity, severe OSA (defined by 

AHI >30) was associated with mortality in 40–70-year-old men within the SHHS, however, 

AHI >30 within the MrOS cohort did not demonstrate an association with mortality. 

Collectively this suggests that hypoxic burden which incorporates event duration and 

severity of oxygen desaturation during respiratory events is better at predicting CVD-related 

mortality than the AHI.
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NOVEL PSG ANALYTIC APPROACHES

In addition to novel PSG metrics, application of established mathematical and computational 

analysis from other fields to physiological data from the PSG will also help us characterize 

the heterogeneity of sleep disorders. This novel implementation of mathematical/

computational analyses has been well established in fields such as physics, astronomy and 

economics, but it was not until recently that engineers and mathematicians wanted to solve 

problems within the biological sciences and medicine [74, 75]. We now see an increasing 

number of applications that support the development of a “new age” where systems biology 

and big data drive Precision Medicine. PSG data with its multiple signals across the sleep 

period is ideal to applying signal-processing techniques and predictive modeling that will 

advance Precision Sleep Medicine. Signal processing techniques and machine learning are 

established analysis methods that can be used to potentially identify features to predict, for 

example, OSA subtypes. In general terms, developers use machine learning to train a model 

to predict a desired outcome using labeled examples (i.e. sleep stages N1, N2, N3, REM) 

and a set of features (i.e. variables, or predictors such as spindles, eye movements or EEG 

spectral power), in what is defined as “training data.” To ensure that the trained model is 

robust to generalization, it is then deployed in what is defined as “testing” or “validation” 

data with known outcome labels that were not used to train the model. If the predictive 

performance is acceptable and sustained across the training and testing data, the model is 

considered successful.

Examples of successful implementation of machine learning models include Google’s 

DeepMind [76] to play chess, shoji and go [77], as well as in medicine to process medical 

scans [78, 79], detect diabetic retinopathy [80], detect metastases in lymph nodes [81], and 

determine whether a tumor is malignant or benign [82]. Today there are several examples of 

successful implementation of machine learning within sleep. First, as highlighted by recent 

studies, the problem of poor inter-rater reliability of scoring sleep stages using current 

guidelines [83, 84] is solved with automated scoring. Second, as previously discussed, the 

problem of conventional PSG metrics unable to identify OSA subtypes has started to be 

solved with preliminary use of novel analytic methods of raw PSG signals to identify OSA 

subtypes. Lastly, today, to make the diagnose and treat narcolepsy, we require a multiple 

sleep latency test (MSLT) [85] that is both labor intensive and time consuming. Early 

research using novel analytic methods have found a way to identify narcolepsy using only 

the PSG. In this section we briefly review machine learning approaches and then give 

examples of how the application of mathematical/computational analysis has been applied to 

the autoscoring of sleep stages, identification of OSA subtypes, the identification of 

narcolepsy from the PSG without the MSLT and diagnosing movement disorders during 

sleep.

Machine learning: unsupervised vs supervised

Machine learning is the umbrella term that encompasses computational approaches that deal 

with large, complex, multi-dimensional data to perform specific tasks without the use of 

explicit instructions. While machine learning has been utilized for decades in other fields, it 

has only recently been gaining traction and popularity in the biological sciences and 
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medicine. PSGs generate a large amount of data, on the order of 0.1–1TB and it is complex 

and multidimensional, ranging from 1 Hz on the SaO2 monitor to 512 Hz in one EEG 

channel, depending on the configuration. Signal processing techniques using machine 

learning has been used to derive relevant features from the PSG data to autoscore sleep 

stages and better characterize respiratory events [86]. While it is appropriate to be cautious 

of a computer analyzing PSGs, automated tools and analyses can be useful to identify subtle 

patterns within the PSG signals that cannot be detected by human visual inspection. 

Machine learning algorithms can be divided into two broad groups: unsupervised and 

supervised learning.

Unsupervised learning is an algorithm that formulates inferences from data that are not 

labeled. For example, a researcher is interested in staging epochs of sleep. In unsupervised 

learning, the researcher will not explicitly label each epoch, but let the algorithm label each 

epoch according to input features e.g. power spectrum density of different bands of the EEG, 

EMG and EOG. The algorithm would then label the epochs into two or more groups, and 

then the researcher would name the groups according to the differences in the features across 

the groups. Consistent with the current understanding of sleep stages, we might expect from 

this example that 4 groups would be identified by the algorithm and the researcher would 

name the 4 groups N1, N2, N3 and REM. However, it is possible that more (or less) groups 

would be identified by the algorithm, suggesting that there may be different sub-

classification of sleep stages in this hypothetical example. The strength of unsupervised 

learning is that there is no bias by labeling data, with potential to find patterns of 

commonalities not previously discovered. In unsupervised learning, experts are still needed 

to interpret the results, which may not always be obvious. Examples of unsupervised 

methods include cluster analyses, anomaly detection, and some neural networks. As early as 

the mid-90s, investigators such as Pardey et al [87] set out to demonstrate the limitations of 

rule-based sleep staging by using artificial neural networks to develop a 10-dimensional 

feature vector to characterize sleep on a continuous scale. More recently, many groups have 

utilized cluster analyses to identify OSA subtypes. We have used cluster analysis to identify 

3 different OSA subtypes based on symptom data of unlabeled patients with OSA (AHI>15) 

[28] and validated these OSA subtypes in 2 additional studies [12, 27]. Another group used 

cluster analysis with conventional PSG metrics of OSA and demographic data and identified 

7 OSA subtypes (will be discussed below) [1].

Supervised learning is different in that the researcher uses labeled data (e.g., epochs labeled 

as N1, N2, N3 and REM), and the machine learning algorithm establishes a rule that 

separates these groups as best as possible. Herein “garbage in, garbage out” is apparent as 

supervised learning is critically dependent on a very robust set of expertly labeled examples 

to enable the algorithm to find the rule that separates the groups as accurately as possible. 

Logically, the supervised algorithm using labeled examples cannot identify the presence of 

other, novel groups. While many machine learning classification methods are dependent on 

the features that are included in the algorithm, it is important to note that identifying features 

requires prior expert knowledge (e.g. clinical experience). Features included in an algorithm 

can be extracted from, for example, the PSG, using signal processing techniques on time 

series signals (e.g. EEG). An advantage of feature extraction is that it reduces the 

dimensionality of the data and can help reduce the number of training examples needed to 
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satisfactorily calculate the rule for separating the groups. Automatic feature selection 

techniques can be used to select discriminating features from a pool of candidate features. 

An emerging area in supervised machine learning in the era of Big Data is the use of 

methods that improve feature selection that is not limited by hand-engineered features [88]. 

One such method that learns its own features is the convolutional neural network (CNN), but 

has the disadvantage of requiring larger data sets to train than algorithms using hand-

engineered features [89]. The top performing systems in the 2018 Computing in Cardiology 
Physionet competition of identifying non-apnea arousals from the PSG all used CNNs which 

outperformed systems using hand engineered features [90, 91]. The competition organizers 

provided approximately 1000 overnight PSGs for training algorithms, suggesting this may 

be the minimum number of PSGs to automate feature selection. Examples of supervised 

methods include logistic regression, support vector machine, classification and regression 

trees, random forests, artificial neural networks and deep learning. We now describe recent 

specific examples of application of machine learning using data from PSGs.

Example: Machine learning and Autoscoring Sleep Stages

Olesen et al [92] set out to produce autoscoring of sleep stages using machine learning 

techniques, specifically, the use of deep residual neural networks of unprocessed PSG 

signals. In brief, unprocessed data were passed through 50 convolutional layers, which 

performed their own feature extraction before classification into one of five sleep stages. 

Three model configurations were trained on 1850 polysomnogram recordings and 

subsequently tested on 230 independent recordings. The best performing model yielded an 

accuracy of 84.1% with most of the errors made on non-REM stage 1 and 3 decisions, which 

may reflect how we define sleep stages today. This group went on to fully automate sleep 

staging using random-forest algorithms [93] to better detect REM sleep using only EEG and 

EOG signals. Using the publicly available Institute of Systems and Robotics from Coimbra 

(ISRUC)-Sleep database [94] a model was trained and tested on 100 subjects with different 

sleep disorders which was also manually scored by two individual experts. EOG and EEG 

signals were divided into overlapping moving 33-s epochs with steps of 3s, then several 

time- and frequency-domain features were computed. The features were used to train a 

random forest classifier that labelled each 33-s epoch with the probabilities of being wake, 

REM and non-REM. The performance of the model was tested using a 20-fold cross 

validation scheme. For the epochs that the scorers agreed on, the classification achieved an 

overall accuracy of 92.6%. Most recently, Zhang et al [95] used deep learning to autoscore 

sleep stages and found that it outperformed human agreement on sleep staging. Although 

accuracy for autoscoring is repeatedly high, the question is: are we ready as a field, to accept 

automated sleep stage scoring? The advantage of using automated sleep scoring is three-

fold: (1) we will have consistent staging across labs both clinically and in research, for 

which we can develop treatment algorithms and build upon each other’s findings without 

questioning the reliability of sleep stages (2) automated scoring will reduce the time needed 

by technologists and physicians to process EEG recordings and (3) we may move away from 

current sleep staging and discover altogether novel sleep stages. The disadvantages of using 

current generation automated sleep scoring are a distrust of automatic staging by clinicians 

and potentially an inability of automated algorithms to adapt to an individual patient. To 
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address the latter, more tests of validity will be required. It will also require continued efforts 

to ensure that quality data are collected and further standardization of signal collection.

Example: Cluster analysis identifies OSA subtypes based on conventional PSG variables

Zinchuk et al. used cluster analysis to identify OSA subtypes based on physiological 

characteristics using 29 PSG measures, demographics and comorbidities [1]. They identified 

seven OSA subtypes (Table 1) within conventional categories of OSA severity; two subtypes 

of none/mild conventional OSA severity (Cluster A: mild; Cluster B: periodic limb-

movement syndrome [PLMS]), two in moderate conventional OSA severity (Cluster C: non-

rapid eye movement [NREM]-related apneas with poor sleep; Cluster D: REM-related 

apneas with increased hypoxic burden), and three in severe conventional OSA severity 

(Cluster E: Hypopneas with significant desaturations; Cluster F: Arousals and poor sleep; 

Cluster G: Combined severe subtype). The most interesting finding was that certain clusters 

exhibited greater risk for cardiovascular (CV) outcomes. Specifically, Cluster B (PLMS) had 

a twofold higher risk than Cluster A (Mild) for Acute Coronary Syndrome, Transient 

Ischemic Attack, stroke or death from any cause. Interestingly, Cluster D (REM and 

hypoxia) did not have an increase in cardiovascular outcomes compared to Cluster A (Mild). 

While conventional OSA severity (based on AHI) was not associated with CV outcomes, 

analysis within each OSA subtype did reveal some association with CV outcomes. In regular 

CPAP users (vs. non-regular CPAP users) there was an attenuation in CV risk within the 

PLMS (cluster B) and hypopnea/hypoxia cluster (cluster E) (marked with a * red asterisk in 

Table 1). Therefore, PSG clusters may also inform which OSA patients would benefit from 

CPAP therapy with respect to CV outcomes. The authors concluded that there is evidence of 

PSG heterogeneity within traditional OSA severity categories that can be extracted using 

unsupervised cluster analyses of which only some subtypes are associated with CV 

morbidity/mortality.

Example: Algorithm to determine OSA pathophysiological subtypes based on physiology 
extracted from clinical PSG

A novel mathematical approach to determine OSA pathology is based on a model of 

ventilatory control [21]. The goal of this effort was to extract assessments of key 

physiological risk factors for OSA from the PSG, i.e., upper airway collapsibility, arousal 

threshold, overall loop gain (a measure of stability of ventilatory control system), and upper 

airway muscle responsiveness to negative intraluminal pressure [5, 42, 96]. These 

physiological mechanisms have been identified using complex experimental protocols that 

require insertion of fine wires to measure genioglossus activity, catheters to assess epiglottic 

pressure, as well as use of multiple step-down tests where CPAP pressure is acutely reduced 

to precipitate upper airway collapse [97–99]. Given the complexity of the protocols, these 

assessments were done in a small sample of patients and cannot be widely used in clinical 

practice. However, the goal is to obtain the same information from standard assessments 

done during the overnight sleep study using some assumptions extrapolated from these small 

studies to other larger samples. For example, one assumption is that there is a single value 

for these 4 pathophysiological mechanisms for each subject when most likely these 

mechanisms will change across the night in response to sleep stages, body position, etc., and 

across time with trajectory of disease. Thus, while this is an interesting concept to 
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personalize pathophysiological mechanisms and therapy, it would seem essential to assess 

both within and between night variability in individual subjects to determine the stability of 

these pathophysiological traits before this approach is applied clinically in large numbers of 

subjects.

Example: Machine learning algorithm of PSG to diagnose Narcolepsy

To make the diagnosis to treat Type-1 Narcolepsy (T1N) currently requires an overnight 

PSG and next day Multiple Sleep Latency Test (MSLT) [85]. The question is whether there 

are features in the overnight PSG that make the MSLT unnecessary. To address this, 

Stephansen et al [100] used a supervised machine learning algorithm, convolutional neural 

network (CNN) with a Long Short-Term Memory capability (LSTM), on raw PSG signals to 

identify T1N patients using sleep/wake stage mixing/dissociation, a characterization that has 

been found to be higher in narcoleptic subjects compared to non-narcoleptic subjects [101–

105]. Sleep/wake stage mixing/dissociation uses 38 features from EOG, EMG and EEG to 

differentiate wake, stage N1, N2 N3 and REM sleep then provides a composite measure of 8 

prominent features that differentiate narcolepsy and controls (Figure 2) [102]. The 

investigators used the overnight PSG to identify a T1N marker based on higher than normal 

overlap between probabilities of different sleep stages, a highly predictive feature of sleep 

stage mixing/dissociation based on descriptive statistics and the persistence of a set of new 

time series data generated from the geometric mean of every permutation of the set of sleep 

stages. A T1N PSG physiological biomarker based on increased sleep/wake stage mixing/

dissociation overlaps achieved a specificity of 96% and a sensitivity of 91% to diagnose 

narcolepsy. This biomarker was trained on 645 PSGs (7 datasets), then tested on 444 

different PSGs (5 datasets) then replicated on 321 different PSGs (2 datasets not involved in 

training or testing). The addition of HLA-DQB1*06:02 genotyping further increased 

specificity to 99%. If adopted, this algorithm would not only reduce time spent in sleep labs 

(no longer require MSLT) but enables the possibility of diagnosing T1N using Type 2 home 

sleep studies.

These investigators also used neural networks in 2,784 PSGs of normal and abnormal (e.g. 

insomnia, OSA, restless legs syndrome, periodic leg movement and narcolepsy) sleep 

subjects to automate sleep stage scoring to generate the hypnodensity graph. The accuracy of 

sleep stage scoring was then validated in 70 subjects as assessed by six scorers to 

independently validate their best automated scoring algorithm. They found that their best 

algorithm for autoscoring achieved 87% accuracy when compared to 5 scorers and 

performed better than any individual scorer. Lastly, they were able to score at higher 

resolution i.e., 5 second epochs, making the outdated 30 second epoch no longer necessary.

Example: Machine learning algorithm of PSG to diagnose movement disorders during 
sleep

Since there is a high prevalence of movement disorders during sleep [106], could limb EMG 

processing be a part of reinventing the PSG? For example, patients are unable to consistently 

report periodic limb movement disorder, a leg movement disorder during sleep. And, while 

leg movements are a common finding in patients with sleep disordered breathing, leg 

movements are not always causally linked to respiratory events [107]. To address this, the 
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validated automatic scoring program MATPLM1 [108] was used to identify candidate leg 

movements according to standards put forth by the World Association of Sleep Medicine 

[109, 110]. If the recommended rules for algorithms are implemented, a high sensitivity and 

specificity for diagnosing periodic limb movements during sleep can be reached.

FUTURE DIRECTIONS

In this review we have discussed how novel PSG metrics and analyses can improve our 

understanding of sleep and sleep disorders. We are at an exciting crossroad of combining 

these novel approaches to modernize physiological biomarkers from the PSG which could 

then be integrated with other data such as -OMIC data, questionnaires, genetic data and 

imaging data to fully understand mechanisms and its relationship to clinical outcomes. One 

step is to make centralized databases publicly available to perform the research to determine 

clinical value in diagnosing subtypes and tailor treatment. Another step is to start 

considering how the sleep community would translate the science into clinical practice with 

the goal of developing Precision Sleep Medicine.

Integrate physiologic biomarkers from the PSG with -OMICs and other data towards 
Precision Sleep Medicine:

Although advanced PSG analysis will likely achieve benefits in its own right, the ultimate 

goal for Precision Sleep Medicine is to integrate multiple sources of data to develop a more 

complete picture of the individual and their health trajectory. Such sources of data extend 

beyond the clinical and biological (specimens) domains and should include continuous or 

serial measures of lifestyle, mood, stress, relationships, and health behaviors. The advent of 

wearable technologies and a variety of health apps has revolutionized our ability to capture 

such rich data on a large scale. The challenge, however, is developing methods for aligning 

and analyzing such datasets that is clinically applicable and ethically acceptable. One of the 

first steps toward this challenge, is to centralize large databases and make them publicly 

available so it will be clearer as to which PSG metrics/analyses has stronger associations 

between a patient’s data and clinical outcomes. Lastly, discussions will be needed as to how 

to implement them into existing software packages.

Centralized large databases need to be publicly available:

Large databases that connect multiple hospital systems within a region, state, country and 

across multiple countries, are required to leverage advances in Precision Sleep Medicine. 

Data integration is a method of bringing information from different sources (e.g. Electronic 

Health Records from hospitals and clinics, -OMIC data and raw PSG signals) in 

chronological order. Obviously there are many patient privacy/security concerns in creating 

such a database that links individuals across private and public sources from storing to 

distributing the data [34]. Some progress has been made to provide researchers access to 

large resources to identify what questions should be asked and in what order. In the United 

States, the National Institute of Health has funded 2 large sleep databases. The National 

Heart, Lung, Blood/Sleep Institute has funded The National Sleep Research Resource 
[34,35], to improve access to sleep data, including overnight physiological signals. The 

National Institute of General Medical Sciences and the National Institute of Biomedical 
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Imaging and Bioengineering has funded PhysioNet, which offers free web access to large 

collections of recorded physiologic signals including sleep data. In Canada, the Canadian 
Sleep and Circadian Network has been collecting PSGs and banking samples. The SIESTA 

group is a comprehensive service provider that supports the measurement of sleep, wake and 

brain activity in clinical trials and research. They have compiled a database of triple scored 

sleep recordings from 200 healthy subjects, two nights each and 100 patients with various 

sleep disorders [111]. The European Sleep Apnea Database (ESADA) group collects sleep 

recordings of in-lab and home sleep studies, all on sleep apnea patients in order to identify 

risk factors and phenotype sleep apnea patients [112]. International Consortiums like the 

Sleep Apnea Global Interdisciplinary Consortium (SAGIC) has been collecting well-curated 

sleep data and questionnaire data for over 5 years [12] and is currently collecting genotype 

data on a subset. The challenge remains not only how to integrate all these databases and 

make them publicly available, but also how to translate findings into clinical practice.

Translating the science to clinical practice:

When sleep medicine first emerged as a field, understandably, there was little to no science 

to guide clinical practice. Today, almost 50 years later, we have a wealth of science based on 

modern technologies but translating this to clinical practice has been slow. One action to 

improve translation is to take a note from the pulmonary and cardiology communities, where 

governing societies have built an infrastructure to include both a research arm and a clinical 

arm to more quickly translate information between the two arms. Another action to improve 

translation is to encourage more software companies to partner with researchers to embed a 

“research only” tab of novel PSG metrics and analyses into existing software. Only by 

having it commercially available can more clinical investigators be involved to do the 

needed studies to correlate these novel PSG metrics and analyses to clinically meaningful 

outcome measures and accelerate progress.

CONCLUSION

It is exciting to be a part of a new age of Precision Medicine where there is a shift from a 

“one-size-fits-all” mentality to personalized medicine for the individual. Precision Sleep 

Medicine would involve unraveling the heterogeneity of sleep disorders using a “systems” 

medicine approach that includes novel PSG metrics/analyses (capturing physiological data), 

imaging data (capturing anatomy data), questionnaire data (capturing symptoms and 

demographics), longitudinal clinical information (capturing clinical co-morbidities and 

consequences), genetic data, and biological biomarkers (e.g. -OMICs of blood, saliva, 

urine). The use of automated scoring of PSGs that uses machine-learning algorithms to 

standardize large curated datasets will greatly enhance our ability to identify subtypes of 

different sleep disorders, understand disease progression, prognosis, and treatment response. 

It is time to reinvent how we utilize the polysomnogram towards the advancement of 

Precision Sleep Medicine.
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Glossary of terms:

Machine learning
is the umbrella term that encompasses computational approaches that deal with large, 

complex, multi-dimensional data to perform specific tasks without the use of explicit 

instructions

Supervised learning
is when the researcher uses labeled data (e.g., epochs labeled as N1, N2, N3 and REM), and 

the machine learning algorithm establishes a rule that separates these groups as best as 

possible

Unsupervised learning
is an algorithm that formulates inferences from data that are not labeled

Abbreviations:

AASM American Academy of Sleep Medicine

AHI apnea-hypopnea index

CAP cyclic alternating pattern

CNN convolutional neural network

CVD cardiovascular disease

EEG electroencephalogram

EOG electrooculography

EMG electromyogram

H-BDI hypoxia-breathing disturbance index

Hz hertz

MSLT multiple sleep latency test

ODI oxygen desaturation index

ORP odds ratio product
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OSA obstructive sleep apnea

PAP positive airway pressure

PLMS period limb movement syndrome

PSG polysomnogram

REM rapid eye movement

SAGIC Sleep Apnea Global Interdisciplinary Consortium

SaO2 oxygen saturation

T1N type 1 narcolepsy

TB terabyte
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Practice Points

1. An exciting shift towards Precision Sleep Medicine is underway which 

involves the application of Precision Medicine concepts to sleep disorders.

2. A first step towards Precision Sleep Medicine is identifying subtypes. Some 

Obstructive Sleep Apnea subtypes using symptoms and physiological data 

have already been identified.
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Research Agenda

1. Understanding differences and similarities between sleep disease subtypes is a 

first step towards precision sleep medicine that will lead to tailored 

management and prevention of clinical consequences. To identify disease 

subtypes, big sleep-centric databases that align clinical consequences to raw 

signals of polysomnogram, imaging, genetic data and – OMIC biomarkers are 

needed.

2. While novel polysomnogram metrics and analyses are already available, the 

sleep community would benefit from having access to them within 

commercially available software that will facilitate clinical research in these 

areas thereby translating the science into clinical practice.
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Fig. 1. 
Arousal Intensity. (A) Examples of arousals with different intensities within one patient. 

C3/A2 and C4/A1 are central electroencephalograms. The numbers 1, 3, 6, 9 reflect the 

different identified arousals intensities [39]. (B) There is an increased change in heart rate as 

arousals increase in intensity within one patient. Each dot represents one or more arousals. 

Horizontal bars are ± standard deviation. The solid line represents the average response. 

Figure reproduced with permission from Ref. [39].
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Fig. 2. 
Example of hypnodensity graph in a patient without narcolepsy (top panel) and a patient 

with narcolepsy (bottom panel) [95]. A hypnodensity graph is a hypnogram generated by an 

algorithm that uses raw sleep study data to identify features that provides more information 

about sleep trends (probability of occurrence of each sleep state for each epoch because each 

epoch of sleep within the same stage is not identical) in addition to single sleep stage. 

Narcolepsy, a condition characterized by sleep/wake stage mixing/dissociation [96–100], has 

a greater than normal overlap between stages and this may be a biomarker for narcolepsy on 

the PSG, without the need for an MSLT. Color codes: white: wake; red: N1; light blue: N2; 

dark blue: N3, black: REM. Figure reproduced with permission from Ref. [95].
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Table 1

Description of and labels for the potysomnographic clusters based on distinguishing features.

Cluster (n) Cluster label Median AHI
a
 (events/h) Conventional OSA severity

a

A (533) Mild 4 None\mild

B (119)
* PLMS 10

C (186) NREM and poor sleep 19 Moderate

D (168) REM and hypoxia 19

E (75)
* Hypopnea and hypoxia 44 Severe

F (42) Arousal and poor sleep 68

G (124) Combined severe 84

AHI, apnea-hypopnea index: NREM, non-rapid eye movement: OSA, obstructive sleep apnea: PLMS, periodic limb movements of sleep: REM, 
rapid eye movement.

*
In regular CPAP users (vs. non-regular CPAP users) there was an attenuation in CV risk within the PLMS (cluster B) and hypopnea/hypoxia 

clusters (cluster E). Table reproduced with permission from Ref. [ 1 ].

a
OSA severity definitions: none/mild (AHI < 15). moderate (15 ≤ AHI < 30) and severe (AH ≥ 30). AHI was not used in generating patient 

clusters. Median AH Is and severity categories based on median AHI for each cluster are shown for descriptive purposes only (mean AHIs were 
7.5, 13.6, 24.0, 25.0, 47.6, 72.6 and 82.4 for clusters A,B,C,D,E,F and G, respectively).
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