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Abstract

Purpose In surgical oncology, complete cancer resection and lymph node identification are challenging due to the lack
of reliable intraoperative visualization. Recently, endoscopic radio-guided cancer resection has been introduced where a
novel tethered laparoscopic gamma detector can be used to determine the location of tracer activity, which can complement
preoperative nuclear imaging data and endoscopic imaging. However, these probes do not clearly indicate where on the tissue
surface the activity originates, making localization of pathological sites difficult and increasing the mental workload of the
surgeons. Therefore, a robust real-time gamma probe tracking system integrated with augmented reality is proposed.
Methods A dual-pattern marker has been attached to the gamma probe, which combines chessboard vertices and circular
dots for higher detection accuracy. Both patterns are detected simultaneously based on blob detection and the pixel intensity-
based vertices detector and used to estimate the pose of the probe. Temporal information is incorporated into the framework
to reduce tracking failure. Furthermore, we utilized the 3D point cloud generated from structure from motion to find the
intersection between the probe axis and the tissue surface. When presented as an augmented image, this can provide visual
feedback to the surgeons.

Results The method has been validated with ground truth probe pose data generated using the OptiTrack system. When
detecting the orientation of the pose using circular dots and chessboard dots alone, the mean error obtained is 0.05° and 0.06°,
respectively. As for the translation, the mean error for each pattern is 1.78 mm and 1.81 mm. The detection limits for pitch,
roll and yaw are 360°, 360° and 8°-82° U 188°-352° .

Conclusion The performance evaluation results show that this dual-pattern marker can provide high detection rates, as well
as more accurate pose estimation and a larger workspace than the previously proposed hybrid markers. The augmented reality
will be used to provide visual feedback to the surgeons on the location of the affected lymph nodes or tumor.

Keywords Image-guided surgery - Prostate cancer - Tethered laparoscopic gamma probe - Minimally invasive surgery - Pose
estimation - Tracking

Introduction is surgery, and minimally invasive surgery (MIS) including

robot-assisted procedures are increasingly used due to its sig-

According to Cancer Research UK, prostate cancer is
reported as one of the most common cancers in men in the
UK with 47,700 new cases and 11,500 deaths reported each
year [1]. One of the main treatment options for this cancer
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nificant advantages, such as reducing the risk of infection and
trauma to the patient’s tissues [2]. Making a clear distinction
between cancerous and non-cancerous tissue is an arduous
task. Currently, surgeons still rely on their naked eye and
sense of touch to detect where the cancer is located in the tis-
sue. To address the compromised vision and tactile feedback
in MIS, Lightpoint Medical Ltd. has developed a minia-
turized cancer detection probe for MIS, called ‘SENSEI®’
(see Fig. la). This tethered laparoscopic probe relies on
the cancer-targeting ability of established nuclear probes to
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identify the cancerous regions of the tissue more accurately
[3].

The use of such a probe presents a visualization challenge,
since the probe may not be in contact with tissue during the
surgery, which makes it difficult to detect the location of
the sensing area on the tissue surface. Additionally, when
scanning a tissue, the surgeon needs to memorize the previ-
ously acquired probe data. This is inefficient, increases the
surgeon’s workload and increases the probability of the can-
cerous tissue not being entirely removed or positive lymph
nodes missed. Therefore, the development of a visualization
tool that shows the surgeon directly where the cancerous tis-
sue is located is of extreme importance.

To date, many probe tracking methodologies have been
proposed. The first in vivo AR surgical anatomy visualiza-
tion system with the probe tracked by an optical tracker
was proposed in [4]. A magnetic tracking method was pre-
sented in [5] combined with stereoscopic video. However, the
introduced additional tracking devices are likely to occupy
valuable operating space and bring some intrinsic limitations
such as line-of-sight and ferromagnetic interference. A com-
monly used approach is through laparoscopic image-based
optical pattern detection which locates a pattern attached to a
probe. Previous studies used corner detection to detect chess-
board patterns attached to instruments [6,7]. This method
was extended in [8] by computing the probe pose with a ran-
domly distributed fiducial pattern over the curved surface,
which allowed the occlusion on fiducials and the outliers
to be properly handled. Later, the circular dot pattern was
proposed, which relied on a more efficient and robust ‘blob
detector’ rather than the intersection of edges to estimate
the pose of the instrument [9]. Zhang et al. [10] proposed
a hybrid type, incorporating both aforementioned patterns,
which provided more information when the ambiguous pose
problems occurred. However, for the ‘SENSEI®’ used in this
project, the rotation around its own axis does not affect the
detection results since the probe is non-imaging. Therefore,
these chessboard vertices are redundant.

In this paper, a new dual-pattern cylindrical marker is pro-
posed to facilitate gamma probe tracking. The dual-pattern
marker consists of circular dots and chessboard vertices
which are simultaneously detected and tracked. To improve
the robustness of the whole system and reduce the detection
failures, temporal information is employed to complement
marker detection. Our new marker and tracking framework
are assessed using an OptiTrack system from where we
collected the ground truth data. The detection rates, pose esti-
mation accuracies and workspace coverage were calculated
and we observed that using our novel dual-pattern marker
we outperform the current state-of-the-art. The tissue sur-
face is reconstructed using a structure from motion (SFM)
algorithm and the intersection point between the surface and
the probe axis is estimated. Using that intersection point, our
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framework highlights to the surgeon the part of the tissue that
is being scanned.

Methodology
Dual-pattern marker design

In this paper, we proposed a dual-pattern marker (Fig. 1b)
that combines the chessboard vertices and circular dots to
estimate the instrument pose. The two patterns were equally
spaced and placed circumferentially and appeared alter-
nately. Every two lines of the pattern formed a trapezoidal
shape and was considered as a detection unit (Fig. 1c) for
pose estimation and tracking. A green stripe was placed at
one end of the marker to resolve ambiguous pose and intro-
duce asymmetry. The marker was attached to the cylindrical
instrument such that the overall width matched the circum-
ference, and the patterns were aligned with its axis.

A local coordinate frame was set at the surface of the
probe (Fig. 1d), and its origin was regarded as the coordinate
pivot. When the marker is flattened, the relative position of
each feature in the X-Y coordinate frame can be determined
from their size and separation. Thus, for a given radius of
the probe, the 3D position (P = [X, Y, Z]T) of each dot and
vertex in the 3D local coordinate frame can be determined
from their 2D positions (p = [x, y]T).

Feature detection

The detection process of the proposed marker consists of
two parts: blob detection and chessboard vertices detection.
The detection algorithm workflow is shown in Fig. 2. For
blob detection, a relatively simple algorithm for extracting
circular blobs from images was used, called ‘SimpleBlob-
Dectector’ in OpenCV. For the chessboard vertices detection
(Fig. 2), a Gaussian filter was first applied to the grayscale
image to eliminate noise and speckles, and then a robust and
efficient detector called ‘Chess-board Extraction by Subtrac-
tion and Summation’ (ChESS) [11] was applied. To further
filter spurious features that give weaker responses, an effi-
cient non-maximum suppression method [12] was adopted
to retrieve features with the maximum local responses. In
addition, the area formed by the intersection of two lines at
the center of the chessboard vertex was relatively easy to be
misdetected as a dot. Hence, accurate detection of chessboard
vertices would also help to eliminate incorrectly detected cir-
cular dots.

Marker identification

The correspondences between the identified markers in the
image and model points are necessary to conduct marker
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Fig.1 a Anexample of a tethered probe being used in MIS; b the gamma probe marker; ¢ example detected circular dots and chessboard vertices;
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patterns are clustered based on their vicinity into different
feature groups. The group with the largest number of features
is used to find the trapeziums for transformation. The four
endpoints located at the corners that form two trapeziums
are identified from both vertex and dot patterns in this group.
The trapezoidal shapes must be convex hulls and lie on the
two parallel edges. Once the four vertices were identified, the
pattern was transformed into a pattern in the image with the
help of the corresponding information. Then, by comparing
the transformed pattern and the projected pattern, the identity
of each dot and vertex in the projected pattern can be the
determined as the nearest point to the transformed pattern
[10].

The addition of the green stripe introduces asymmetry to
the markers which helps to identify the orientation of the
marker frame. It was placed at the near side of the probe.
For each iteration, the RGB image was converted to HSV to
separate color from intensity which made it more robust to
changes in lighting.

Once all the features that correspond to the model points
have been identified, the pose of the probe can be estimated
directly by computing a homography. The homography—
i.e., the transformation that relates the markers and camera—
can be estimated through P, = H P; where P; denotes the
locations of points on the pattern expressed in a coordinate
reference frame and P, denotes the locations of the projected
points on the camera image plane. During surgery, marker
occlusion and invisibility are inevitable due to causes such
as strong light reflections and blood staining. If the detec-
tion component fails to detect the whole marker and extract
its location, the tracking method is used to complement the
detection. In this tracking method, the optical flow is com-
puted by the pyramidal affine Lucas—Kanade feature tracking
algorithm [13] and temporal information is taken into con-
sideration. By using the optical flow, the current position of
the remaining features could be found. Then, the position of
missing features could also be derived from the correspon-
dence in the reference coordinate frame with the help of a
homography. This homography can be estimated with only
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four pairs of non-collinear feature points, which indicates
that it is robust to occlusion.

Pose estimation

Once the position of the model points in the local coordi-
nate frame of the marker and the corresponding projections
on the image are found, a framework called infinitesimal
plane-based pose estimation (IPPE) is employed [14], which
is much faster than the current methods based on PnP and
is more accurate in most cases. It returns a number of solu-
tions and the geometric relationships of these solutions are
clear. Normally, the correct solution will lead to a smaller
re-projection error representing the difference between the
tracked results and projections. Hence, in each video frame,
the re-projection errors from both circular dots and chess-
board vertices are compared and the pose with the smallest
error should always be chosen. In this case, two solutions can
be derived from each pattern, creating four solutions. If all of
them give similar errors close to zero, then there is ambiguity.
This situation typically happens when the marker is placed
too far from or too close to the camera and the projection
of the pattern is close to affine. Some methods are proposed
to solve this issue, for instance [10] applies points from a
different plane to create a large reprojection error for the
wrong solution. However, the gamma probe collects gamma
data from its tip and the rotation around the probe axis will
not influence the detection results of the probe. The affine
problem can be ignored as long as the re-projection error is
sufficiently small.

Augmented reality

The probe signals when the targeted tissue is detected, but it
lacks the functionality to provide important visual feedback
to the surgeon about the locations. Given the transforma-
tion matrix between the laparoscope and the local coordinate
frame defined on the probe, the equation of the probe axis
can be obtained from the geometrical relationship between
the axis and the coordinate pivot. If the equation of the tissue
surface is known then the intersection location between the
probe axis and the tissue surface can be estimated. To this
end, we used a functioning ‘SENSEI’ probe and a prostate
phantom with a sealed radioactive Cobalt-57 source hidden
inside. The diameter of the Cobalt-57 disk was 25 mm, and it
was placed about 5 mm below the tissue surface. The experi-
mental setup is shown in Fig. 6a, c. The ‘SENSEI’ probe was
grasped with a laparoscope surgical grasper and the control
unit nearby indicated the gamma counts. The laparoscope
captured the video of the whole procedure with the image dis-
played on a monitor. The 3D reconstruction of the prostate
phantom surface was conducted using SFM in MATLAB,
and a corresponding surface point cloud was generated. The
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actual scale of this point cloud was calculated with the help
of the ‘SENSET’" probe of the known physical size. By cal-
culating the distance between the points in the point cloud
to the probe axis, points with short distances were deter-
mined. As the 3D reconstruction by SFM was quite dense,
these points were considered to be the potential intersection
points. Besides, the distance between the intersection point
and the marker pivot point should be longer than the distance
between the probe tip and the marker pivot.

Experiments
Hardware setup

Figure 3a shows the experimental setup illustrating a 3D
printed model with the same dimensions as the real probe.
During the detection procedure, the tip of the probe was posi-
tioned 2 to 3 cm from the tissue surface. Therefore, a cone
with a height of 2 cm was added to the front end of the
probe model to maintain a fixed distance to the tissue sur-
face for validation. The designed marker was attached to
the cylindrical probe, and four optical sensors were mounted
on a flat plate attached to the model for validation via Opti-
Track (NaturalPoint Inc, America). The diameter of the probe
was 12mm, and it can be placed directly into the patient’s
abdominal cavity through standard MIS trocars. In this exper-
iment, the probe could be placed in the view field of a
standard 10 mm diameter monocular calibrated [15] laparo-
scope (KARL STORZ SE & Co. KG, Tuttlingen, Germany).
The videos were displayed on a monitor and captured using a
Ninja-2 box (Atomos Global Pty Ltd, Australia). The videos
were streamed to a computer (2.5 GHz CPU, 8GB RAM)
using S-Video to HDMI and HDMI to USB video converters
(StarTech.com Ltd, America).

Pose estimation error

In order to validate the pose estimation algorithm, the Opti-
Track system and its software, Motive, were used to obtain
the ground truth and calculate the transformation matrix
between the OptiTrack system and the optical sensors TSO.
In addition, the marker pose in the laparoscope coordinate
frame Tﬁ can be estimated; however, there were still two
unknown registrations: the laparoscope to the OptiTrack sys-
tem TC% and optical sensors to the designed marker TSM. As
shown in Fig. 3b, the green arrows indicate parameters that
can be directly obtained while the red arrows represent the
unknowns. The relationship between these four transforma-
tion matrixes is given as follows:

-1t =15 19 2.1)
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Fig. 3 a Hardware setup for experiments; b the transformation matrixes between laparoscope, OptiTrack system, optical sensors and designed

marker

This problem can be treated as an AX = Y B problem and
10 pairs of Tﬁ and TS were required to obtain the TSM and
T(I)“ [16]. However, the error from the registration accumu-
lates in the final pose estimation error. During experimental
validation, the probe was placed at the ‘typical’ position at
100 mm from the laparoscope to match a typical surgery. As
there were two different patterns that could be detected on
the marker, the final transformation matrix used was the one
which led to a smaller re-projection error. For each pattern,
60 video trials were made and 10 of these were for regis-
tration to calculate TSM and T(])“ while 50 of these were for
pose estimation error calculation. The position of the laparo-
scope and of the two OptiTrack cameras were always fixed.
In every video trial, the probe was static, but the background
of the scene was not static and changed over time. Besides,
from trial to trial, the position of the probe was changed. In
each trial, the relative pose between the ground truth and the
estimated result was calculated as:
Relative pose matrix = (7o) L. (i)~ 15 - 1€ (2.2)

Ideally, the relative pose matrix should be equal to the
identity matrix. However, this was not the case due to the error
from the registration and pose estimation. The translation
error was set as the mean of the fourth column in the matrix.
To have a more intuitive understanding of the rotation error,
the rotation matrix was converted to an axis-angle.

Projection error

Given the geometric parameters of the probe and the transfor-
mation matrix from the camera to the marker, the 3D position
of the cone tip simulating a 2 cm working distance could be
estimated. The probe was rotated with a fixed tip position.
However, because of the pose estimation error, the calculated

3D tip position was found to vary from frame to frame, with
the distance between the tips in every two frames calculated
as the projection error. The results were compared to pre-
vious hybrid marker [10], although in this case it could not
be tracked during probe axial rotation around its own axis,
resulting in large errors. Hence, the projection errors pre-
sented below for [10] were recorded with and without the
failed frames.

Detection limit and detection rate analysis

For further validation, the detection limits and detection rates
were calculated by recording the maximal experimentally
detectable distance and rotation angle of the probe. The dis-
tance was recorded from the camera to the probe, and the
limits of rotation were defined about the probe local coor-
dinate axes (roll, pitch and yaw). When testing the distance
limits, the probe was translated along the axis of the laparo-
scope until detection failed. To identify the rotational motion
limits, the probe was placed 100 mm from the laparoscope,
a typical distance for practical tissue scanning.

Since the detection of chessboard vertices relies on the
intersection of edges, it was affected by image degrading
effects like smudging and blooming. However, the circu-
lar dots detection algorithm was more robust because it did
not rely on well-defined edge crossings. Regarding the dual-
pattern marker detection, a frame was considered to be a
success if either the chessboard vertices or circular dots pat-
tern was detected, because they were independent of each
other. In the experiments, the focus was set at the phantom
surface and the probe was placed at different distances to the
camera Fig. 4b: near (50-100mm), middle (100-150 mm),
far (150-200 mm).

@ Springer



1394 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1389-1397

Fig.4 a Tracking results in the
case of occlusion; b the
experimental results for
different testing distances
between the probe and camera

(a)

Table 1 Summary of pose estimation error

es pattern

Near
50~100mm

Middle
100~150mm

Far
150~200mm

(b)

Different marker

Translation mean error = STD (mm)

Rotation mean error == STD (°)

Our hybrid marker Circular dots Chessboard vertices Circular dots Chessboard vertices
1.78 £0.81 1.81 £0.80 0.05 +£0.02 0.06 £ 0.02
Previous hybrid marker [10] 2.53 £1.40 0.69 +0.33

Table 2 3D tip distance when the cone tip is fixed

3D projection error

Different marker

Mean error £+ STD (mm)

Maximum error (mm) Minimum error (mm)

Previous hybrid marker [10] with the failed frames 17.17 £ 16.33 137.72 0.00
Previous hybrid marker [10] without the failed frames 1.73+£1.19 5.41 0.00
Our hybrid marker 0.224+0.19 1.90 0.00

Table 3 Maximum detectable

. . Rotation axis
distance and rotation angle

Previous work [10] Dual-pattern marker (ours)

around different axes Roll (°)

Pitch (°)
Yaw (°)

Distance to camera (mm)

+85° 360°
+78° 360°
+83° 8°-82° U 188°-352°

60-200 50-220

Experimental results and discussion
Pose estimation error

Table 1 shows the validation results obtained from the dual
pattern marker, which have a smaller mean error and a lower
standard deviation than with the previous pattern. In addi-
tion, the pose estimation errors from the circular dots and the
chessboard vertices patterns were quite similar and less than
2 mm, which means that both patterns worked well. Given the
position of the model points defined in the local coordinate
frame on the marker and the correspondence-tracked projec-
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tions on the image, the pose of the marker was estimated by
using the IPPE method. Specifically, the IPPE will give two
affine poses for each pattern and will compare the results to
select the one with the smallest reprojection error as the first
output. This is why the newly designed pattern and new pose
estimation algorithm can lead to the smaller mean error and
increase the tracking accuracy.

Projection error

It can be seen from Table 2 that for [10], the failure frames
cause large projection errors unless the motion remained del-
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(a) (b) (c) (d) (e)

Fig. 5 Examples where the pose estimation is more accurate by using a the circular dots pattern and b the chessboard vertices. Example where
tracking failed for ¢ the circular dots pattern and d the chessboard vertices. In e both vertices and dots pattern are detected in adjacent three marker

lines

Prostate phantom

' (C)

Fig. 6 The hardware setup including laparoscope, image monitor,
prostate phantom, ‘SENSEI’ probe, and control unit showing a, b a
higher radiation level when the probe was pointing to and placed closer
to the radioactive source; and ¢, d a lower radiation level when the probe

icate. The errors calculated from our marker are lower due
to pose estimation for every frame using two patterns.

(d)

was pointing to the edge of the source. The grey dashed circles in b,
d show the position of radioactive Cobalt-57 source while the green
circles represent the intersection area of the gamma probe axis and the
tissue

Detection and tracking analysis

The results of the detectable distance limits are shown in
Table 3. The farthest distance at which the probe could be
detected was 220 mm, and the marker works well between 50
and 150 mm, which is a reasonable working range for MIS.

@ Springer



1396 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1389-1397

The maximum detectable angles are displayed in Table 3.
Since the marker covered the entire probe surface circum-
ferentially, detection results of the rotation around the roll
axis are greatly improved. As the features in the marker are
dense, the results when rotating around the pitch axis are
also improved. As shown in Table 3, rotation around both
roll and pitch axes can reach 360°. It is worth noting that the
detectable angle range around the yaw axis is not 360° since
the axis of the probe was aligned with the axis of the laparo-
scope and the marker becomes invisible due to occlusion.
Hence, there will be an angular range of about 16° within
which it is undetectable.

The detection rates for the near and middle distance ranges
were 100%, which reduced to 99.7% when the probe was in
the long distance range.

Since the pose estimations from chessboard vertices and
circular dots are independent, if both of them are detected,
the one with the smallest reprojection error will be selected.
If identification of either fails, the system will rely on the
other to get the probe pose. We list several different track-
ing scenarios in Fig. 5. Figure 5a shows a case where the
pose estimation result from the circular dots pattern is more
accurate than that from chessboard vertices, while Fig. 5b
shows the opposite. In Fig. 5c, the circular dots pattern track-
ing failed so the probe pose is estimated from the vertices,
while the opposite situation is presented in Fig. 5d. In Fig. Se,
both vertices and dots patterns are detected for three adjacent
marker lines with the vertices pattern providing a more accu-
rate pose estimation result.

Tracking results for simulated occlusions

Figure 4a shows an example of an occlusion using a red
stripe to block the markers. Although the number of remain-
ing features was not enough to directly estimate the pose of
the probe, they could still be used to calculate the homogra-
phy. The position of the points that were occluded could then
be inferred from the correspondence information between
the coordinate reference frame and current camera image
frame with the help of the homography. Therefore, the marker
tracking enhanced the robustness of the entire system to
occlusions.

Augmented reality

Given a 3D point cloud representing tissue surface and the
equation of the probe axis, the intersection point was esti-
mated and the results are shown in Fig. 6. The red line
indicates the axis of the probe, the grey dashed circle shows
the position of radioactive Cobalt-57 source, and the green
circle represents the intersection area of the gamma probe
axis and the tissue. In Fig. 6a, b, the ‘SENSEI’" probe was
close to and pointing towards the radioactive source, the
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probe recorded stronger gamma radiation of 209 counts per
second. Figure 6¢, d shows the opposite where the ‘SEN-
SEI’ probe was pointing at the edge of the buried source,
and the radiation was weak (12 counts per second). The AR
system can therefore allow the surgeon to know which part
of the tissue the radiation is coming from, so that they can
do accurate node identification or tissue excision with this
visual feedback.

Conclusion

In this paper, we proposed a new hybrid marker which incor-
porated both circular dots and chessboard vertices to increase
the detection rate. The additional green stripe was included
to introduce asymmetry and resolve direction ambiguity. The
marker was designed such that it fully covered the tethered
laparoscopic gamma probe using dense features. The experi-
mental results show that the detection workspace, robustness
and pose estimation efficiency and accuracy of the design
outperformed previous works. We have therefore shown the
feasibility and the potentiality of using the proposed frame-
work to track the ‘SENSEI®” probe. In addition to the design
of the new marker, we have also proposed a solution to pro-
vide clear visual feedback to indicate the tracer location on
the tissue surface.

The work could be further extended to increase the
registration accuracy by fusing the vision-based 3D pose
estimation with kinematic data of the instrument (robot) con-
trolling the probe. Successive transformations from the probe
to the instrument and endoscope coordinate frames will pro-
vide a robust initial viewpoint estimate and registration. The
framework could also be used to track other types of probes.
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