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Abstract
So-called pharmacoresistant (R-type) voltage-gated Ca2+ channels are structurally only partially characterized. Most of them are
encoded by the CACNA1E gene and are expressed as different Cav2.3 splice variants (variant Cav2.3a to Cav2.3e or f) as the ion
conducting subunit. So far, no inherited disease is known for the CACNA1E gene but recently spontaneous mutations leading to
early death were identified, which will be brought into focus. In addition, a short historical overview may highlight the devel-
opment to understand that upregulation during aging, easier activation by spontaneous mutations or lack of bioavailable inor-
ganic cations (Zn2+ and Cu2+) may lead to similar pathologies caused by cellular overexcitation.
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Introduction

In the human gene of the pharmacoresistant Cav2.3/R-type
calcium channel, de novo pathogenic mutations were detected
in a group of 30 individuals with developmental and epileptic
encephalopathies [13]. The publication represents the first
comprehensive investigation in humans with structural varia-
tions in this widely expressed voltage-gated calcium channel,
together with two earlier reports, in which single cases were
mentioned [4, 6].

Based on a short historical overview for the performed
basic research, the path and the reasons for an improved un-
derstanding of the reported human mutations will be de-
scribed. Interestingly, most of the channel mutations cluster
within the cytoplasmic ends of the four S6 transmembrane
segments (Fig. 1), which constitute part of the Cav2.3-channel
activation gate.

“Activation gate” as a functional domain
in voltage-gated ion channels

Ion channels represent transmembrane proteins, which are
linked by their special structure and gating properties to many
physiological functions, including cardiac and neuronal excit-
ability. Ion channels can be either open or closed, and they
contain structural elements, which are connected to the tran-
sition between these two states. The word “gate” is used to
describe this concept, and “gating” is the process whereby the
gate is opened and closed [1].

Ligand-gated and voltage-gated channels are activated by differ-
ent processes but may both include the movement of some internal
parts of the molecule to produce an effect in a different part of it to
open the permanent pathway permitting themovement of ions. The
cytoplasmic parts from the Cav2.3 S6 segments (Fig. 1) represent at
least the major “internal part” of the molecule, which causes activa-
tion of the channel to open it properly and precisely.

Muchmore is known by crystallography andmutational anal-
yses about the structural details, which help to convert electrical
signals generated by small ion currents across cell membranes to
tune all rapid processes in biology and especially in voltage-
gated Ca2+ and Na+ channels [8]. These channels contain a tet-
ramer of membrane-bound domains including a positively
charged S4 segment. Voltage-dependent activation drives the
outward movements of these positive gating changes in the volt-
age sensor via a “sliding-helix mechanism”, which leads to a
conformational change in the pore module that opens its
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intracellular activation gate (for further details related to the
“chemical basis for electrical signalling”, see [8]).

Another recent review specializes on the Cav1.2/L-type
Ca2+ channel, which is important for the plateau of the cardiac
action potentials, muscle contractions, generation of pacemak-
er potentials, release of hormones and neurotransmitters, sen-
sory functions and regulated gene expression [14]. Based on
gating studies using biophysical and pharmacological studies
as well as mathematical simulations, the role of voltage sen-
sors in channel opening was analysed. The gating process is
determined by distinct sub-processes, the movements of the
voltage-sensing domains (the charged S4 segments) and the
opening and closure of S6 gates (for further details related to
the individual transitions during activation, see [14]).

The first structural details for the potential coupling between
voltage sensors and the pore region came from the crystals of K+

channels [10]. The question arose: how the movement of the S4
segment is transmitted to the S6 helix to open the gate upon
depolarization? In the electromechanical coupling model de-
signed for the Kv1.2 channel [20], the S4-S5 linker was located
within atomic proximity (4–5 A) of the S6 helix. Thus, it may
interact with the latter in the closed state of the channel and was
confirmed by double mutant cycle analysis for the expressed
human Cav2.3 channel (for further details, see [40]).

History – detection of R-type and “E-type”
voltage-gated calcium channels (Tab. 1)

R-type (or initially called “E-type” [33]) Ca2+ channels
were identified as the second last member of the group

of high-voltage activated (HVA) Ca2+ channels [29].
They are divided into two subfamilies, (i) the L-type
channels containing Cav1.1-, Cav1.2-, Cav1.3- and
Cav1.4-α1 subunits as the ion-conducting pore and (ii)
the non-L-type channels containing Cav2.1(P-/Q-type)-,
Cav2.2(N-type)- and Cav2.3(R-type)-α1 subunits as the
proteins containing the ion-conducting pore. Low-
voltage activated (LVA) Ca2+ channels were structurally
defined later by in silico cloning [28, 30] and contain the
α1 subunits of T-type channels (Cav3.1-, Cav3.2- and
Cav3.3–1) [42] with less homology to two former subfam-
ilies Cav1 and Cav2. The ion-conducting subunit may be
in most cases associated with a set of auxiliary subunits
[9] and additional interaction partners as proteins binding
to cytosolic loops or competing with auxiliary subunits
[16, 17]. Within the native environment, they may typi-
cally function in the context of macromolecular signalling
complexes including various upstream modulators and
downstream effectors, which may be kept together by ad-
ditional adapter and scaffold proteins [7].

In 1992, this novel R-type Ca2+ channel was initially detected
from a rabbit brain, which was named the BII calcium channel
[25]. Its primary sequence was deduced by molecular homology
cloning and sequencing of cDNA. Its transcripts were found to
be distributed predominantly in the cerebral cortex, hippocampus
and corpus striatum. In the carboxyterminal region, 2 splice var-
iants were found, from which BII-2 had a 272-aas-long insertion
in the carboxyterminus (Fig. 2).

In 1993, a structural homolog of the new calcium channel was
cloned from marine ray [12, 15, 43] and rat brain [37], which at
that time was functionally expressed for the first time. Although

Fig. 1 Alignment of the cytoplasmic parts from the Cav2.3 S6 segments
including 11 out of 14 identified disease-causing missense mutations,
GenBank L27745.2 (inspired by Fig. 1 and Fig. S3 in Helbig et al.,
2018). Note that for the mutants identified in domain II, recombinant
studies have shown that the distal part of Cav2.3 is important for the
stability of the open state of Cav2.3 [32]. Further, the first evidence for

a strong electromechanical coupling between S4–S5 and the S6 of do-
main II came from a double mutant cycle analysis of the human Cav2.3
confirming the hypothesis that leucine-596 in the IIS4–S5 linker couples
strongly to the distal residues in IIS6 (LA IAVD) labelled in bold in this
figure [40]. Three out of 30mutations were located in IS5 (L228P), IIS4-5
(I603L) and IIIS6-IVS1 (G1430N)
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Table 1 Time table for the structural and functional identification of Cav2.3 variants in rabbit, ray, rat, mouse and human. A generalized and systematic
overview for the Cav2.3 splice variant nomenclature was published [27]

Year Species GenBank accession
number

Nomenclatures (in bold
are the present systematic
names)

Miscellaneous References

1992 Rabbit (Oryctolagus
cuniculus)

X67855, X67856 BII-1, BII-2 Deduced primary sequence,
no functional expression yet

[25]

1993 Ray (Discopyge ommata) L12531 doe-1, R-type, Cav2.3 Rapid inactivating channel [12, 15, 43]

1993 Rat L15453 rbe-II, R-type Shorter amino terminus [37]

1994 Human, foetal L27745.2 E-type, α1Ed, Cav2.3d Longer splice variant, including
exon 19 and exon 45
encoded insertions

[26, 33]

1994 Human, adult L29384
L29385

α1E-1, Cav2.3a
α1E-3, Cav2.3c

Lacking exon 19 and 45
Lacking exon 45 only

[41]

1994 Mouse L29346 α1E-3, Cav2.3c Lacking exon 45 only [41]

1994 Rabbit X67856 BII-2, class E, Cav2.3 Functional expression [39]

1998 Rat, mouse, human (PCR fragments) α1Ee, Cav2.3e Predicted novel splice variant
in cardiac and endocrine cell
lines

[38]

2002 Rat AY029412 α1E7, Cav2.3e Cardiac cell line, distribution
in atrium and ventricle

[18, 21, 22]

Fig. 2 Splice variants of Cav2.3 calcium channels. In the carboxyterminal region, 2 splice variants were found, from which BII-2 had a 272-aas-long
insertion in the carboxyterminus
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the sequence of the rat rbE-II was structurally related to high
voltage-activated Ca2+ channels, it was assumed to be a low-
voltage-gated Ca2+ channel, because the rbE-II channel transient-
ly activated at more negative membrane potentials, required a
strong hyperpolarization to deinactivate and was highly sensitive
to Ni2+ block. In situ hybridization showed that rbE-II messenger
RNA was expressed in regions throughout the central nervous
system [37]. Its predicted shorter N-terminal sequence was not
confirmed by RT-PCR studies [34].

During the same time, a rapidly inactivating neuronal Ca2+

channel was identified, called doe-1 in ray (Discopyge
ommata). Its expression showed that it was a high-voltage-
activated Ca2+ channel that inactivated more rapidly than oth-
er known channel types like L- or P-type channels. It was
insensitive towards dihydropyridine antagonists or the peptide
toxin omega-Aga-IVa, respectively. This channel with novel
functional properties was also sensitive towards micromolar
Ni2+ concentrations as well as sensitive towards omega-
conotoxin GVIA in a reversible manner [12]. At that time, a
similar Ca2+ channel current was identified in rat cerebellar
granule neurons [43], which was distinguished from T-type
Ca2+ channels in dissociated neurons from native tissues [31].

In 1994, two human Cav2.3 sequences were published [33,
41] and both constructs were functionally expressed. In the
same year, also the rabbit BII-2 variant and the mouse con-
struct (Table 1) were identified. Additional and novel splice
variants were amplified by RT-PCR [38] and full-length clon-
ing [18, 21, 22], which showed that structural and functional
details are important in different tissues. The functional impli-
cations have only partially been characterized [17, 19].

Changes of Cav2.3 transcript and expression
levels in mouse models related to Parkinson
disease

The neuronal Ca2+ sensor protein (NCS) was identified to be im-
portant for the viability and pathophysiology of dopaminergic (DA)
midbrain neurons [11]. In a mouse model lacking NCS type 1
(NCS-1), several mitochondrial encoded proteins were reduced on
the transcriptional level. Also, lower levels of Cav2.3 were detected
in substantia nigra (SN)neurons fromNCS-1KOmice [36], leading
to a deeper analysis of the role of Cav2.3 during the selective de-
generation of DA midbrain neurons.

In an in vivo mouse model of Parkinson disease (injection
of MPTP/probenecid), Cav2.3 was identified as a mediator of
SN dopaminergic neuron loss [5]. In adult SN dopaminergic
neurons, it was shown that Cav2.3 represents the most abun-
dantly expressed voltage-gated Ca2+ channel subtype. It was
linked with metabolic stress in these neurons or with their
degeneration in Parkinson’s disease, which may occur by af-
fecting Cav-mediated Ca2+ oscillations and/or by changing

Ca2+-dependent after hyperpolarizations (AHPs) in SN dopa-
minergic neurons [5].

Tonic inhibition of Cav2.3 by bioavailable
divalent cations (Zn2+, Cu2+)

Cav2.3/R-type Ca
2+ channels are highly sensitive towards bio-

available divalent cations [23]. In the organotypic model of
the isolated and superfused bovine retina, Cav2.3/R-type Ca

2+

channels have early been identified to be modulated by Zn2+

[35] and Cu2+ [24], Lüke et al., in press) changing the
transretinal signalling. Zn2+ and Cu2+ effects can be analysed
more specifically in heterologous expression systems, which
have shown that e.g. Zn2+ can either increase or inhibit Ca2+

currents mediated by recombinant Cav2.3 channels (Neumaier
et al., unpublished results).

In vivo, Cav2.3/R-type Ca
2+ channels are thought to be un-

der tight allosteric control by endogenous loosely bound trace
metal cations (Zn2+ and Cu2+) that suppress channel gating via
a high-affinity trace–metal-binding site. Unexpectedly, in
wild-type mice the intracerebroventricular administration of
histidine (1 mM) rather than Zn2+ itself in micromolar con-
centrations is beneficial during experimentally induced epilep-
sy [2]. In Cav2.3-deficient mice, no beneficial effect of histi-
dine is found and the experimentally induced seizures are less
severe when Zn2+ in the presence of histidine is injected
intracerebroventricularly [3].

As highly selective Cav2.3/R-type antagonists are still miss-
ing, the indirect modulation of Cav2.3 by manipulation of bio-
available cation levels may provide an additional pathway for
beneficial modulation of Cav2.3/R-type Ca

2+ channels.
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