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Conventional recommendations for dietary intervention have been generally based on population
groups divided by gender and age. However, it is well known that diversities in lifestyle, culture,
social status, and genetic variants affect responses to nutritional intervention. Therefore, the concept of
precision nutrition has been advocated. Precision nutrition refers to individual nutritional regimens
designed to treat or prevent various diseases. To plan precision nutrition, the interplay between
metabolic, genetic, social, and environmental factors must be considered [1]. Precision nutrition can be
realized at three levels: (1) dietary advice based on general guidelines; (2) personalized nutrition based
on phenotypes and laboratory tests (anthropometry, biochemical and metabolic analysis, physical
activity); and (3) genotype-directed nutrition [1]. Recently, to promote precision nutrition, nutrigenetics
and nutrigenomics have become favored tools. An example of nutrigenetic analysis is clarification
of the associations between nutritional response and genetic variants such as single nucleotide
polymorphisms. In contrast, nutrigenomics shows how dietary factors influence gene expression,
and thereby, affect protein and metabolite levels [1]. Regarding nutrigenomics, metagenomics that
focus on studies of the gut microbiome have received much attention in recent years [1]. The gut
microbiome has been referred to as another organ, and microbiota have been shown to be capable of
altering gene expression and protein synthesis to produce functional metabolites [2]. Interestingly,
the diversity of gut bacteria found in healthy individuals is known to be radically altered in certain
diseases, triggering inflammation and leading to diabetes and inflammatory bowel disease [2]. It has
also been reported that transplantation of stool from healthy people can improve the disease condition.
Thus, microbiome and genetic variation are important factors in facilitating precise nutrition.

A recent review published in Nutrients focused on the relationships between precision nutrition
and the microbiome [2]. The authors summarized the development of gut microbiota from birth and
during aging. The diversity of gut microbiota increases with age to the first year, and establishment of
an adult-like microbiome occurs between 2 and 5 years of age and is dominated by Firmicutes and
Bacteroides. The enterotype concept holds that Firmicutes- and Bacteroides-dominant patterns are
linked to long-term carbohydrate (fiber) and animal fat and/or protein rich diet, respectively [2,3].
Furthermore, in elderly subjects, microbial diversity decreases with decreased microbial production of
butyrate. The authors then describe the roles of the microbiome in the production of bioactive
metabolites (short chain fatty acids, essential vitamins, secondary bile acid, neurochemicals),
colonization resistance, immunity, and mucosal integrity. Moreover, intake of westernized diets
that are rich in animal protein, saturated fatty acid, sugar, alcohol, and corn-derived fructose promote
low microbial diversity and are linked to increased risk of IBD, cancer, liver disease, and recurrent C.
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difficile infection. They further describe the relationship between microbial metabolites (short chain
fatty acids, trimethylamine, p-cresol, indoxyl sulfate, branched chain amino acids) and metabolic
diseases [2]. They also discuss the effects of diet type and dietary components (carbohydrate, fat,
and protein) on gut microbiota [2].

Following their review, we can understand that metagenomics is a useful tool to facilitate precise
nutrition, but there remain problems involved in the interpretation of metagenomics data. While
the enterotype concept is attractive for its ability to predict biomarkers of responsiveness to dietary
intervention, there is the possibility that factors other than population, age and diet groups, such as
genetic variation and medication, underlie the enterotypes. For example, carbohydrate response
element binding protein (ChREBP) regulates intestinal glucose and fructose absorption via gene
transcription of Glut5 and Ketohexokinase [4], thereby decreasing fructose absorption in ChREBP-/-

mice [4]. We previously reported that genetic deletion of ChREBP and medication by miglitol, a sucrase
isomaltase inhibitor, affects gut microbiome composition and induces irritable bowel syndrome [5].
These findings suggested that genetic variants affecting intestinal nutrient absorption might affect
composition of the microbiome. Moreover, initial studies reported differences in community gut
microbial diversity and in the Bacteroidetes/Firmicutes (B/F) ratio among obese and non-obese
individuals [3], while meta-analysis did not reveal a significant difference in B/F ratio between the lean
and obese groups [6]. Falony et al. found an association between microbiome composition and BMI
when analyzing the gut microbiome in 1106 subjects from the Flemish Gut Flora Project (FGFP) [6,7].
Importantly, they found that the use of medication showed the largest explanatory value for microbiome
variation as demonstrated in our study [7]. These findings clearly show that interactions between gut
microbiota and factors such as age, genetic variants, medications, and food preferences should be taken
into account when interpreting metagenomics data. Second, gut microbiota-derived metabolites have
both beneficial and detrimental effects. For example, beneficial roles of acetate on body weight are based
on appetite suppression [8]. In contrast, detrimental effects of acetate are based on increased insulin
secretion and increased supply of the substrate for hepatic lipogenesis [9,10]. We should therefore
consider both beneficial and detrimental aspects when modulating gut microbiota-derived metabolites
for precise nutrition. In conclusion, metagenomics is a promising tool to enable personalized nutrition;
integration of metagenomics and other -omics using “big data” is needed for accurate interpretation of
metagenomic information.
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