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Value and choice as separable and stable
representations in orbitofrontal cortex
Daniel L. Kimmel 1,2✉, Gamaleldin F. Elsayed 3, John P. Cunningham 1,4 & William T. Newsome5

Value-based decision-making requires different variables—including offer value, choice,

expected outcome, and recent history—at different times in the decision process. Orbito-

frontal cortex (OFC) is implicated in value-based decision-making, but it is unclear how

downstream circuits read out complex OFC responses into separate representations of the

relevant variables to support distinct functions at specific times. We recorded from single

OFC neurons while macaque monkeys made cost-benefit decisions. Using a novel analysis,

we find separable neural dimensions that selectively represent the value, choice, and

expected reward of the present and previous offers. The representations are generally stable

during periods of behavioral relevance, then transition abruptly at key task events and

between trials. Applying new statistical methods, we show that the sensitivity, specificity and

stability of the representations are greater than expected from the population’s low-level

features—dimensionality and temporal smoothness—alone. The separability and stability

suggest a mechanism—linear summation over static synaptic weights—by which down-

stream circuits can select for specific variables at specific times.
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For value-based decision-making, economists, psychologists,
and neuroscientists have long-posited a need for separable
representations of key decision variables, including (1)

initial valuation of the offer, (2) chosen action, and (3) expected
outcome given the choice1–4. These representations in turn sup-
port respective steps in the decision process: (1) committing to an
initial behavioral policy, (2) computing expected outcome while
executing the policy and then later assigning credit to the chosen
action, and (3) re-evaluating the policy mid-execution and then
later comparing expected and received outcomes to update future
expectations.

However, study of the neural basis of this process has faced five
significant limitations. First, reports differ on how neural popu-
lations represent multiple decision variables so as to drive distinct
functions. Some studies suggest that single neurons, particularly
in orbitofrontal cortex (OFC), specialize in representing single
task-relevant variables (i.e., categorical selectivity)5–8. In contrast,
recordings from many cortical areas—including OFC, dorso-
lateral prefrontal (PFC), anterior cingulate (ACC), and posterior
cingulate cortices—indicate that single neurons encode multiple
decision variables (i.e., mixed selectivity)9–13, an encoding strat-
egy that requires a means to de-mix these signals if they are to
drive downstream functions independently.

Second, the task-relevant variable(s) encoded by a single neu-
ron or population in OFC and other cortical areas often change
over the course of the decision process14,15. Thus, a readout
selective for one variable at one point in time, may in fact select
for an entirely different variable 100’s of milliseconds later. How
can a single population support multiple downstream functions at
distinct times16?

Third, existing analyses of OFC frequently obscure any mixed
or dynamic selectivity. For instance, most studies report the
percentage of neurons representing variables X or Y at each time
point independently. This approach both implies categorical
selectivity—neurons represent either X or Y—and obscures how
the contribution of individual neurons changes between time
points. That is, even if the percentage remained constant, were the
same neurons contributing at all time points, and if so, to the
same extent? The implications for readout are substantial.

Fourth, though population-level analyses offer a means to de-
mix single-neuron responses into separate representations of each
variable17–20, these analyses have not been applied to OFC, nor,
in general, been coupled with a statistical framework to distin-
guish highly sensitive and/or stable representations from epi-
phenomena that often arise from low-level features of neural
population activity21.

Fifth, value signals are likely important at different phases of
the decision process, and yet traditional value-based tasks test
only some of these roles. In most studies, for example, subjects
render choices with brief, all-or-nothing responses (e.g., a reach,
lever press, nose poke, or saccadic eye movement). In these tasks,
because the cost of responding is low, value informs which choice
is rendered, but not whether a choice is rendered; indeed, subjects
will almost always render a choice. In contrast, most ethological
decisions require an agent to execute a behavioral policy over
time, often with sustained effort (e.g., deciding to forage from a
particular fruit tree, then sustaining that policy while competing
with other animals)22. To apply the policy adaptively—exerting
variable effort or even reversing the policy midway—requires a
sustained neural representation of the expected value, which may
not be elicited by the brief, all-or-nothing choices of most tasks.

Here, we present a novel behavioral task in which macaque
monkeys trade sustained effort for juice rewards. Across trials,
animals are more likely to accept larger offers, but within trails,
their choices are not absolute: animals continue to re-evaluate,
and at times reverse, their initial choice mid-trial. We

simultaneously recorded from single neurons in macaque OFC
and find heterogeneous responses exhibiting mixed and dynamic
selectivity. To capture this complexity, we apply a new dimen-
sionality reduction technique and a new statistical model that
discovered separable population representations of the key task-
relevant variables—offer size, choice, expected reward—for which
the magnitude and specificity exceed that expected by chance
from the population’s low-level features. Moreover, the repre-
sentations are stable during the task periods when the variables
are behaviorally relevant, then change abruptly. Likewise, between
trials, task-relevant information transfers rapidly to a new set of
dimensions, thus maintaining previous-trial representations while
distinguishing them from present-trial inputs. The dynamics of
the representations—abrupt transitions at key task events fol-
lowed by stability during periods of behavioral relevance—suggest
that OFC organizes dynamically to represent task-relevant
information at specific times. The low-dimensional, stable nat-
ure of the representations suggests a neurobiologically plausible
mechanism—linear summation over static synaptic weights—by
which downstream circuits can read out mixed, heterogeneous
responses into separable representations for driving specific
behavioral functions at specific times.

Results
Subjective value increases smoothly with increasing benefit. In
a novel cost-benefit task, two macaque monkeys, N and K,
decided whether to trade sustained effort for juice reward. The
number of juice drops offered was presented briefly as 0, 1, 2, 4,
or 8 yellow icons and varied randomly across trials (Fig. 1a). To
accept an offer, the animal maintained visual fixation for a con-
stant duration (work period)—an effortful process with economic
cost23–25—and then received the promised reward. To reject an
offer, the animal averted its gaze and waited for the next trial. We
analyzed 9637 and 27,952 trials from 26 and 86 experimental
sessions (monkeys N and K, respectively).

As expected, the likelihood of the animal accepting an offer
increased smoothly with offer size (on average, Fig. 1b; in
individual sessions, Supplementary Fig. 1) and did not depend on
the offer’s visual properties (singleton offer; Fig. 1b, open circles).
This suggested that, on each trial, animals computed the value of
the offer based on its variable benefit (drops of juice) and fixed
cost (effort).

Mid-trial re-evaluation of choice. A key task feature was the
sustained effort required to accept an offer, allowing the animal to
accept an offer initially, but continuously re-evaluate its choice
and, at times, change its mind, rejecting the offer mid-trial. We
leveraged the timing of fixation breaks—measured as the rejection
hazard rate (Fig. 1c; Supplementary Fig. 2)—to infer the dynamics
of the underlying decision process. (Here we focus on the non-
zero offers, which were qualitatively distinct from 0-reward offers;
see Supplementary Fig. 3.) For a given offer size, the hazard rate
peaked within 1–1.5 s of the offer (early phase), suggesting most
decisions occurred early in the trial, as the task structure
incentivized.

However, a second phase of rejections occurred mid-trial—
from ~1 s after the offer until the final 1–2 s of the work period
(mid-trial phase)—when the animal began the period of sustained
effort and the external offer cue was removed. Intriguingly, the
hazard rates during the mid-trial phase were qualitatively distinct
—lower magnitude and slower dynamics—from the early phase,
though they continued to depend on offer size (implying a
memory of the offer) and were progressively decreasing
(consistent with volitional rejections and not accidental breaks
in fixation—see late phase, below). These features suggested a
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Fig. 1 Behavioral design and results. a The time course of a trial is shown proceeding from top-left to bottom-right. The animal initiated the trial by
directing its gaze toward an open circle, or fixation point (FP), and held fixation for a variable interval. An offer was presented as an array of icons (0, 1, 2, 4,
or 8 yellow icons, selected randomly across trials) with each icon indicating a drop of juice in exchange for effortful work; simultaneously, the FP filled-in to
a solid circle (providing a timing cue on 0-reward offers). To accept the offer, the animal sustained fixation through the work period (4 or 6.5 s, monkey N
or K, respectively), after which the promised drops of juice were delivered in rapid succession. To reject the offer (large oblique gray arrow), the animal
averted its gaze during the offer or work period. The trial then entered a timeout period equivalent in duration to the time that would have elapsed had the
animal accepted the offer. The trial was followed by an inter-trial interval before advancing to the next trial (solid curve). b The proportion of offers
accepted is shown as a function of offer size, which was conveyed to the animal either by the number of yellow icons (non-singleton offers; filled circles) or
as single purple icon worth 8 drops (singleton offer; open circle), which controlled for the inherent confound between reward magnitude and the visual
impact of more icons. Data are presented as proportion (circles) ± s.d. of the proportion (error bars; generally smaller than circle) from N = 9637 or 27,952
trials from monkeys N or K (trial counts evenly distributed across offer sizes). Logistic function was fit to aggregated data for display purposes only (black
curve); all statistical tests in Supplementary Fig. 1 were performed on individual sessions. c Hazard rate (colored curves) ± s.d. (shading) of fixation breaks
are shown for non-singleton offers as function of time from onset of the offer period (double arrows). Early, mid-trial, and late phases of rejections referred
to in main text are indicated by dark, middle, and light gray tapered bars, respectively.
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separate decision process: on a small fraction of trials, the animal
initially accepted the offer, but later changed its mind and rejected
the offer mid-trial26,27. Several value-based variables likely
evolved over the trial and may have contributed to these mid-
trial reversals, such as an increase (decrease) in expected benefit
(cost) as the time-to-reward shortened23. Presumably, these mid-
trial choices required a sustained neural representation of value,
possibly distinct from the representation supporting the early-
phase choices, as we explored below.

Finally, for the last 1–2 s of the work period (late phase), the
hazard rate for most non-zero offers converged to a low and static
level that did not depend on offer size. A static hazard rate (i.e.,
events occurring independently over time) is a feature of a
Poisson process28, consistent with accidental failures of fixation
(i.e., “falling off the log”), and may partly account for the maximal
accept rates of <100%.

Heterogeneous encoding of task variables in individual units.
We analyzed the spiking activity of 68 and 342 units from OFC in
monkeys N and K, respectively (see “Methods”; Supplementary
Fig. 4). Responses from single units and multi-units did not differ
qualitatively and were analyzed collectively as individual units

(see Supplementary Figs. 30–32 for analysis of single units
exclusively).

As expected, individual units were robustly modulated by offer
size, consistent with encoding stimulus value. However, we
observed marked heterogeneity in the dynamics and sign of
encoding (Fig. 2a–d). Moreover, individual units were sensitive to
multiple variables, e.g., encoding not only offer size, but also the
animal’s choice Fig. 2e. Conventional approaches for summariz-
ing this heterogeneity (e.g., classifying responses into discrete
categories and reporting the percentage of units per category and
time bin5,15), obscured how the encoding strength, sign, and/or
selectivity of an individual unit changed over the trial—dynamics
that were clearly evident in individual responses.

Discovering low-dimensional representations of task variables.
Dynamic encoding and mixed selectivity presented a challenge
both for describing the population activity and for considering
how downstream circuits may decode, or read out, a specific
variable at a specific time. Building on prior work18, we developed
a new analysis, optimal targeted dimensionality reduction (oTDR;
see “Methods”), that discovered and quantified population-level
representations. In brief, we identified a priori the behavioral
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Fig. 2 Dynamic encoding and mixed selectivity in individual units. a–e Mean response to the non-singleton (solid curves) and singleton (dashed curve;
not present in all sessions) offers ± s.e.m. (shading) is shown as a function of time from onset of the offer period (double arrows) for five example units.
Averages include all choices. Dynamics varied from rapid and transient (a, c) to slow and sustained (b). The sign of encoding could be positive (a, b) or
negative (i.e., firing less for larger offers (c)), or reversing mid-trial (d). Further stratifying by accept (green) and reject (blue) choices (e) showed
selectivity for both benefit and choice. While the encoding of offer size appeared to reverse sign for unit (e), this was an artifact of the greater response for
reject than accept choices later in the trial combined with more frequent rejections for smaller offers. In contrast, the reversal observed for unit (d) did not
depend on choice (not shown).
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variables relevant to performing the task: benefit (i.e., number of
rewards offered), choice (i.e., accept or reject), and expected
reward (i.e., benefit × choice, which reflected the outcome given
the choice). We quantified how strongly each unit encoded the
task-relevant variables by the coefficients derived from linear
regression of trial-average firing rate (within each condition) on
the task-relevant variables. Across the population of N units, the
regression coefficients for a given variable defined an N-dimen-
sional vector, i.e., regression axis (RA) or population repre-
sentation, which best linearly represented the variable.

We explored two classes of RAs: (1) dynamic RAs (dRAs) that
were calculated for each time bin and tested how representations
changed over the trial, as discussed below, and (2) static RAs
(sRAs) that tested the suitability of a fixed readout for
representing the task-relevant variables throughout the trial.
The sRA for a given variable was calculated in the temporal epoch
in which we hypothesized a priori that the variable was
behaviorally relevant. Specifically, we reasoned that the animal
encoded external value information during the offer period
(0–0.5 s), and thus computed the BENEFIT sRA in this epoch. After
the offer, the decision process proceeded without external
information and thus depended on internal representations of
the task variables—CHOICE and EXPECTED REWARD—which were
computed during the post-offer, work period (0.5 s–…). We
confirmed that our conclusions below were robust to a range of
temporal epochs (Supplementary Fig. 12). (We refer to the names
of sRAs in small-caps and to task-relevant variables in lowercase,
e.g., BENEFIT refers to the sRA representing the benefit variable.)

Mixed selectivity for task variables in individual units. We
examined the sRA coefficients to ask whether individual units
were indeed selective for multiple variables (i.e., mixed selectiv-
ity), as in Fig. 2e, or instead specialized for single variables (i.e.,
categorical selectivity)5,29. If specialized, then for a given variable,
the absolute value of the corresponding sRA coefficient would be
large for some units (i.e., highly selective), but concentrated near
0 for most units (i.e., non-selective), resulting in a heavy-tailed
distribution. However, the distributions of coefficients were not
significantly different from Gaussian (Supplementary Fig. 5a, b),
consistent with random assignment of coefficients to units,
independently of the other variables (i.e., not specialized). Like-
wise, we did not observe an anatomical organization (e.g., clusters
or gradients) of sRA coefficients (Supplementary Fig. 6).

Across variables, we found that an individual unit significantly
encoded two or more variables at a frequency that was (a) much
greater than expected if units were specialized for a single variable
and (b) statistically consistent with independent selectivity across
variables (Supplementary Table 1). In addition, the magnitude of
encoding between pairs of variables did not favor a single variable
and was sufficiently reliable to exclude noisy coefficients
masquerading as mixed selectivity (Fig. 3; Supplementary Fig. 7a,
c; Supplementary Table 2, “Within-variable” section). In
summary, we observed no statistical evidence that individual
units were preferentially selective for single task-relevant
variables.

In a separate analysis, we confirmed that mixed selectivity
arose in single units, and was not, for example, an artifact of
pooling categorical single-unit responses (Supplementary Fig. 30;
Supplementary Table 1).

Separability of low-dimensional representations. Though a
given unit may encode two or more variables, if the extent of
encoding were sufficiently correlated across units, then the
population representations (i.e., sRAs) would not be separable by
a downstream observer. Pairs of sRAs were at most modestly

correlated (Fig. 3b, d, open bars; Supplementary Table 2). How-
ever, conventional statistics addressed the chance of falsely con-
cluding orthogonal representations were correlated, whereas we
were interested in the opposite extreme: whether two (possibly
correlated) representations carried (at least some) independent
information (see “Methods”). Indeed, the representations were
highly separable—i.e., correlations between sRAs were sig-
nificantly less than expected for perfectly correlated representa-
tions corrupted by independent noise (Fig. 3b, d, open bars vs.
dashed lines; Supplementary Fig. 7b, d and Supplementary
Table 2).

Reading out activity of low-dimensional representations.
Though selectivity was mixed in individual units, oTDR implied a
neurobiologically plausible mechanism by which a downstream
population could de-mix these signals into representations spe-
cific to each variable simply by tuning synaptic weights to the sRA
coefficients. We computed this weighted sum, or activity of each
representation, by projecting the high-dimensional trial-average
firing rate onto each sRA. To ensure independence between the
projections (and thus permit our statistical assessments), we
constrained the sRAs to be orthogonal for this and subsequent
sRA analyses. (The analyses in the preceding two sections used
the unconstrained relationships between the sRAs.)

Examining sRA activity (Fig. 4a, b), BENEFIT discriminated offer
size rapidly and robustly after presentation, but the selectivity
decayed abruptly and was absent by 1.5 s. Moreover, the
representation did not discriminate the animal’s choice (thick
and thin curves overlap). In contrast, CHOICE discriminated accept
and reject choices beginning around 2 s for most offers and with
increasing selectivity through the trial (see Supplementary Fig. 8
for consideration of single-trial dynamics and post-rejection
gaze), but did not discriminate offer size. Thus BENEFIT and CHOICE

de-mixed information about their respective variables.
To more directly test the link between sRA dynamics and

choice timing, we compared CHOICE activity for early vs. late
rejections and found that choice selectivity emerged later on late-
rejection trials, consistent with the representation reflecting the
underlying decision dynamics (Supplementary Fig. 9). However,
CHOICE activity did not discriminate choice until after the median
rejection time (0.92 or 1.3 s, monkey N or K) and after choice
information was integrated into the EXPECTED REWARD representa-
tion (see below). Thus CHOICE likely reflected, rather than
predicted, the decision. Moreover, at the single-trial level, we
found no evidence that individual OFC responses to the current
offer predicted the upcoming choice (i.e., choice probability;
Supplementary Fig. 11).

Finally, EXPECTED REWARD discriminated offer size as early as 500
ms—as offer information transitioned abruptly from the BENEFIT

sRA—but did so only for accept choices. As such, EXPECTED

REWARD integrated benefit and choice: activity reflected offer size
for accept choices, but was undifferentiated for rejected offers.
Temporally, EXPECTED REWARD coincided with the period of mid-
trial rejections when no stimulus was present and thus may have
provided the internal value representation necessary for mid-trial
re-evaluation (Fig. 1c).

Validity, specificity, and sensitivity of representations. For a
static, low-dimensional representation (i.e., sRA) to serve as a
suitable read out, the variance it explains should be greater than
alternative dimensions (validity), unrelated to the other variables
(specificity), and capture all of the available relevant variance,
obviating the need for additional dimensions (sensitivity). To test
these criteria, we defined relevant signal variance (RSV) as the
portion of variance explained that was linearly related to the
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sRA’s targeted variable (Fig. 4c, d, solid curves; see Supplemen-
tary Fig. 13 for total variance explained).

Indeed, the RSV for each sRA was significantly greater than
chance during its period of behavioral relevance (Fig. 4e, f):
encoding external value information (BENEFIT), sustaining value
information during the work period (EXPECTED REWARD), and
representing the chosen action (CHOICE). Critically, we determined
chance levels from a set of random vectors whose density
reflected the data’s dimensionality, producing more conservative
(i.e., larger) p-values than evenly distributed vectors, as used
typically (see “Methods”).

The sRAs were highly specific to their targeted variables,
explaining generally low and non-significant levels of residual, or
irrelevant, signal variance (ISV; Fig. 4c–f, dashed curves).
Moreover, this residual variance had little relation to the other
task variables, which would otherwise confuse a downstream
observer (Supplementary Fig. 14).

The sRAs were sensitive to their targeted variables for some,
but not all, times in the trial. We considered two explanations: (1)
the variables were simply not represented in any dimension
during these times, and/or (2) the dimensions representing the

variables rotated (i.e., the contribution of individual units
changed) during the trial, aligning with the sRAs for only a
portion of time. To test these hypotheses, we computed the
optimal representations independently in each time bin (i.e.,
dRAs). At a given time, the dRA magnitude (prior to normal-
ization) defined the extent of population encoding, whereas the
angle θij between the dRAs at times i and j measured the rotation
of the encoding dimension.

We found qualitative evidence for both hypotheses: (1)
the available signal, in any dimension, fluctuated over the trial
(Fig. 5a, b); and (2) the dimension representing a given variable
was consistent for discrete periods (Fig. 5c, d, areas of warm
colors), but for some variables, changed abruptly mid-trial,
producing multiple, distinct representations (e.g., benefit
representation early vs. mid-trial, highlighted with brackets
in left panels of Fig. 5e, f), thus limiting the generalizability
of any static dimension (i.e., sRA). Nonetheless, the
available signal uncaptured by the sRAs (i.e., “left on the
table”) was generally small and never greater than expected for
a random set of three static dimensions (Supplementary
Fig. 15).
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interval (CI), respectively, of the hypothetical correlation between two perfectly correlated (or anti-correlated) representations corrupted by independent
noise (i.e., low precision of the individual-unit coefficients). Observed correlations were significantly closer to zero than these hypothetical values, defining
the representations as separable. For within-sRA correlations, the coefficient mean (bar height) and 95% CI (error bars) were measured from the
resampled data sets. The resampled data for both between- and within-sRA analyses included 700 resampled data sets generating N= 244,650 pairwise
correlations. See full distributions in Supplementary Fig. 7 and summary statistics in Supplementary Table 2. For present figure, all regression coefficients
pertain to non-orthogonalized sRAs, which most closely reflected the population encoding and permitted meaningful comparison between representations
(in contrast, the correlation between orthogonalized sRAs would necessarily be 0).
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Stability and task-alignment of dynamic representations. Thus
far, we observed that the dynamic representations (dRAs) were
qualitatively similar for discrete periods of the trial. To formalize
these impressions, we systematically delineated periods of simi-
larity and then tested these periods for statistical stability—i.e.,
unusually high or protracted similarity—which suggested a
representation may have a specialized functional role (see
“Methods”). Briefly, we fit boxcar functions to each row of the
heat maps in Fig. 5c, d (see Supplementary Fig. 20 for fits). The

temporal span of each boxcar defined a period of putative sta-
bility, and the boxcar height measured the magnitude of simi-
larity within that period (Supplementary Fig. 21; note: high
similarity corresponded to small angles θij).

We next developed a statistical framework to assess the
significance of these periods. For instance, how surprising was it
that the choice representation changed by only 20° in a 3 s
interval? To address such questions, we computed the similarity
during identical periods (i.e., boxcar spans from the veridical
data) in synthetic firing-rate data. Critically, the synthetic data did
not encode the task variables but preserved the veridical data’s
dimensionality and temporal smoothness—low-level features that
bounded how much a representation could change, and thus
could generate similarity trivially (see “Methods” for details and
intuition). A period was statistically stable when the observed
similarity was significantly greater than the distribution of null
similarity across synthetic data sets (Supplementary Fig. 21c, f).

Most representations in OFC were statistically stable during
discrete periods when the encoded information was behaviorally
relevant (Fig. 5e, f, colored horizontal bars). Specifically, the
representation of benefit was stable for a period of ~0.5 s (Fig. 5e,
f, left panel, red bracket) coinciding with the offer presentation.
Subsequently, a new representation of benefit emerged (blue
bracket) that, while stable for ~3 s, was dissimilar from the earlier
period and weaker in magnitude (Fig. 5a, b). The representation
of choice was stable from ~1.5 s (after most choices were
rendered) to the end of the trial. The representation of expected
reward after ~1 s (around the median rejection time) was stable
for monkey N but equivocal for monkey K (see Fig. 5 legend).

In summary, the low-dimensional representations of the task-
relevant variables were statistically stable, i.e., the specific
contributions of individual units were more consistent than
expected by the data’s low-level features. And yet the timing of
these stable periods varied across the task variables, aligning with
the concurrent task demands for which the representation was
behaviorally relevant.
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Fig. 4 Activity of and variance explained by low-dimensional
representations. a, b The time course of the high-dimensional neural
activity projected onto the low-dimensional representations (i.e., activity of
the sRA) of BENEFIT (top), CHOICE (middle), and EXPECTED REWARD (bottom) is
shown in arbitrary units for each offer size (colors) and accept and reject
choices (thick and thin curves, respectively) as a function of time from the
onset of the offer period (double arrows) for monkeys N (a) and K (b). The
response to the singleton condition (dashed curve), which was excluded
when computing the sRAs, tracked the offer’s value, not visual properties
(see Supplementary Fig. 10 for monkey N). Note that some combinations of
offer and choice (e.g., 0-reward, accept choices) had too few trials per unit
to accurately estimate trial-average responses and were excluded (see
“Methods”). The apparent bleed-through of offer information onto mid-trial
CHOICE activity for reject choices (middle panel, thin lines), was in part
because rejections (and thus choice selectivity) occurred later for larger
offers (Supplementary Figs. 2 and 8), and in part because the time-varying
representations (i.e., dRAs) were correlated mid-trial (Supplementary
Fig. 24, left column), despite orthogonal static representations. c, d The
relevant and irrelevant signal variance (solid and dashed curves,
respectively) for BENEFIT (green), CHOICE (orange), and EXPECTED REWARD (blue)
are shown as a percentage of total cross-condition variance as a function of
time from the onset of the offer period (double arrows) for monkeys N (c)
and K (d). e, f Log10 probability (one-sided, uncorrected) of data in c and d,
respectively, was derived empirically in comparison to random dimensions
(see “Methods”). Horizontal dashed line corresponds to p = 0.05. In c–f,
gray squares indicate the median rejection time and colored horizontal bars
span the temporal epoch in which the color-matched sRAs were computed.
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Representations transition abruptly between trials. Given the
magnitude of the static representations (Fig. 4c, d) and stability of
the dynamic representations (Fig. 5c, d) during the trial, we asked
whether task-relevant information was preserved across trials.
Although not required by our task design, the animals none-
theless may have used choice or reward history from the previous
trial to inform upcoming decisions, a phenomenon observed even
in tasks that do not incentivize cross-trial integration5,30.

To observe the transition between trials, we defined a new
analysis window aligned to fixation on the present trial and
extending retrospectively into the previous trial. Intuitively, we
expected the static representations (sRAs) would encode
information about the coincident trial, regardless of whether it
was designated “present” or “previous.” Indeed, during the
previous trial, the sRAs explained variance related to the variables
on the previous trial (Fig. 6a–d, left panels), just as they had
explained variance related to present-trial variables during the
present trial (Figs. 4c–f and 6a–d, right panels). (To assess
previous-trial encoding, we recomputed trial-average responses
according to the previous-trial variables: previous benefit,
previous choice, and experienced reward; see “Methods” for
details and rationale.)

Between trials, the CHOICE sRA maintained information about
the preceding choice into the ITI (Fig. 6a–d, orange curves).
However, just before fixation on the new trial, information about

the previous trial disappeared precipitously (Fig. 6a–d, left panels,
orange and, to lesser extent, blue curves as approaching time= 0),
as though the system were clearing its cache to accommodate
information about the upcoming trial. At first blush, there
appeared to be no continuous representation of the task-relevant
variables across trials. Yet, we wondered whether previous-trial
signals were transmitted in other dimensions, outside the
subspace defined by the sRAs. Using oTDR, we searched
deliberately for such dimensions by computing previous-trial
sRAs (PREVIOUS BENEFIT, PREVIOUS CHOICE, and EXPERIENCED REWARD):
representations of the previous-trial variables during the first 0.5 s
of fixation on the new trial, a time when the animal was under
behavioral control but not yet exposed to the new offer.

Remarkably, just before the animal fixated on the new trial, the
previous-trial sRAs suddenly and robustly represented the events
from the previous trial, filling-in the temporal gap left by the
present-trial sRAs (Fig. 6e–h vs. a–d), as though information were
passed between distinct sets of neural dimensions (confirmed
below). Extending into the new trial (Fig. 6e–h, right panels),
PREVIOUS CHOICE (orange curves) continued to represent the
previous decision through the new offer and until the time of
most rejections (~1 s). In addition, in monkey K, PREVIOUS OFFER

and EXPERIENCED REWARD significantly encoded their respective
variables through all or part of this pre-rejection period (green
and blue curves, respectively). As such, the timing of the
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previous-trial representations was sufficient to influence the new
choice based on the previous trial’s outcome.

Remarkably, the previous-trial sRAs explained variance only
after the trial had ended, but not during the previous trial itself,
which was the domain of the present-trial sRAs (Fig. 6, left
panels, time≪ 0, Fig. 6e–h vs. a–d). This implied that the
present- and previous-trial sRAs spanned separate subspaces.
Indeed, they were at most weakly correlated and corresponded to
highly dissimilar, nearly orthogonal dimensions (Supplementary
Fig. 25; Supplementary Table 3). That is, OFC maintained distinct
representations not only of offer, choice and reward events, but
also of the relative trial in which those events occurred, allowing a
downstream readout to distinguish previous-trial information
(e.g., PREVIOUS CHOICE) from its present-trial counterpart (e.g.,
CHOICE).

Discussion
We found that single neurons in macaque OFC represented key
task-relevant variables—benefit, choice, and expected reward for
both the present and previous trials—while the animals made
cost-benefit decisions requiring sustained effort. For individual
neurons, the encoding of value and choice was mixed, and the
time course of encoding varied widely across neurons. However,
using a set of new analysis and statistical techniques, we de-mixed
the task-relevant signals into static low-dimensional representa-
tions that were separable at the level of the population. In addi-
tion, the time series of dynamic representations were statistically
stable during periods when the information was behaviorally
relevant, and then transformed abruptly at key task events and
between trials, as information transitioned between dimensions.
Our findings suggest that OFC reorganizes—forming and dis-
banding coordinated combinations of neurons—on behavioral
timescales to represent and manipulate information relevant to
concurrent behavioral demands.

Prior reports have argued for categorical selectivity in OFC—
i.e., individual units specialized to encode a single variable—either
implicitly by classifying otherwise mixed responses into single-
variable categories, or explicitly by comparing univariate regres-
sions performed independently for each variable5–8,15. In con-
trast, when variables competed for variance in a multivariate
model, we found that units encoded two or more variables at rates
equal to or above chance, consistent with broad evidence for
mixed selectivity across cortical areas9–13 and shown indirectly
for OFC29.

Moreover, we found the mixed representations were separable
at the level of the population. That is, single neurons conveyed
reliable, independent information about two or more variables,
consistent with random assignment of encoding strength across
neurons. Importantly, we distinguished the observed representa-
tions from mixed selectivity that may have appeared separable,
but instead arose spuriously from unreliable estimates of other-
wise perfectly correlated representations.

Several studies in rodent cortex have reported sequences of
activity, where the neuron(s) selective for a given task variable
changed on the order of 10’s of milliseconds14,31–33. This unstable
selectivity may be well-suited for representing variables that vary
smoothly in time, such as spatial position, or for generating an
eligibility trace for learning.

In contrast, the population representations in OFC were sub-
stantially stable, i.e., the selectivity of a given neuron was con-
sistent during the behaviorally relevant period (see
Supplementary Discussion on classifying stability). This permits a
downstream circuit not only to select for the representation of a
single variable, but to do so via a static set of synaptic weights (as
prescribed by the sRA coefficients). Unlike the rapid, within-trial

updating of readout weights implied by unstable selectivity, these
weights could be tuned gradually during learning and then
remain constant during mature behavior, a neurobiologically
plausible mechanism34.

The stability of the OFC population representations was not
uniform across the trial or task variables, unlike prior reports of
qualitative similarity for a single variable13,35. Rather, the repre-
sentation of a given variable was stable for a period, then, at key
task events, changed abruptly to a new, stable representation. This
time-dependence could facilitate temporal gating—that is, not
just which variable is read out, but also when that variable
influences downstream computation. For instance, benefit was
encoded along two, highly dissimilar dimensions during the offer
and work periods (Fig. 5e, f, brackets). Therefore, a readout tuned
to the earlier representation (which corresponded to the BENEFIT

sRA) would be minimally sensitive to the later representation,
and vice versa. This would permit the same information (i.e.,
benefit) to drive different functions. For instance, the early
representation could inform the initial decision, while mid-trial
benefit could integrate with choice to compute expected reward.
A similar temporal gating could apply to choice information, with
the CHOICE sRA informing credit assignment during the outcome,
while PREVIOUS CHOICE biased the decision on the next trial. In
motor cortex, analogous gating mechanisms may select for
planning vs. execution signals36,37.

Taken together, the features of OFC encoding—mixed but
separable selectivity and stable population representations—
would facilitate flexible readout of single variables, increase cod-
ing capacity, and implement non-linear operations between
variables (e.g., EXPECTED REWARD)10–12. Importantly, these encod-
ing features also provide a mechanism for temporal gating such
that downstream circuits could tune synaptic strengths to selec-
tively read out specific task-relevant variables during specific time
periods.

These benefits of separable and stable selectivity satisfy the
exigencies of a recent proposal that OFC encodes a cognitive map
—a general, multipurpose framework for representing the set of
cognitive and behavioral states relevant to the subject’s current
goals38–40. As behavioral demands change rapidly, so must the
specific states represented by a cognitive map. This framework
helps reconcile the multitude of functions proposed for OFC—
and, in humans, ventromedial PFC—on the basis of seemingly
disparate phenomenon16,41. Under a cognitive map, these diverse
functions are unified as merely time-varying instantiations of a
general process. Consistent with this model, within the same OFC
neurons, the multiple representations needed to support many of
OFC’s proposed functions emerged dynamically according to
concurrent behavioral demands, including encoding of external
stimulus value (BENEFIT)15,42–47, reward expectancy to support on-
the-fly re-evaluation and prediction errors (EXPECTED REWARD)48–51,
and selected action to facilitate credit assignment (CHOICE)52 and
drive history-dependent biases (PREVIOUS CHOICE)5,53.

Between trials, the remarkable transition of task information
between nearly orthogonal representations suggested an intri-
guing neural implementation of temporal order, as though what
we label as “present” vanishes into the “past” by entering a new
dimension of neural space54. Perhaps our discrete concepts of
past, present, and even future (i.e., prediction) are encoded not by
separate neural populations or brain regions, but by separable
dimensions within a single population.

The particular task design determines both which and when
states must be represented38. Our novel task permitted animals to
initially accept an offer and then, because the decision was ren-
dered over time, to reverse their choice midstream. This behavior
is akin to deciding to climb a banana tree or attend graduate
school, choices which are still binary in nature, but can be
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re-evaluated and reversed after initiating the behavior. In con-
trast, in conventional value-based tasks that require a brief, all-or-
nothing response, all deliberation occurs before initiating the
behavior, which in turn is executed abruptly and irreversibly, akin
to choosing amongst candies in a box of chocolates. Such tasks do
not encourage (nor designed to observe) re-evaluation of the
initial decision and thus may not elicit the sustained neural
representations of value to support re-evaluation.

The distinct demands of abrupt vs. sustained decision tasks
may explain the difficulty in validating the widespread model that
OFC integrates external value information with subjective pre-
ferences to drive decisions5,9,15,16,46,47,55. In particular, a key
prediction—that variation in OFC’s response to an offer accounts
for variability in choice (i.e., choice probability, CP)—has not
been reported. Unlike prior studies with highly consistent choi-
ces9,56, our animals accepted intermediate offers inconsistently,
and thus we were well-poised to assess CP in OFC. Nonetheless,
we did not observe choice predictive responses aligned to
the offer.

One possible explanation is that value representations in OFC
may not drive the initial behavioral policy, but rather inform
whether to continue or reverse the initial policy midstream. This
putative role of OFC in re-evaluation would not be observed in
conventional tasks with brief, all-or-nothing responses. Indeed,
optogenetic inactivation of OFC in the rat had no effect on
choices in a classical value-based task57,58. However, when the
same rats were asked to weigh reward against sustained effort,
OFC inactivation disrupted normal value-based behavior.

In our sustained-effort task, animals reversed their decision
mid-trial at rates proportional to the expected reward. During this
period, EXPECTED REWARD maintained the representation of value
to inform this re-evaluation, but the serial nature of our record-
ings precluded linking trial-to-trial variability in EXPECTED REWARD

activity (aligned to the offer or rejection) to choices. Going for-
ward, sustained-effort tasks paired with simultaneous recordings
and/or temporally targeted manipulations of OFC activity would
test the role of OFC in re-evaluating choices mid-execution.

Despite their differences, sustained-effort tasks engage the
same fundamental processes—valuation, comparison, and (at
least initial) commitment to a behavioral policy—as conventional
choice tasks24,25. In particular, the representations of BENEFIT,
EXPECTED REWARD, and CHOICE were directly analogous to the
response categories of Offer Value, Chosen Value, and Taste,
respectively, observed in now-classic studies of OFC15. Critically,
both conventional and sustained-effort tasks require subjects to
integrate external value with (potentially changing) internal
preferences, goals, and resources—a flexibility untested by tradi-
tional studies of self-control or response inhibition59,60. For
instance, while sustained fixation may have required self-control,
our animals applied it adaptively to high-value more than low-
value offers. Moreover, goals may vary across tasks. As in our
study, agents may maximize reward per unit cost, not only per
unit time. For instance, one may reject an offer of $1 to hold a
heavy suitcase for one minute simply because the small reward is
not worth the high cost. One may even begin holding the suitcase,
but reject the cost as too onerous after 30 s. One is not max-
imizing absolute income, but is conserving resources, which are
almost certainly finite and must be allocated judiciously. We
believe sustained-effort tasks offer an essential bridge between
conventional choice tasks and more ethological behaviors that
may depend preferentially on OFC representations22.

Separately, we sought to address the growing need for a
common set of measurements and accompanying statistical fra-
mework as more studies analyze high-dimensional neural data21.
We offer a systematic, principled and statistically rigorous road-
map for population analysis that can be applied, either cohesively

or modularly, to any neural population. Our approach not only
de-mixes low-dimensional representations of task-relevant vari-
ables, but, critically, emphasizes the relationships between
representations, both between different variables at the same time
point (i.e., separability) and between different times (i.e., stabi-
lity). To our knowledge, our paper is the first to assimilate these
aspects of population coding—dimensionality reduction, separ-
ability, and stability—into a single statistical framework. More-
over, we are the first to apply contemporary population analyses
of any sort to OFC.

Unlike other de-mixing techniques, oTDR synthesized several
assumptions—regression, orthogonalization, weighting by obser-
vation count, and noise reduction—in a single objective function,
thereby discovering the optimal linear representations of the
variables given the model assumptions. An earlier method applied
subsets of these assumptions, but did so serially and thus
approximated a solution to the original objective18. An alternative
method could not accommodate unbalanced designs in which not
all combinations of task variables are observed19, as frequently
encountered in decision-making studies. Moreover, oTDR can
generalize to any arbitrary number of variables and epochs,
including finding sRAs for the same variable in multiple epochs
and assuming orthogonalization between any subset of sRAs (see
“Methods”; Supplementary Fig. 12). As such, oTDR is a general-
purpose method for discovering static representations of known
relevant variables in high-dimensional data.

Independently of oTDR, the metrics we developed—including
formal definitions of separability and stability, as well as assess-
ments of sensitivity and specificity—are applicable to any set of
dimensions, and thus any dimensionality reduction method.

Finally, we introduced novel applications of recent statistical
tools21,36 to test the significance of these metrics (again, applic-
able to any de-mixing technique). A rigorous statistical frame-
work is crucial to rule-out epiphenomenal findings attributable to
the population’s intrinsic, low-level features, to which high-
dimensional systems are particularly susceptible21. Our methods
estimated the contribution of these features more accurately—and
estimated statistical significance more conservatively—than prior
approaches. In particular, random dimensions distributed iso-
tropically overestimate the significance of the high-variance
dimensions12,19, and typical shuffling procedures—randomizing
either across time or conditions—account for either the data’s
dimensionality or temporal smoothness, respectively, but
not both.

The present toolkit may be useful to other high-dimensional
data sets, such as large-scale simultaneous recordings26,27,31 or
surveys across multiple brain areas where resolving the relative
contributions and temporal sequence of representations has been
difficult at the single-neuron level9,61.

Methods
Cost-benefit decision-making task. Two adult male macaque monkeys, N
(Macacca fascicularis) and K (M. mulatta), served as subjects in this study. Prior to
experimental use, each animal was prepared surgically with a head-holding device
consisting of either a plastic cylinder embedded in acrylic (monkey N) or a tita-
nium post secured directly to the skull (monkey K). During training and while
engaged in experiments, daily fluid intake was restricted to maintain adequate
levels of motivation; food was freely available. All surgical, behavioral, and animal
care procedures complied with National Institutes of Health guidelines and were
approved by the Stanford Institutional Animal Care and Use Committee.

Animals were seated in a primate chair in a sound-insulated and dimly lit
chamber at a viewing distance of 43 cm (monkey N) or 55 cm (monkey K) from a
20″ CRT computer monitor (ViewSonic G22fb, Walnut, CA) displaying 800 × 600
pixels at 96 Hz. Head position was stabilized using the head-holding device. Eye
position was monitored at 1000 Hz with an infrared video tracker (EyeLink 1000,
SR Research, Ontario, Canada) mounted on the primate chair with custom
hardware; the real-time eye position signal was calibrated periodically62. Behavioral
control and stimulus presentation were managed by Apple Macintosh G5-based
computers (Cupertino, CA) running Expo software written by Peter Lennie
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(University of Rochester, NY) with modifications by Julian Brown (Stanford
University, CA). Behavioral and stimulus event data were acquired by the Plexon
MAP System (Dallas, TX), whereas digital eye position samples were recorded
natively on the EyeLink system.

We trained the animals on a novel cost-benefit decision-making task (Fig. 1a).
A trial began with the appearance of a fixation point (FP; white annulus, inner/
outer diameter 0.3°/0.6°) against a dim background. The animal acquired the FP by
directing its gaze within an invisible, circular fixation window around the FP
(radius 3° or 1.8°, monkey N or K, respectively). If the animal failed to acquire the
FP within 2 s, the FP was extinguished followed by a 1 s delay before reappearance
of the FP. The animal was required to maintain fixation for a brief, variable period
of time (fixation period; 0.5 - 1 s, uniformly distributed). Fixation breaks during the
fixation period terminated the sequence (which was not scored as a trial in future
analyses), and the task entered an inter-trial interval (ITI; see below).

Following the fixation period, we presented the offer to the animal (offer period;
0.5 s) as a set of 0, 1, 2, 4 or 8 square icons (0.5° × 0.5°), evenly spaced along an
invisible circular ring (6° radius) centered on the FP. The number and color of the
icons indicated the offer size, or number of drops of juice the animal would receive
as reward for accepting the offer, which varied pseudorandomly from trial to trial,
with the constraint that all 5 offer sizes were presented twice every 10 trials. Most
offers were presented with yellow icons, each of which represented a single drop of
juice. However, to control for the correlation between visual stimulus properties
and offer size, half of the 8-reward offers were presented with 8 yellow icons (non-
singleton offer) and half with a single purple icon (singleton offer) for half or all
experiments with monkey N or K, respectively. The animals learned the association
between icons and rewards during training that preceded the current experiments.
To control for particular orientations of the icons having a disproportionate effect
on behavior or neural responses, we randomly rotated the array of icons around the
invisible ring from trial-to-trial, always maintaining an equal angle between icons
for a given offer. To provide a temporal cue for 0-reward offers (in which no icons
were presented), the center of the FP was filled-in at the onset of the offer period
for all offer sizes. (For approximately half of experiments for monkey N, the FP
remained an annulus through the offer period, filling-in at the onset of the work
period. The delayed FP transition did not affect the timing of responses;
Supplementary Fig. 3.)

The offer period was followed by the work period. The offer icons were
extinguished and the animal was required to maintain fixation for a constant
period of time (4 or 6.5 s for monkey N or K, respectively) that was selected during
training such that the animal rarely to maximally accepted the smallest to largest
offers, respectively. If the animal maintained fixation until the end of the work
period (i.e., accepted the offer), we extinguished the FP and delivered sequentially
the drops of juice offered (reward period), with 0.4 s between each drop. (Drop size
was regulated by the opening and closing of an electronic solenoid valve, which was
calibrated regularly to achieve a constant drop size.) To reject the offer, the animal
simply averted its gaze any time during the offer or work periods. The trial then
entered a timeout period whose duration was equal to that had the animal accepted
the offer. During this timeout period, the screen went blank, and the animal was
free to move its eyes, but no reward was delivered.

Following the period when rewards were or would have been delivered, the ITI
was imposed. To prevent the animal from reflexively fixating continuously across a
string of sequential trials, we required the animal to break fixation at some point
during or after the current trial, i.e., any time during the offer or work periods
(while the FP was present), or during the reward or ITI periods (during which the
FP was absent, but the invisible fixation window was maintained). The ITI period
was repeated until the required break occurred. In practice, the animals made
numerous saccades during the ITI, and thus this task feature was not engaged
outside of initial training. Following the ITI, the FP was presented for the next trial.

We defined the behavioral conditions as the unique combinations of five
standard offers (i.e., 0, 1, 2, 4, or 8 rewards) and two choices (i.e., accept or reject
the offer), plus the two choices in response to the 8-reward singleton offer, resulting
in 12 possible conditions, though some conditions were more frequent than others
(e.g., the animal rarely rejected 8-reward offers and rarely accepted 0-reward
offers).

Analysis of behavioral choice. All analyses described here and below were per-
formed with custom scripts written in MATLAB (Mathworks, Natick, MA).

We modeled binary choice behavior to accept or reject the offer on trial t as the
logistic function:

P acceptð Þ ¼ δ

1þ e�Z
; ð1Þ

where 0 ≤ δ ≤ 1 specified the maximal accept rate, or saturation point of the
psychometric curve. This parameter has previously been used to model the lapse
rate, or intrinsic failure rate, of behavior63. The exponent Z took the form:

Z ¼ β0 þ β1ðbenefitÞγ; ð2Þ
where β0 was a constant and β1 determined the influence of the offered benefit [0,
1, 2, 4, 8] on trial t raised to γ, an exponent typical in economic models to
implement a non-linear utility function64 that was either fixed (γ = 1) or allowed to
vary as a free parameter. The benefit predictor was scaled to the range [0, 1].

Maximum likelihood estimates for the free parameters β0, β1, δ, and γ were
obtained independently for each experimental session (i.e., set of trials collected at a
given recording site). Maximization was performed by the MATLAB function
fmincon with constraint 0 ≤ δ ≤ 1. We considered choices in the normal stimulus
condition (in which the number of yellow icons indicated the number of rewards)
to represent most closely the animal’s cost-benefit function, and therefore excluded
the singleton condition (in which 1 purple icon indicated 8 rewards) from all model
fits. We took the similarity between the model estimate for the 8-reward normal
stimulus and the behavior observed on singleton trials as validation that the
animals indeed had learned the value of the singleton stimulus (Fig. 1b).

We solved for two variations of the model, a or b, with γ as a free parameter or
with γ = 1, respectively, obtaining the likelihood L of the data given the model. For
each experimental session, we computed the log likelihood ratio (LR) for models a
and b:

LR ¼ 2ðlog La � log LbÞ; ð3Þ
which, under the null hypothesis that the two models were equally likely, was χ2

distributed with dfa− dfb degrees of freedom, where df was the model’s number of
free parameters. Finally, we computed the probability p(LR) of falsely rejecting the
alternative hypothesis that the empirical cumulative distribution function of LR
across sessions was right-shifted relative to the predicted χ2 cumulative distribution
(i.e., CDFLR xð Þ<CDFχ2 xð Þ for all experimental sessions x) by the Kolmogorov-
Smirnov test. We rejected the null hypothesis and selected the more complex
model a to serve for all sessions when p(LR) was <0.05. For monkey N or K, LR =
0.53 or 0.63 and p(LR) = 0.36 or 0.037, respectively. Thus, we included γ as a free
parameter for monkey K only and fixed γ = 1 for monkey N.

Electrophysiological recording of OFC. In preparation for physiological record-
ings, each animal underwent anatomical magnetic resonance imaging (MRI) of the
brain. During imaging, a rigid, MRI-visible fiducial marker was attached to the
animal’s head and could be repositioned identically during subsequent surgery.
Using the anatomical images, we identified ideal placement of the recording
cylinder that accessed OFC in stereotactic planes. Each animal then underwent a
surgical procedure in which a craniotomy was placed and a plastic recording
cylinder (Crist Instrument, Hagerstown, MD) was positioned according to the
MRI-guided coordinates and relative to the extracranial fiducial marker. The
cylinders were centered at stereotaxic coordinates of 36.1 or 35.6 mm anterior to
the interaural line, 5.2 or 8.9 mm left of midline, and angled 10.5° or 0.0° anterior
to the coronal plane for monkey N or K, respectively. (Note that the reported
cylinder location was based on intra-surgical stereotaxic measurements, while the
medial-lateral position of individual recording sites, reported in Supplementary
Fig. 6, was measured from the MR images and accounted for the angle of the
electrode trajectory.)

After the procedure, a small, cylindrical recording grid (Crist Instrument; 1 mm
spacing between holes) was placed within the chamber and filled with salinized
agarose solution that provided contrast for a second anatomical MRI prescribed
such that the imaging planes were parallel (for coronal and sagittal sequences) or
orthogonal (for axial sequences) to the recording grid holes. Thus, the final set of
MR images shared the same planes as our eventual electrode penetrations, allowing
us to visualize the electrode trajectory during each experiment and facilitating
precise electrode placement within OFC (Supplementary Fig. 4).

On the basis of previously reported value-related responses15,42, we
concentrated our physiological recordings around the medial orbitofrontal sulcus
(mOFS), including the medial and lateral banks and fundus, corresponding to
Brodmann areas 11 and 1365. We employed standard methods to record the
discharge of single units and ensembles of multiple units using extracellular
tungsten microelectrodes (FHC Inc., Bowdoin, ME). For each experiment, we
advanced the electrode with precision motors that were calibrated to provide a
precise (<10 μm) estimate of electrode position (NAN Instruments, Nazareth,
Israel), while simultaneously advancing a virtual electrode in the co-registered MR
images (Supplementary Fig. 4). We found the correspondence between virtual and
actual electrode position to be highly consistent (within 100 μm), as corroborated
by the gray-white matter transitions. After waiting 10–20 min for the electrode to
stabilize just superior to the mOFS, we slowly advanced the electrode while the
animal performed the cost-benefit task, increasing the likelihood that relevant
neurons would be active during the selection process. We selected for recording
sites where we could isolate at least one single-unit waveform and otherwise
applied no additional criteria (taking “all comers”) so as to collect as representative
a data set of medial OFC as possible (26 or 86 sites, monkey N or K, respectively).

Once selecting a site for recording, we captured and stored all amplified
waveforms—discrete excerpts of the continuous voltage time series—that exceeded
a predetermined voltage threshold (set such that the event rate in white matter was
1–5 Hz) as digitized samples using the MAP data acquisition system (Plexon Inc.,
Dallas, TX), which simultaneously captured behavioral events relayed by the Expo
software.

Offline data processing and selection. All analyses were performed on wave-
forms sorted offline using specialized software (Offline Sorter, Plexon, Inc.) into
single units (i.e., single neurons) and multi-units to which we collectively referred
as units. The term individual unit referred to either one single unit or one multi-
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unit. We identified single units as waveforms whose morphology was stereotypical
of single units, consistent over time, and easily distinguishable from other con-
current waveforms, and whose timing was separated by at least 1 ms (i.e., outside
the minimum refractory period) and was at most weakly correlated with the timing
of other waveforms (i.e., unlikely resulting from multiple threshold crossings from
a single polyphasic waveform), as done typically in the literature66. The remaining,
multi-unit waveforms were presumed to originate from two or more neurons.
Waveforms deemed to be either electrical artifact or time-locked continuations of a
previously counted waveform were excluded.

The final data set included 26 and 131 single units and 42 and 211 multi-units
from monkeys N and K, respectively. As reflected in the above counts, we excluded
units that were recorded for fewer than 60 trials total (44 and 33 units, monkey N
and K, respectively), had fewer than 5 trials in any of the included conditions (i.e.,
up to 10 unique combinations of offer size and choice; 71 and 133 units), or for
which the accompanying behavior was grossly aberrant (monkey K only: 1 session
with accept rate of ~55% for 0-reward offers and 1 session with ~10% accept rate
for all offers). When a unit was not present during a trial (i.e., mean spike rate
averaged across trial of <0.1 Hz) for 5 or more consecutive trials, we excluded those
trials for that unit; this excluded both units with very low firing rates, as well as
trials during which the unit may have been lost to recording. We computed the
trial-average firing rate as the mean firing rate across trials in 100 ms time bins for
each condition. Because our analysis would ultimately normalize a unit’s firing rate
by its variability, we excluded 23 units (monkey K only) with extremely low
variability (s.d. < 0.5 Hz) as measured across conditions and time bins so that
imprecision in estimating variability (to which low-variability units were
particularly susceptible) would not result in spurious over-weighting of these units.
(Coincidentally, the mean firing rate of the low-variability units was also low,
ranging from 0.072 to 0.76 Hz and with a mean of 0.27 Hz compared to 29 Hz for
the included population for monkey K.) Finally, because our analysis required that
all included conditions were represented by all units, we excluded conditions for
which <40% of units met the trial count threshold (i.e., 5 trials/condition),
including “0-reward, accept” for both animals and additionally “8-reward, reject”
for monkey K.

To compute the trial-average response across N units, C conditions, and T
times, we extracted the firing rate Rn(r, t) for each unit n on trial r in the tth non-
overlapping, 100 ms time bin aligned to the time of the offer. We then computed
the mean firing rate ~Rnðc; tÞ, or trial-average response, across the trials of condition
c (see next paragraph for condition definitions). To standardize the neural

response, ~Rn was z-transformed to ~Rn such that, for each unit, the mean and
standard deviation were 0 and 1, respectively, across all times. Unless otherwise
noted, we subtracted the mean response across conditions at each time t (i.e.,

common-condition response, CCn(t)) from ~Rnðc; tÞ, giving �Rnðc; tÞ. Finally, we
compiled the responses ~Rnðc; tÞ and �Rnðc; tÞ across units into tensors ~R and �R,

respectively, with dimensions N × C × T. As such, tensors ~R and �R contained the
standardized population response, with the responses in tensor �R also being mean-
subtracted.

We computed two sets of trial-average responses depending on whether the
conditions were defined by the present or previous trial. Present-trial responses
were computed by sorting trials according to the present trial’s condition (i.e., 5
present offers × 2 present choices = 10 possible present-trial conditions; Figs. 1–5
and right panels of Fig. 6a–d), while previous-trial responses were computed based
on the previous trial’s condition (i.e., 5 previous offers × 2 previous choices; left
panels of Fig. 6a–d and all panels of Fig. 6e, f). (Note: the 8-reward singleton
condition was excluded when computing population-level dimensions, see below;
however, its trial-average response was computed and normalized identically as for
the other conditions and then projected onto the dimensions for certain analyses,
e.g., Fig. 4b.) To understand the need for the two sorting schemes, consider that,
because trials were presented in random order, present-trial responses to any single
condition contained all 10 previous-trial conditions (and vice versa for present-trial
responses conditionalized on any single previous-trial condition).

Optimal targeted dimensionality reduction. To discover low-dimensional
representations of the task-relevant variables, we developed optimal targeted
dimensionality reduction (oTDR), an extension of the earlier TDR technique18.
The oTDR method discovered linear combinations of neurons, or low-dimensional
representations, that linearly encoded the task-relevant variables, i.e., were targeted
to variables identified a priori as relevant to the behavioral task.

Formally, we assumed that for a given trial r and time t, each task-relevant
variable k contributed to the firing rate linearly with coefficient βk,n(t), which was
summarized in the following single-trial regression model:

Rn r; tð Þ ¼ β0;n tð Þ þ β1;n tð ÞP1 rð Þ þ β2;n tð ÞP2 rð Þ þ β3;n tð ÞP3 rð Þ þ ε; ð4Þ
where Rn(r, t) was the firing rate of unit n, ε was independent Gaussian noise, and
the predictors were the task-relevant variables: benefit (P1: encoded as {0, 1, 2, 4,
8}), choice (P2: encoded as {0, 1} for rejects and accepts, respectively), and expected
reward (P3: given by benefit × choice). By compiling the regression coefficients
across N units into the vector βkðtÞ 2 RN , we defined an axis in the neural
population space. We termed this axis a regression axis (RA), as it was obtained
from the above regression model. The projection of the population response onto

this vector corresponded to the activity of the RA, as could be read out by a
downstream circuit.

In practice, we operated on the trial-average, mean-subtracted, z-normalized
population response captured in tensor �R (see above). We also normalized each
task-relevant variable ({P1, P2, P3}) to the range [0, 1]. When computing previous-
trial representations, Pk(r) was replaced with the variable’s value from the previous
trial, i.e., Pk r � 1ð Þ, thereby defining the previous-trial variables: previous benefit,
previous choice, and experienced reward.

We used the above model to compute two classes of RAs: (1) a single set of
static RAs (sRAs) that represented the task-relevant variables across all times in
the trial (i.e., for each variable k, βk(t) was constrained to be the same
8t 2 f1; ¼ ;Tg); and (2) a set of dynamic RAs (dRAs) computed independently
at each time in the trial to measure how the representations changed across
the trial.

Static low-dimensional representations. In the first application of oTDR, we
sought a single set of sRAs to serve across all times in the trial. We reasoned that
a static set of dimensions would both provide a more compact visualization
of the data and suggest a means by which downstream neurons could read out
distinct task-relevant representations via a static set of weights. Of course, if
the dimensions representing the task-relevant variables changed markedly
over the trial, then a set of static dimensions would fail to capture some portion
of the available signal, which we quantified explicitly (Supplementary Fig. 15).

Toward discovering a static set of RAs, we made three modifications to Eq. (4).
First, we replaced the time-varying firing rate with the mean response taken over a
subset of time bins. While this potentially limited the generalizability of the
resulting representation, we reasoned that the sRA should capture the available
signal during the epoch when the variable was most behaviorally relevant, and we
would assess generalizability subsequently as an empirical question.

In the present study, benefit information was relevant during the 0.5 s of the
offer period, during which the animal encoded the incoming sensory information.
After the offer period, the valuation and decision process proceeded without
external information and thus depended on internal representations of the task
variables (namely choice and expected reward), which we computed during the
post-offer, work period. In addition to these a priori hypotheses, our selection of
the temporal epochs was supported by the dRA analysis (Fig. 5), which showed
stable representations of benefit during the offer period and of choice and expected
reward during the post-offer period.

Following the above rationale, we segregated the neural data into two epochs
defined a priori by the sets of time bins T1 ∈ [0,…,0.5 s] and T2 ∈ (0.5,…,4.5 s]
(monkey N) or (0.5,…,7 s] (monkey K), and, within an epoch, averaged across the
time bins to produce the N × C response matrices �RðT1Þ and �RðT2Þ , respectively. We
computed the sRA for benefit using �RðT1Þ and computed the sRAs for choice and
expected reward using �RðT2Þ. (As discussed below, the method supports an arbitrary
number of epochs, and the representation(s) of a given variable can be computed in
one or more epochs.)

Note that by computing sRAs for choice and expected reward simultaneously in
the same epoch, the representations competed to explain shared variance. This
competitive process was critical when regressing the same neural responses (i.e.,
�RðT2Þ) onto partially correlated variables, as was the case for choice and expected
reward. The sRA for benefit was computed using a distinct set of neural responses
(i.e., �RðT1Þ) and thus did not compete for shared variance with the other
representations. However, because we required all sRAs to be orthogonal (see
below), the discovery of any sRA depended on the other sRAs, regardless of the
temporal epoch in which it was computed.

In separate analyses, we tested alternative hypotheses about the relevant epochs
in which the variables were represented by varying the duration of T1 from 0.5 to 2
s (and shortening T2 accordingly). We also tested the case of having no a priori
hypothesis by discovering all three sRAs within a single epoch spanning the entire
trial. In all cases, the results did not change qualitatively (Supplementary Fig. 12).

When discovering the previous-trial representations, we defined a single
temporal epoch T3 that included the 0.5 s prior to fixation on trial r, a time when
the animal was under behavioral control but had not yet experienced the offer on
trial r. Unlike for the present-trial sRAs, we discovered all three previous-trial sRAs
(which presented the variables on trial r− 1) in the corresponding responses �RðT3Þ.
All other steps were identical to those in discovering the present-trial sRAs.

Second, the core regression assumption of Eq. (4) operated at the single-trial
level and thus had the advantage of weighting each condition by the corresponding
number of observations (i.e., trials), which differed systematically across conditions
(e.g., animals rarely accepted 1-reward offers and usually accepted 8-reward offers).
Therefore and conveniently, conditions for which our estimate of the true, long-
run neural response was more reliable (i.e., we had more observations) exerted
greater influence on the regression coefficients. However, the trial-average
responses, which were needed to combine responses across serially recorded units,
did not incorporate the number of observations per condition. Thus, the reliability
of the trial-average firing-rate estimates differed across conditions. To control for
variable trial counts across conditions, we found that the single-trial model (Eq.
(4)) was equivalent to minimizing the Mahalanobis distance of the trial-averaged
problem scaled by the square root of trial count (Supplementary Note 1), and thus
applied this correction when estimating the coefficients (see matrix M in Eq. (5)).
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Third, Eq. (4) placed no constraints on the relationship between the sRAs.
However, we would ultimately project the neural responses onto each sRA. For the
projections to reflect independent portions of the total neural variance—and, per
the goal of oTDR, reflect independent readouts of the task-relevant variables—we
required orthogonality between the sRAs. As such, we constrained the regression
such that all pairs of βk were orthogonal67. We removed the orthogonality
constraint when characterizing the intrinsic representation of a given variable or
the relationships between representations (e.g., Fig. 3). The constant term β0 was
never included in the orthogonality constraint (see Supplementary Fig. 17 for
relationship between dimensions encoding the common-condition response and
the task-relevant variables).

In summary, oTDR discovered static, low-dimensional representations (i.e.,
sRAs) of the task-relevant variables with the following assumptions:

1. At the level of the single trial, the neural response linearly represented task-
relevant variable k as a single dimension βk according to the individual-unit
model:

Rn r;Teð Þ ¼ β0;n þ
X
k

βk;nPk rð Þ þ ε;

where Rn(r, Te) was the mean firing rate of unit n on trial r over the
temporal epoch e given by set of time bins Te and Pk(r) was the value of
task-relevant variable k on trial r.

2. Reliability of the trial-average and time-average response �Rnðc;TeÞ of unit n
over all trials of condition c and time bins Te depended on the number of
trials observed for condition c.

3. (Optional) Representations βk were orthogonal across all K variables and
epochs e, i.e., β1?¼?βK .

We incorporated all model assumptions into a single objective function, solved
using established optimization tools67,68:

B ¼ argminðB2RN ´K Þ∪ ðB02RN ´ 2Þ SðT1Þ
�� ��2

F
þ SðT2Þ
�� ��2

F

h i
; ð5Þ

where

SðT1Þ ¼ ð�RðT1Þ � βðT1Þ
0 1>C � β1P

>
1 Þ �

ffiffiffiffiffi
M

p
;

SðT2Þ ¼ �RðT2Þ � βðT2Þ
0 1>C �PK

k¼2
ðβkP>

k Þ
� �

� ffiffiffiffiffi
M

p
;

B ¼ β1; ¼ ; βK
� � 2 RN ´K ;

B0 ¼ βðT1Þ
0 ; βðT2Þ

0

n o
2 RN ´ 2;

such that β1?¼?βK (orthogonality assumption); where �k kF was the Frobenius
norm; ⊙ indicated element-wise matrix multiplication; �RðT1Þ and �RðT2Þ were N × C
matrices specifying the average neural response of unit n in condition c over the
first and second temporal epochs (given by time bins T1 and T2), respectively; M
was an N × C matrix specifying the number of trials observed for each unit n and

condition c; βðT1Þ
0 and βðT2Þ

0 were N × 1 vectors specifying the constant term for the
first and second temporal epochs, respectively; 1C was a C × 1 vector of ones; βk was
an N × 1 vector specifying the regression coefficient of all units as pertaining to the
variable k; and Pk was a C × 1 vector specifying the values of variable k across
conditions, where k 2 {1, 2, 3} pertained to the variables benefit, choice, and
expected reward, respectively. The columns of B were then normalized to unit
vectors, resulting in the final K sRAs.

We designed oTDR to be a general-purpose algorithm for discovering low-
dimensional representations of an arbitrary number of K variables and E epochs,
while computing dimensions for each variable in one or more epochs and assuming
orthogonalization between any subset of dimensions. For simplicity, we stated the
objective function above (Eq. (5)) in its narrow form as applied to the current data
set. Here we restate the objective in a general form that can be applied to any data
set.

B ¼ argmin
BðT1 Þ2RN ´KðT1 Þ
� 	

∪ ���∪ BðTE Þ2RN ´KðTE Þ
� 	

∪ B02RN ´Eð Þ
XE
e¼1

SðTeÞ
�� ��2

F
; ð6Þ

where

SðTeÞ ¼ �RðTeÞ � βðTeÞ
0 1>C � PKðTe Þ

k
βðTeÞ
k PðTeÞ>

k


 � !
� ffiffiffiffiffi

M
p

;

BðTeÞ ¼ βðTeÞ
k ; ¼ ; βðTeÞ

KðTe Þ

n o
;

B ¼ BðT1Þ ∪ � � � ∪BðTEÞ;

B0 ¼ βðT1Þ
0 ; ¼ ; βðTEÞ

0

n o
;

such that all or a subset of columns of B may be constrained to be orthogonal
and all columns of B may be projected onto the top D principal components
(D ≤ N) of the data (computed by reshaping the tensor �R 2 RN ´C ´T of data
spanning the entire duration of the trial to the 2-D matrix �RTC 2 RN ´TC for
which the principal components were computed; N: neurons; C: conditions; T:
time bins); where �RðTeÞ was an N × C matrix specifying the average neural

response of unit n in condition c in temporal epoch Te; β
ðTeÞ
0 was an N × 1 vector

specifying the constant term for epoch Te; P
ðTeÞ
k was a C × 1 vector specifying the

values of task-relevant variable k assumed to be represented in epoch Te; and

βðTeÞ
k was an N × 1 vector specifying the corresponding regression coefficient.

Note that in general, for a given epoch Te, all or a subset of task-relevant

variables PðTeÞ
1 ; ¼ ;PðTeÞ

KðTe Þ

n o
and the corresponding regression vectors

βðTeÞ
1 ; ¼ ; βðTeÞ

KðTe Þ

n o
may be present (i.e., KðTeÞ ≤K 8e 2 1; ¼ ; Ef g). Furthermore,

a given task-relevant variable and its corresponding regression vector may be
shared across multiple epochs (i.e., the number of columns of matrix B is given
by
PE

e¼1 K
ðTeÞ). The columns of B were normalized to unit vectors, resulting in

the final sRAs. The remaining terms and conventions are defined above.
In Supplementary Fig. 12e, f, we applied the generalized objective function to

the current data set to show how representations of a single task-relevant variable
can be computed in multiple temporal epochs and how orthogonalization can be
applied to a subset of representations. We also discuss the rationale for these
assumptions.

As stated above, the objective function could accommodate an additional de-
noising assumption such that the task-relevant representations were limited to the
high-variance subspace, i.e., space spanned by the top D principal components
(PCs). We did not apply the de-noising assumption in the present study, in part
because the noise-reducing effect of averaging over multiple time bins Te obviated
the need for additional noise reduction. More importantly, limiting the data to the
high-variance subspace would compromise the subsequent hypothesis testing.
Specifically, as described below, we tested the significance of a given representation
(i.e., sRA) by comparing it to random vectors biased to the space occupied by the
data. By limiting the data to the high-variance subspace, the random vectors would
also be limited to this high-variance subspace—a subspace much smaller than that
spanned by the original data. As a result, the random vectors would underestimate
the full space of possible representations, and our estimates of the probability of
obtaining a given sRA by chance, as computed from the random vectors, would be
exaggerated.

The present oTDR technique extended the previous TDR method18. Both
techniques were “targeted” in that variables of interest were defined a priori and
then dimensions representing those variables were discovered in the high-
dimensional neural data. However, the previous technique used separate, ad-hoc
algorithms to apply each assumption serially: computing a set of linear
representations βk of variable k via Eq. (4), projecting βk onto the top PCs (also see
ref. 12), and then orthogonalizing the set of βk using a greedy algorithm. Each step
distorted βk from the original vectors, and thus the final vectors were no longer
necessarily as close to linear representations of the targeted variables as possible
given the model assumptions. In addition, the prior technique relied on solving for
βk at a single moment in time, which compromised the generality of the
representation across all relevant times. In contrast, by incorporating all
assumptions into a single objective function (Eq. (5)), oTDR satisfied the model
assumptions simultaneously and thereby discovered targeted dimensions that were
optimal given all model assumptions.

Of note, as for oTDR, the prior technique implicitly weighted conditions by the
number of observations (assumption 2) through use of the single-trial model (Eq.
(4)). However, use of this model complicated simultaneous application of the
orthogonalization and de-noising steps, since application of these steps would
require the objective function to solve for each unit serially and transition back-
and-forth between single-trial and trial-average data. Our finding that the single-
trial model could be recast as a scaled trial-average problem facilitated the
simultaneous application of all assumptions.

Dynamic low-dimensional representations. Thus far, we applied oTDR to dis-
cover static representations, or sRAs, of the task-relevant variables. In our second
application, we measured how the representations changed across the trial. To this
end, we discovered a time series of dynamic representations, or dRAs, discovered
independently in each time bin. The dynamic and static analyses shared the basic
assumptions outlined in the single-trial model (Eq. (4)), but the methods differed
slightly. In particular, the dynamic analysis operated on shorter time bins, which
made the regression coefficients more susceptible to random variation in firing
rate. As such, we applied several additional steps to reduce the impact of random
variation.

First, prior to solving the regression, we noised-reduced the neural data by
eliminating the low-variance dimensions, which contributed less to representations
of the task-relevant variables (as confirmed in Supplementary Fig. 18). To identify
the low-variance dimensions, we transformed the 3-D tensor �R (with data
spanning the entire trial) to the 2-D matrix �RTC (dimensions N × TC) and

performed principal components analysis (PCA) on �RTC . (Note, by transforming �R
to �RTC , the resulting PCs explained variance related either to time or task
condition.) We projected the trial-average, mean-subtracted response �Rnðc; tÞ onto
the top D PCs, as ordered from those explaining the most to least variance,

generating the noise-reduced responses R
^

n c; tð Þ. We selected D as the approximate
inflection point of the log variance explained as a function of PC. The subspace
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spanned by the top PCs (D = 8 or 20) explained 45% or 32% of total variance
across time and conditions for monkey N or K, respectively.

Second, we averaged adjacent 100 ms time bins into single, non-overlapping
200 ms time bins that did not straddle t = 0. The variable t in the dynamic analyses
refers to these wider, 200 ms time bins.

Third, we applied L2 regularization (i.e., ridge regression) to mitigate
random variation in the coefficients βk,n(t). The regularization penalized large
values of βk,n(t) and assumed the contribution of a given unit n was distributed
across variables k. This assumption was supported by the observed mixed
selectivity of individual units, i.e., lack of clustering of sRA coefficients along the
horizontal and vertical meridians (Fig. 3). Of note, we did not apply L2
regularization when discovering the sRAs (Eq. (5)) for two reasons. First, the noise-
reducing effect of regularization was less necessary in the static analysis given the
more precise measurements of the neural response, as discussed. Second, in
discovering the special case of non-orthogonalized sRAs (e.g., Fig. 3), we were
interested in accurately measuring the absolute relationships between task-relevant
representations, which would be artificially distorted by assuming a priori (via
regularization) that coefficients were distributed across variables. In contrast, we
used the dRAs primarily to understand the change in relationships between
representations over time (relative to synthetic data to which regularization was
also applied; see below), and thus the absolute relationships were less critical.

We tested the effects of PCA-based noise reduction, time bin width (100, 200, or
500 ms), and regularization in separate analyses (Supplementary Fig. 22).

Finally, unlike the sRAs, we did not orthogonalize the set of dRAs because we
were interested in the relationship between the representations—either of different
variables at the same time, or of the same variable at different times—and
orthogonalization would have distorted these relationships.

In solving the static regression model (Eq. (5)), numerical matrix optimization
was required to include the orthogonality assumption. However, because
orthogonalization was not included in the dynamic analysis, the model for the
dRAs had a closed-form solution and could be expressed at the individual-unit
level:

R
^

n c; tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Mn cð Þ

p
¼ β0;n tð Þ þ β1;n tð ÞP1 cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Mn cð Þ

p
þ β2;n tð ÞP2 cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Mn cð Þ

p
þβ3;n tð ÞP3 cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Mn cð Þ

p
þ λn tð Þ β0;n; β1;n; β2;n; β3;n

h i��� ���2
2
;

ð7Þ

where R
^

n c; tð Þ was the noise-reduced, trial-average response of unit n for
condition c at time t, Mn(c) was the number of trials observed per condition,
λn(t) was a scalar parameter governing the impact of the regularization term,
and the regularization term, �k k2, was the Euclidian norm of the vector of
the constant term β0,n and the three coefficients βk,n for the task-relevant
variables Pk 2 benefit; choice; expected rewardf g. We found λn(t) empirically
and independently for each unit and time bin via leave-one-out cross-validation
on conditions and selecting the value of λ that minimized the mean squared
error for Eq. (7) on the left-out test condition. For certain units and time bins,
the error was minimized by λ ¼ 1, implying excessive unexplained variance; in
these cases, we set βk;n tð Þ ¼ 0 for all k. We compiled coefficients βk;n tð Þ across
units to generate N-dimensional vectors for each variable k that we then
normalized to unit vectors, referred to as the “dRA(t) for [variable k]” in the
main text.

Projection of neural response onto static regression axes. Each sRA defined a
linear combination of neurons that represented the targeted task-relevant variable.
To read out these representations, we projected the neural responses onto each
sRA:

projkðtÞ ¼ �RðtÞ>βk; ð8Þ

where �R tð Þ was an N × C matrix of the population response extracted from tensor
�R at time t, and βk was the N-dimensional sRA corresponding to variable k. The C-
dimensional vector projk(t) gave the activity of sRAk at time t for each of the C
conditions.

We limited projection-based analyses to the static regression axes. As discussed,
a primary aim of the oTDR static analysis was to separate, or de-mix, the
population encoding of the task-relevant variables into independent
representations. Because the sRAs were orthogonal, the projection onto a given
sRA was the optimal readout of the population response (given the model
assumptions) as related linearly to the targeted variable of interest and minimally
related to the other task-relevant variables. However, if the RAs were non-
orthogonal, as was the case for the dRAs (see above), then the resulting projections
necessarily would contain representations of multiple task-relevant variables. While
these mixed projections may separate the task-relevant variables more than the
mixed selectivity at the individual-unit level, they would not offer a maximally
independent readout. Therefore, projections onto the dRAs were of limited utility
for interpreting the population activity or for positing how downstream circuits
may read out the population activity. For this reason, we did not project the
population response onto the dRAs, and consequently did not perform the
subsequent variance-based analyses (see below) that depended on these projections.

Variance explained by static regression axes. We measured the variance Vk(t) at
time t explained by sRAk (i.e., the sRA targeted to task-relevant variable k) as the
variance of projkðtÞ across conditions normalized by the cross-condition variance
summed over all dimensions (i.e. units), which we expressed as a percentage:

Vk tð Þ ¼ var projk tð Þ� 	PN
n var �Rn :; tð Þð Þ ´ 100; ð9Þ

where var �Rn :; tð Þð Þ was the variance of neural response across conditions for unit n
at time t.

Relevant and irrelevant signal variance. Though each sRA was designed to
represent a specific variable, some of the variance explained by a given sRA may
have been unrelated to this on-target variable. Furthermore, this unrelated variance
may have been related to an alternative off-target variable. We were interested in
measuring the variance explained by a given sRAk (targeted to variable k) that was
related or unrelated to variable q, and so developed metrics for relevant or irre-
levant signal variance (RSV or ISV, respectively):

RSVk;qðtÞ ¼ VkðtÞr2k;qðtÞ; ð10Þ

ISVk;qðtÞ ¼ 100� RSVk;qðtÞ; ð11Þ
where VkðtÞ was the variance explained by sRAk at time t and r2k;qðtÞ was the
squared Pearson’s correlation coefficient (0 ≤ r2 ≤ 1) between projkðtÞ and the
condition-matched values of variable q (note, by convention, the subscript k in r2k;q
did not refer to variable k directly, but rather to the projection onto sRAk). Thus
RSV and ISV were in units of variance, lower-bounded by 0, and together summed
to VkðtÞ. By convention, when referring to the on-target variable (i.e., q = k), we
simplified the subscripted indexing: RSVk;q¼k ¼ RSVk and ISVk;q¼k ¼ ISVk .

When we computed RSV and ISV for the on-target variable (i.e., q = k), the
metrics provided a useful account of how well the sRA was sensitive and specific,
respectively, to the variable of interest. However, when we computed RSV or ISV
for off-target variables (i.e., q ≠ k), the term could misattribute on-target variance
as off-target variance when variables k and q were correlated (e.g., the values of
benefit [0, 1, 2, 4, 8, 1, 2, 4, 8] and expected reward [0, 0, 0, 0, 0, 1, 2, 4, 8] were
correlated, r = 0.54).

To consider the effect of correlated variables, let a and b be on- and off-target
variables, respectively, moderately correlated according to the Pearson’s correlation
coefficient ra,b. Let p be the projection of the neural population response onto sRAa

designed to detect variance related to a. To simplify the formulation, assume a, b,
and p are mean-centered, though this is not essential to the argument. Let a and p
be correlated by a relatively large coefficient rp,a. Consequently, we would compute
a relatively high on-target RSVa. However, given ra,b, we would also expect a
relatively high correlation rp,b and thus a high off-target RSVa,b, giving a false
impression that RSVa is non-specific to variable a and explains substantial variance
related to variable b. In the extreme case, when ra,b = 1, then rp,b = rp,a, and thus
RSVa,b = RSVa,a.

To control for the correlation ra,b between variables, we employed a method
known as semi-partial correlation69 to isolate the relationship between b and p that
was not explained by ra,b. We replaced the Pearson’s correlation coefficient rp,b with
the semi-partial correlation coefficient ρp,b|a, as given by

ρp;bja ¼
rp;b � rp;ara;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2a;b

q : ð12Þ

Therefore, to isolate the portion of variance related to off-target variables, while
controlling for the correlation between on- and off-target variables, we computed
off-target RSV as

RSVk;qðtÞ ¼ VkðtÞρ2k;qjkðtÞ; ð13Þ
where ρ2k;qjkðtÞ was the squared semi-partial correlation coefficient (Eq. (12))

between projkðtÞ and the component of off-target variable q not explained by on-
target variable k. We continued to computed RSV for on-target variables (i.e., q =
k) per Eq. (10). Thus,

RSVk;qðtÞ ¼
Vk tð Þr2k;q tð Þ;when q ¼ k

Vk tð Þρ2k;qjk tð Þ;when q≠k

(
: ð14Þ

Regarding ISV, on-target ISVk indicated the amount of variance explained by
sRAk that was not correlated with the on-target variable k and thus was available
for correlation with the off-target variables. However, the concept of off-target ISV
was of limited utility, because one expected for the variance explained by a given
sRA to be unrelated to the off-target variables. Indeed, high on-target RSV
indicated high off-target ISV. Therefore, we only computed ISV for the on-target
variables.

The metrics RSV and ISV were not limited to sRAs computed by oTDR and
could be computed for any arbitrary axis. However, for dimensionality reduction
techniques agnostic to the variables of interest (e.g., PCA), the notion of on- and
off-target variables was not well-defined. In the case of PCA (Supplementary
Fig. 16), the dimensions (i.e., PCd) corresponded to vectors in the N-dimensional
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space that explained the greatest cross-condition and temporal variance, from d =
1 to N. As with the sRAs, we projected the neural population response onto each
PCd and measured the variance explained (Eq. (9)). For a given task-relevant
variable k, we defined the on-target PCd′ as that which explained the greatest
cumulative RSVd,k with respect to variable k (as per Eq. (10)) across all time bins,
and likewise defined d′ as the number of the corresponding PC. Subsequently, we
recomputed off-target RSVd,k (as per Eq. (13)) for the remaining PCs (i.e., when d
≠ d′), while maintaining on-target RSVd′,k per Eq. (10) when d = d′.

Angle between regression axes. To measure the similarity between either the
static or dynamic representations, we computed the pairwise angle in degrees
between RAs βi and βj:

θij ¼ cos�1ð β>i βj
��� ���Þ ´ 180=π: ð15Þ

Note that in this general formulation, βi and βj were unit vectors and could refer
to several types of RA pairs: sRAs for variables i and j, dRAs for the same variable
at times i and j, or dRAs for different variables i and j at the same or different times.
Angles of 0° indicated the representations were identical (or perfectly opposite),
whereas angles of 90° indicated the representations were maximally unrelated (i.e.,
orthogonal). We took the absolute magnitude of the dot product so as treat angles
equidistant from 90° as equivalent (e.g., angles of 0° and 180° were both coded as θ
= 0°), and thus refer to θij as the folded angle. In so doing, we emphasized the
absolute similarity of the RA pair (e.g., angles of 0° and 180° both indicated that the
same units contributed by the same absolute amount to the pairs of RAs).
However, this construction of θij was insensitive to differences in the sign of
representation, as when the neuronal contributions to βi and βj remain similar in
absolute strength but reverse sign, such as exhibited by the example unit in Fig. 2d.
Therefore, exclusively to observe changes in sign, we constructed the unfolded
angle θ0ij as:

θ0ij ¼
cos�1ðβ>i βjÞ ´ 180

π ; when β>i βj < 0

Not-a-number; otherwise

(
; ð16Þ

and θ0ij was therefore limited to the range [90, 180°] (Supplementary Fig. 23).

Boxcar analysis to define periods of putative stability. To define and char-
acterize periods of putative stability, we fit boxcar functions to the time course of
angles θij for each reference dRA(i) computed at a fixed time i in comparison to
dRA(j) for all times j. Each time course corresponded to a row in the heat maps in
Fig. 5c, d and is shown with the boxcar fits in Supplementary Fig. 20. The temporal
span of each boxcar indicated the period of putative stability, while boxcar height
θboxcar indicated the average similarity of the representations during that period
(see Supplementary Fig. 21 for all boxcar metrics). Note that boxcars were fit to
90� � θij , thus periods of high similarity had large values of θboxcar but small values
of θij.

To test statistical stability, we compared our observations to identical metrics
made on synthetic firing rate data from a hypothetical neural population that did
not encode the task variables but preserved the correlations between units and
across time (see below). In each synthetic data set, we computed the average
similarity θ̂boxcar during each period of putative stability, where periods were
defined by the boxcar fits from the veridical data. We defined a period as
statistically stable when the observed similarity (θboxcar) was significantly greater
than the null values of θ̂boxcar compiled across synthetic data sets (i.e., p(θboxcar)
< 0.01; Supplementary Fig. 21c, f).

Alignment index. In addition to comparing the similarity between one-dimenional
RAs via the angle analysis above, we were interested in assessing the overlap
between pairs of subspaces spanned by sets of RAs or other basis vectors. To
measure the overlap between subspaces U1 and U2, we used a custom metric,
termed the alignment index A, adapted from a recent report36:

A ¼ TrðU>
1 U2U

>
2 U1Þ

minðD1;D2Þ
; ð17Þ

where U1 and U2 were orthogonal matrices of dimensions N × D1 and N × D2,
respectively, with D basis vectors arranged in columns, and Tr(.) was the matrix
trace. The numerator measured the amount of overlap between U1 and U2, and the
denominator normalized the index by the minimum dimensionality of the sub-
spaces (i.e., the maximum possible overlap). Thus, the alignment index ranged
from 0 (orthogonal) to 1 (completely aligned) and was invariant to the order of U1

and U2.

Null model using random dimensions in neural space. A major goal of the
present study was to develop and apply generalizable, unbiased tools for sig-
nificance testing of low-dimensional representations of high-dimensional data. We
developed two statistical approaches to contextualize the low-dimensional features
by generating control data sets of either (1) random dimensions that captured the
inter-neuronal correlations (i.e., dimensionality) of the data, or (2) random

synthetic responses that captured the data’s dimensionality and temporal corre-
lations (i.e., temporal smoothness).

To model the correlations between neurons (i.e., dimensionality), we generated
random dimensions that reflected the high-dimensional space occupied by the
neural data36. That is, the density of random dimensions in the high-dimensional
space was proportional to the frequency that the neural population occupied a
given region of the space.

To provide an intuition for the impact of dimensionality, consider a population
of two neurons that tended to fire together. The dimension reflecting co-activation
would be more likely to contain data than the dimension reflecting exclusive
activation of one neuron or the other. This asymmetry should be reflected in the set
of random dimensions intended to model the chance probability of a given
dimension (or its properties) given the data. Alternatively, if the set of random
vectors were evenly distributed throughout two-dimensional space (as in most
analyses), then many random dimensions would be over-represented relative to
how frequently the neural population actually occupied those dimensions, thereby
overestimating the rarity of the commonly occupied dimensions and generating
spuriously small p-values. Instead, by generating random dimensions reflecting the
correlational structure between neurons, our estimate of the rarity of a given
dimension was less biased and the resulting p-values were more conservative.

The details of the random dimension method are described elsewhere36. Briefly,
we calculated the covariance matrix ∑ of the neural responses �RTC (dimensions N ×
TC) across all times and conditions of the task (as was done for computing the PCs
above). We then generated random dimension v̂i aligned to the dimensionality of
the neural data as:

v̂i ¼ orth
U
ffiffiffi
S

p
~vi

U
ffiffiffi
S

p
~vi

�� ��
2

 !
ð18Þ

where the eigenvectors of ∑ were in the columns of the N × N matrix U, and the
corresponding eigenvalues were on the diagonal of the N × N diagonal matrix S;~vi
was a random N-dimensional vector with each element drawn independently from
a normal distribution with zero mean and unity variance; and orth(.) returned the
orthonormal basis of an input matrix. We repeated this procedure for i = 1–10,000,
returning a set of random dimensions that had the specified inter-neuronal
covariance structure ∑. For statistical analysis, we projected the neural data onto the
set of random dimensions, generating dproji tð Þ for each random dimension v̂i .

Using dproji tð Þ, we computed identical metrics as when projecting the data onto a
dimension of interest (e.g., when computing variance explained by an sRA). Across
random dimensions, this produced a null distribution for a given metric from
which we estimated the probability of obtaining a given value of that metric by
chance given the inter-neuronal correlational structure of the data.

In general, computing a given metric based on the projection onto a random
dimension (i.e., dproji tð Þ) was straightforward. However, computing off-targetdRSVi;q for random dimension i and off-target variable q required specification of
the semi-partial correlation ρ̂2i;qjkðtÞ that isolated the portion of q that was

independent of the Pearson’s correlation r̂2i;q¼ k between the specific projectiondproji tð Þ and the on-target variable k. Therefore, we first computed the on-target
correlation r̂2i;q¼ k (Eq. (10)) for random dimension i and on-target variable k,

which we then used to compute the semi-partial correlation ρ̂2i;qjkðtÞ (via Eq. (12))
and, in turn, off-target dRSVi;q (via Eq. (13)).

Separately, in the case of computing the similarity between two dimensions (i.e.,
computing their angle θ, Eq. (15); Supplementary Tables 2–4), we generated the
null distribution of angles θ̂ by computing the angle between all pairs of random
dimensions v̂.

Null model using neural population control data. Our analyses of the dynamics
of the representations (e.g., dRA stability, Fig. 5) required we account not only for
the data’s dimensionality, as in the random dimensions technique above, but also
for the data’s temporal correlations, or smoothness. These two aspects of the
population’s correlational structure limited how much a representation could
change, and therefore could trivially account for similarity in the representations
across time. To provide an intuition, correlations between units, or dimensionality,
restricted the subspace a representation could occupy (as discussed above). At the
limit, if the dimensionality were unity, then a representation could not vary and
would be similar, indeed identical, across all times. Separately, correlations in an
individual unit’s response over time, i.e., temporal smoothness, restricted how
quickly a representation could change. If temporal correlations were very high,
then even if the dimensionality permitted dissimilar representations, the popula-
tion may not have been able to transition to an alternative representation within
the span of a trial.

We therefore sought to generate surrogate control data that captured both the
data’s dimensionality and temporal smoothness. However, traditional shuffling
procedures—that randomize either across time points or task conditions—
maintain either the dimensionality or smoothness of the data, respectively, but not
both, and therefore are prone to overestimate the significance of a given finding.
Instead, we employed a recent method, neural population control21, to generate
synthetic firing-rate data that preserved both the dimensionality and temporal
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smoothness of the original data but were otherwise random. Briefly, we quantified
the covariance of the original data across time and neurons so as to define a joint
probability distribution of firing rates that was maximally entropic given the data’s
dimensionality and temporal smoothness. We then generated surrogate data sets by
sampling firing rates from this distribution at each time bin and for each neuron.
Given N units in the original data set, we generated 1000 surrogate data sets of N
neurons each, with the original data’s correlational structure preserved within a
given surrogate data set (i.e., individual data sets were conditionally independent
from one another). By computing identical metrics against the surrogate data sets
as for the original data, we compared a given value observed in the original data to
the distribution of surrogate values. Any population feature, such as the stability of
a representation, which appeared in the surrogate data sets would be considered
epiphenomenal, i.e., an expected byproduct of the data’s dimensionality and
temporal smoothness. Whereas population features that rarely occurred in the
surrogate data sets would be considered statistically significant.

In its original application21, the method for generating surrogate data sets was
used to test the significance of the strength of encoding of a given signal. However,
we observed that, by removing the coding properties from the surrogate data sets,
we could control for intrinsic spatiotemporal correlation in accounting for the
similarity of coding dimensions across time. To our knowledge, this is the first
statistical test of stability for low-dimensional representations.

Separability and reliability of representations. The present study sought to
identify the encoding of task-relevant variables at the level of individual units and
separate these signals into distinct low-dimensional population representations.
Our efforts therefore depended on whether the population representations were
indeed separable, a concept for which we develop a definition here. Though prior
studies have shared similar goals18–20, the concept of separability was not formally
defined or tested.

A rigorous examination of separability is imperative when making claims about
de-mixing high-dimensional representations since, as we outline below, noisy
estimates of the individual representations can contribute to exaggerated estimates
of the independence between representations, thus overestimating the very basis for
de-mixing. Also at stake are claims of mixed selectivity, since a population of units
selective exclusively for variable A can appear to also encode variable B when
estimates of the representations of A or B are noisy, and thereby generate the
spurious impression that selectivity is mixed.

The concept of separability depends on conventional correlation, but the
statistical hypotheses are distinct. Conventional correlation statistics address the
chance of falsely concluding orthogonal representations are correlated, whereas we
were interested in the opposite extreme: whether two (possibly correlated)
representations carried (at least some) independent information that could be
separated at the level of the readout. Therefore, as our null hypothesis, we
considered the extreme case of two perfected correlated (or anti-correlated)
representations (i.e., |r| = 1), but the estimates of each had been corrupted by
independent noise. These representations would become increasingly less
correlated with increasing imprecision in the estimates, and yet would still not
convey separable information about their respective variables. In contrast, we
defined two representations as separable when their correlation was significantly
less than this null-hypothetical correlation.

To develop this definition, let vectors β0A and β0B be the true N-dimensional
linear representations (i.e., RAs) of task-relevant variables A and B defined for a
population of N neurons. As above, β0A and β0B are separable when they contain
independent information, i.e., when their correlation coefficient is less than unity,
rA0B0j j<1. Likewise, we define the null hypothesis that the representations are not
separable, i.e., perfectly correlated, as:

H0 : rA0B0j j ¼ 1:

However, we do not have access to the true representations—only to the sample
estimates βA and βB, and their correlation |rAB|, as measured from the data. Following
standard hypothesis testing procedure, we calculate the probability P that we obtained
a particular value of |rAB| under the null hypothesis, i.e., PðjrABj

��H0Þ. Here we develop
a sampling distribution for |rAB| given H0.

The relationship between rABj j and rA0B0j j is given by Spearman70, who observed
that |rAB| decreases as independent noise, εA and εB, is added to the true
representations, i.e.:

βA ¼ β0A þ εA
βB ¼ β0B þ εB

: ð19Þ

At the limit, the measured correlation between two perfectly correlated variables
goes to zero as ε ≫ β′. We do not directly measure εA and εB, but instead measure
the effect of independent noise on the reliability of our measurements of βA and βB.
Our measure of reliability is based on the correlation, rAA or rBB, between repeated
samples of βA or βB, which we simulate via a bootstrap procedure, detailed below. If
reliability were perfect, then rAA = 1 and rBB = 1. Spearman offered the following
correction for the attenuating effect of independent noise (i.e., imperfect reliability)
on the correlation between two variables70:

rABj j ¼ rA0B0j j ffiffiffiffiffiffiffiffiffiffiffiffiffirAArBB
p

: ð20Þ

Under the null hypothesis (i.e., rA0B0j j ¼ 1) the above expression reduces to:

r̂ABj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
rAArBB

p ðgivenH0Þ: ð21Þ
(Note use of the “hat” symbol to indicate the null-hypothetical value.)

In detail, the bootstrap procedure to estimate rAA or rBB was as follows. We
generated S resampled data sets by randomly selecting Qn;c trials with replacement
from each condition c and unit n given Qn;c original trials for that condition and
unit, such that the number of trials per condition for a given unit was consistent
across the original data and resampled data sets (S = 700; chosen for the maximum
number of trials per unit). Note that we z-normalized the resampled data for a
given unit via the single mean and standard deviation observed for that unit in the
full data set. This had the effect of decreasing our subsequent reliability measure
and making our determination of separability more conservative. The alternative—
z-normalizing independently within each resampled data set—would minimize
trial-to-trial response fluctuations and thereby overestimate reliability and
separability.

Within each resampled data set, we used to oTDR without orthogonalization to
calculate the three sRAs for the task-relevant variables benefit, choice, and expected
reward. Here we discuss the representation βA (i.e., sRA) of variable A; an identical
procedure was used for the other two variables. We computed all pairwise
correlations between βA;i and βA;j , where i and j were different resampled data sets
(given S data sets, we calculated (S2 − S)/2 correlations). We compiled these
correlations into the distribution rAA (shown in Supplementary Fig. 7a, c).

To estimate r̂ABj j under the null hypothesis, we computed the distribution r̂ABj j
(shown in Supplementary Fig. 7b, d) for each pair of variables A and B (given three
variables, we computed three pairs) according to Eq. (21) using the just-compiled
distributions of reliability rAA and rBB:

r̂ABj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAA � rBB

p
;

where ⊙ indicated element-wise multiplication.
Finally, we performed a one-tailed t-test to determine the probability

PðjrABj
��H0Þ of falsely rejecting the null hypothesis that the values in r̂AB were from

a distribution with mean |rAB| (as observed in the data) in favor of the alternative
hypothesis that r̂AB came from a distribution with greater mean (i.e., that the
observed |rAB| was less than the null-hypothetical value r̂ABj j). When P was
sufficiently small, we concluded that the representations βA and βB were separable.

Our definition of separability serves as a useful test for whether two
representations contain independent information about their respective variables
and highlights the confounding influence of noisy representations (a feature in
virtually all empirical data sets) on observing separability erroneously. Despite
these advantages, we consider the following limitations. Because we used a
bootstrap procedure (i.e., resampled data sets shared some trial-level data), the
resulting reliability estimates (i.e., rAA and rBB) were admittedly biased upward,
thus making our final test of separability less conservative (via Eq. (21)). In
addition, because βA and βB were derived from the same set of neural responses
and because the corresponding variables A and B may be correlated, we cannot
guarantee that the respective noise components, εA and εB , were themselves
independent, an assumption of Eq. (20). If εA and εB were correlated, then the
measured correlation |rAB| would increase without a change in the null-
hypothetical jr̂ABj (which depends on εA and εB separately, not on their
interaction), thus making our conclusions regarding separability more
conservative.

In addition to the separability analysis, we used the resampled data sets to
measure the reliability of each unit’s contribution to a given representation. As
discussed above, the representation βA;s of variable A was derived for each

resampled data set s, and each element βðnÞA;s specified the contribution of unit n to

the representation. We compiled the distribution βðnÞA across the S data sets. The
standard deviation of the distribution was proportional to the reliability of unit n’s
contribution (shown by error bars in Fig. 3a, c). Separately, via a two-tailed z-test,
we computed the probability of falsely rejecting the null hypothesis that the

distribution βðnÞA included the value of zero. When this p-value was sufficiently
small, we concluded that unit n significantly encoded variable A. Subsequently, we
tested whether the population’s selectivity was indeed mixed by whether the
proportion of units significantly encoding multiple variables was greater than
expected by chance (Supplementary Table 1). This test controlled for the

confounding effect of noisy estimates of βðnÞA and βðnÞB appearing as mixed selectivity
for variables A and B, when in fact one or both estimates may have been
indistinguishable from zero, and thus the true selectivity was for only one or
neither variable.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1b, c, 2a–e, 3a–d, 4a–f, 5a–f, and 6a–h are available for
download at https://github.com/danielkimmel/Kimmel_NatComm_2020.
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Code availability
Custom MATLAB code for oTDR and the neural population metrics and statistics
presented here can be found at https://github.com/danielkimmel/oTDR.
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