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Abstract: Reliable entity subtyping is paramount for therapy stratification in lung cancer.
Morphological evaluation remains the basis for entity subtyping and directs the application of
additional methods such as immunohistochemistry (IHC). The decision of whether to perform IHC
for subtyping is subjective, and access to IHC is not available worldwide. Thus, the application of
additional methods to support morphological entity subtyping is desirable. Therefore, the ability
of convolutional neuronal networks (CNNs) to classify the most common lung cancer subtypes,
pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell
lung cancer (SCLC), was evaluated. A cohort of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle
specimens was assembled; slides were scanned; tumor areas were annotated; image patches were
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extracted; and cases were randomly assigned to a training, validation or test set. Multiple CNN
architectures (VGG16, InceptionV3, and InceptionResNetV2) were trained and optimized to classify
the four entities. A quality control (QC) metric was established. An optimized InceptionV3 CNN
architecture yielded the highest classification accuracy and was used for the classification of the
test set. Image patch and patient-based CNN classification results were 95% and 100% in the test
set after the application of strict QC. Misclassified cases mainly included ADC and SqCC. The QC
metric identified cases that needed further IHC for definite entity subtyping. The study highlights
the potential and limitations of CNN image classification models for tumor differentiation.

Keywords: artificial intelligence; deep learning; lung cancer; histology; non-small cell lung cancer;
small cell lung cancer

1. Introduction

Based on the GLOBOCAN 2018 produced by the International Agency for Research on Cancer, a
database that estimates the incidence and mortality of cancer (including 185 countries and 36 cancers),
lung cancer incidence is high and was estimated to be 2.1 million new cases and 1.8 million deaths
worldwide, representing 18.4% of all cancer cases [1]. Thus, lung cancer is the most common cancer
type among men and the third most common in women worldwide [2]. Smoking is the major risk factor
for lung cancer. The 20–fold variation in lung cancer rates in different regions/countries reflects the
differences in smoking habits as well as the intensity and type of cigarettes [2,3]. Despite major advances
in diagnostics and therapy, mortality remains high, with a five-year tumor-associated mortality of 19%.

Clinical management highly depends on the histological subtype, as well as immunohistological
(IHC) and genetic tumor characteristics [4]. Two major categories are discerned—small-cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC). The first category constitutes approximately 15%,
and the second is responsible for approximately 85% of tumors. The two most common entities in the
NSCLC category are pulmonary adenocarcinoma (ADC) and pulmonary squamous cell carcinoma
(SqCC), which make up approximately 90% of all NSCLC [5]. Lung cancer is highly heterogeneous,
which is reflected by the underlying genetic aberrations that have been detected in the past decades [4,6].
At an advanced clinical stage, individualized therapy highly depends on genetic aberrations involving
EGFR, BRAF, ALK, ROS1, RET, etc. [7]. Moreover, the introduction of immune checkpoint and kinase
inhibitors has improved prognosis for patients without genetic alterations in these target genes [8,9].

Morphological evaluation of tissue sections remains the basis of histopathological diagnostics and
directs the application of additional analyses [10]. In some tumors, the diagnosis can be established on
morphology alone, but in a subset of cases, IHC stains are required for definitive diagnosis [11,12].
Currently, the decision of whether to perform IHC is subjective. Moreover, some pathologists can
rely on expensive and methodological equipment that allows for liberal use of IHC, while others
cannot [13]. Thus, additional methods that support morphological entity subtyping are desirable.

Digital pathology has emerged as an important tool, not only to review histopathological slides
on a computer but also to use additional computer-assisted software to support routine diagnostics
and research [14–17]. A prominent example is the evaluation of the intensity and extent of IHC
staining that can be assessed by various software applications. It has been shown that proliferative
activity can reliably be assessed by computer-assisted evaluation, which in turn supports routine
diagnostics in tumors where the proliferation rate plays a major role, such as in neuroendocrine
neoplasms [18–20]. With these tools, one can extract detailed morphometric information from cells
that, after training, allows for automatic detection of tumor and stromal cells [21]. However, as the
architectural arrangement of cells is commonly neglected using this approach, different tumor types
cannot reliably be differentiated. An alternative approach that allows one to take the architectural
pattern into account is the application of convolutional neuronal networks (CNNs) [22,23].
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In this study, we applied CNNs and evaluated their capability to classify the most common
lung cancer subtypes—namely, SCLC, ADC, and SqCC. Moreover, we developed quality control (QC)
measures to objectively detect cases that should be submitted for further evaluation.

2. Methods

2.1. Patient Cohort, Tissue Microarray Construction, and Scanning of Tissue Slides

A cohort of the three most frequent lung cancer subtypes—SCLC (n = 80), ADC (n = 80) and
SqCC (n = 80)—and skeletal muscle (n = 30) as a control was assembled from the archive from
the Institute of Pathology, University Clinic Heidelberg with the support of the Tissue Biobank of
the National Center for Tumor Diseases (NCT). Diagnoses were made according to the 2015 World
Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart [12]. In brief,
conventional Hematoxlin and Eosin staining as well as immunohistochemistry according to current best
practice recommendations were performed [24]. Diagnosis of SCLC was established by morphology
as well as through expression of neuroendocrine markers such as synaptophysin, chromogranin and
CD56 [25]. Diagnosis of ADC was made if the tumor exhibited growth patterns typical for ADC
such as lepidic, acinar, papillary or micropapillary; showed intracytoplasmic reactivity in the Periodic
acid–Schiff stain and/or showed immunoreactivity of thyroid transcription factor 1 (TTF-1). Diagnosis
of SqCC was rendered if the tumor exhibited intercellular bridges and/or keratinization on morphology,
as well as absence of TTF-1 staining and positivity of p40 in more than 50% of tumor cell nuclei
using IHC [26]. The study was approved by the local ethics committee (#S-207/2005 and #S315/2020).
Formalin-fixed, paraffin-embedded tissue blocks were extracted, and a tissue microarray (TMA) was
built as previously described [18,26–28]. TMAs were scanned at 400× magnification using a slide
scanner (Aperio SC2, Leica Biosystems, Nussloch, Germany).

2.2. Tumor Annotation and Image Patch Extraction

Scanned slides were imported into QuPath (v.0.1.2, University of Edinburgh, Edinburgh, UK).
Tumor areas of SCLC, ADC, and SqCC as well as from skeletal muscle were annotated by a pathologist
(M.K.). Patches 100 × 100 µm (395 × 395 px) in size were generated within QuPath, and the
tumor-associated image patches were exported to the local hard drive [21]. To ensure adequate
representation of each tumor, the goal of exporting a minimum of 10 patches per patient was set.
Representative tumor areas, tumor annotations, generated patches, and extracted patches are displayed
(Figures 1 and 2).
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Figure 1. Tumor annotation and generation of image patches. Representative tissue microarray core 
of a squamous cell carcinoma without (A) and with annotation (B, red outline), as well as after image 
patches creation (C). The image patches were subsequently saved as .png files. Magnification or scale 
bars: 200 µm 

Figure 1. Tumor annotation and generation of image patches. Representative tissue microarray core of
a squamous cell carcinoma without (A) and with annotation (B, red outline), as well as after image
patches creation (C). The image patches were subsequently saved as .png files. Magnification or scale
bars: 200 µm.



Cancers 2020, 12, 1604 4 of 16
Cancers 2020, 12, 1604 4 of 15 

 

 
Figure 2. Examples of image patches from annotated areas. One representative image patch from 
adenocarcinoma (ADC) (A), squamous cell carcinoma (SqCC) (B), small-cell lung cancer (SCLC) (C), 
and skeletal muscle (D) is shown. Magnification or scale bars: each image 100 × 100 µm (395 × 395 px). 

2.3. Hardware and Software 

The following hardware were used for all calculations: Lenovo Workstation p72, CPU Intel(R) 
Xeon(R) E-2186 M, 2.90 GHz (Intel, Santa Clara, CA, USA), GPU 128 GB DDR4 RAM, GPU NVIDIA 
Quadro P5200 with Max-Q Design 16 GB RAM (Nvidia, Santa Clara, CA, USA). The following 
software were used: x64 Windows for Workstations (Microsoft, Redmond, WA, USA), R (v.3.6.2, 
GNU Affero General Public License v3) and RStudio (v.1.2.5033, GNU Affero General Public License 
v3) with the packages Keras (v.2.2.5.0), TensorFlow (v.2.0.0) and Tidyverse (v.1.3.0). 

2.4. Analytical Subsets 

To ensure reliable results, image patches were randomly separated into training (60% of 
patients), validation (20% of patients), and test sets (20% of patients). All image patches from a patient 
were in one of the sets only. These subsets were not changed during the analyses. 

2.5. Convolutional Neuronal Network 

Our setup using keras and tensorflow in R analytical software allowed us to choose a subset of 
different network architectures among the hundreds of network architectures available. After a 
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Figure 2. Examples of image patches from annotated areas. One representative image patch from
adenocarcinoma (ADC) (A), squamous cell carcinoma (SqCC) (B), small-cell lung cancer (SCLC) (C),
and skeletal muscle (D) is shown. Magnification or scale bars: each image 100 × 100 µm (395 × 395 px).

2.3. Hardware and Software

The following hardware were used for all calculations: Lenovo Workstation p72, CPU Intel(R)
Xeon(R) E-2186 M, 2.90 GHz (Intel, Santa Clara, CA, USA), GPU 128 GB DDR4 RAM, GPU NVIDIA
Quadro P5200 with Max-Q Design 16 GB RAM (Nvidia, Santa Clara, CA, USA). The following software
were used: x64 Windows for Workstations (Microsoft, Redmond, WA, USA), R (v.3.6.2, GNU Affero
General Public License v3) and RStudio (v.1.2.5033, GNU Affero General Public License v3) with the
packages Keras (v.2.2.5.0), TensorFlow (v.2.0.0) and Tidyverse (v.1.3.0).

2.4. Analytical Subsets

To ensure reliable results, image patches were randomly separated into training (60% of patients),
validation (20% of patients), and test sets (20% of patients). All image patches from a patient were in
one of the sets only. These subsets were not changed during the analyses.

2.5. Convolutional Neuronal Network

Our setup using keras and tensorflow in R analytical software allowed us to choose a subset
of different network architectures among the hundreds of network architectures available. After a
literature review, three different commonly used and previously published CNN architectures were
chosen and applied for the analysis. The results were subsequently compared. The CNNs were
VGG16, InceptionV3 and InceptionResNetV2 [29–35]. The size, Top-1 accuracy, Top-5 accuracy on
the ImageNet validation dataset, the number of parameters and the depth of VGG16, InceptionV3
and InceptionResNetV2 are as follows: 528 Megabyte (MB), 0.713, 0.901, 138,357,544, 23; 92 MB, 0.779,
0.937, 23,851,784, 159, and 215 MB, 0.803, 0.953, 55,873,736, 572, respectively [36]. The top layer was
removed, and an additional network including a flattened layer, a dense layer composed of 256 neurons
(ReLu activation function), and an output layer with four classes (Softmax activation function) was put



Cancers 2020, 12, 1604 5 of 16

on top of the convolutional base. The optimizer applied was RMSProp with a learning rate of 0.00002.
All three network architectures were trained with and without pretrained weights from ImageNet.
Different iteration numbers, input image sizes, batch sizes, and dropout rates were evaluated to find a
reliable classification model for the training and validation sets. The best model was used to classify
the test set.

3. Results

3.1. Patient Cohort, Annotation, Image Patches Extraction, and Subset Analysis

Cases from SCLC (n = 80), ADC (n = 80), SqCC (n = 80), and skeletal muscle (n = 30) were
successfully identified, retrieved, assembled in a TMA, stained, and scanned. Identification of the
tumor-containing region resulted in a total of 12,472 extracted 100 × 100 µm (395 × 395 px) image
patches. The aim of extracting at least 10 image patches per patient was achieved in all but three SCLC
cases, which were still included in the analysis. The number of extracted patches is displayed in Table 1
and Figure 3. Table 1 shows the number of image patches in the training, validation and test sets (60%,
20%, and 20% of patients, respectively) after random patient-based selection.

Table 1. Descriptive statistics of annotated image patches and analysis subsets.

Tissue Type ADC SqCC SCLC Skeletal Muscle Overall Sum

Overall Analysis set, 100% of Cases
Cases, n 80 80 80 30

Image patches, n
Sum 4505 3695 2075 2152 12,427

Minimum 11 11 3 23

Maximum 165 128 92 137

Mean 56 46 26 72

Median 51 43 23 73

Training Set, 60% of Cases
Cases, n 48 48 49 18

Image patches, n
Sum 2686 2108 1253 1298 7345

Minimum 11 13 3 37

Maximum 165 95 92 131

Mean 56 44 26 72

Median 54 43 22 73

Validation Set, 20% of Cases
Cases, n 16 16 15 6

Image patches, n
Sum 871 845 437 479 2632

Minimum 15 11 4 37

Maximum 136 128 65 137

Mean 54 53 29 80

Median 46 48 28 72
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Table 1. Cont.

Tissue Type ADC SqCC SCLC Skeletal Muscle Overall Sum

Test Set, 20% of Cases
Cases, n 16 16 16 6

Image patches, n
Sum 948 742 385 375 2450 *

Minimum 13 19 4 23

Maximum 115 76 56 87

Mean 59 46 24 63

Median 55 41 23 70

* Two image patches were removed at random to ensure divisibility by the batch size of 16 (16 × 153 = 2448).
ADC: adenocarcinoma; SqCC: squamous cell carcinoma; SCLC: small-cell lung cancer.
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3.2. Convolutional Neuronal Network Selection and Hyperparameter Optimization

Comparison of CNN architectures trained with and without pretrained weights showed a distinct
increase in classification accuracy in the former (Table 2A,B). Moreover, overfitting was apparent
when more than 20 epochs were trained. Because the classification accuracies of InceptionV3 and
InceptionResNetV2 were slightly better in the validation set and the training time was less with the
InceptionV3 architecture compared to the InceptionResNetV2 architecture, all other optimization steps
were done with the InceptionV3 architecture without pretrained weights and with 20 epochs.

Testing of different input image sizes of 128 × 128 px, 256 × 256 px, and 395 × 395 px revealed a
classification accuracy of 83%, 95%, and 93% in the training set and 84%, 89%, and 84% in the validation
set, respectively (Table 2C). An input size of 256 × 256 px showed the highest classification accuracy;
therefore, this particular image size was chosen for further analysis.
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Table 2. Classification accuracy of different convolutional neuronal network (CNN) models during the
optimization process.

A. CNN Models with Pretrained Weights on the ImageNet Dataset
CNN VGG16 InceptionV3 InceptionResNetV2

Epochs, n 20 50 20 50 20 50

Training set 81% 82% 68% 70% 72% 74%

Validation set 81% 81% 59% 64% 62% 60%

B. CNN Models with Weights Trained on the Training Set
CNN VGG16 InceptionV3 InceptionResNetV2

Epochs, n 20 50 20 50 20 50

Training set 88% 91% 83% 88% 87% 89%

Validation set 83% 86% 86% 85% 85% 84%

C. Different Image Input Sizes
Input size, px 128 × 128 256 × 256 395 × 395

Epochs, n 20 20 20

Training set 83% 95% 93%

Validation set 84% 89% 84%

D. Different Batch Sizes
Batch size, n 8 16 32 64

Epochs, n 20 20 20 20

Training set 84% 95% 94% 96%

Validation set 88% 89% 87% 89%

E. Different Dropout Rates

Dropout rate 0 0.1 0.2 0.3 0.4 0.5

Epochs, n 20 20 20 20 20 20

Training set 95% 89% 89% 88% 89% 88%

Validation set 89% 86% 84% 86% 86% 89%

CNN: Convolutional Neural Network.

Different batch sizes (8, 16, 32, and 64) were compared. A batch size of 16 had optimal classification
accuracy metrics, i.e., 95% in the training set and 89% in the validation set (Table 2D).

As a slight overfitting was noted, different dropout rates (0, 0.1, 0.2, 0.3, 0.4, and 0.5) were
evaluated. Compared with the other values, no overfitting was noted with a drop-out rate of 0.5 and a
classification accuracy of 88% and 89% in the training and validation sets, respectively (Table 2E).

The variable parameters of the final CNN model and its performance on the training and validation
sets are shown in Appendix A Table A1 and Appendix A Figure A1.

The output parameter loss and classification accuracy are shown for the training and validation
sets over 20 epochs. The final CNN model parameters were as follows: CNN architecture, InceptionV3;
trainable weights, n = 192; input image size, 256 × 256 px; image augmentation, yes; batch size, n = 16;
dropout rate, 0.5; loss function, categorical crossentropy; optimizer, RMSProp; learning rate, 0.00002;
and output metrics, accuracy and loss.

3.3. Evaluation of the Test Set and Introduction of a Quality Control

The final trained CNN model was evaluated on an independent test set. The output of this
evaluation was a probability for every single image patch to correspond to one of the four trained classes.
However, as an image patch-based classification is not suitable for routine application (i.e., The aim is
to classify the whole patient case and not single annotated image patches), two QC parameters were
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introduced to ensure a high level of classification certainty—(i) a minimum probability for the image
patches to fall into one class (image patch QC) and (ii) a minimal proportion of images that need to be
classified as one category (case QC). The principle of the two QC categories is shown in Figure 4.Cancers 2020, 12, 1604 8 of 16 
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Figure 4. Principle of the introduced image patch and case quality control (QC). To demonstrate the
general principle of the introduced QC, two examples—one for 50%/50% image patch/case QC (A) and
one for 90%/90% image patch/case QC (B)—are shown. Given the rationale that a patient case would
consist of 100 image patches, 50 and 90 image patches would need a probability of at least 50% (A) and
90% (B) to fall in a class. In the first example (A), 96 image patches have a ≥50% probability to belong
to one class (image QC passed in 96 image patches (different shades of grey correspond to the four
classes) and failed in four image patches (red)). As <50% of image patches belong to the class with the
largest proportion (light grey), the case QC failed. In the second example (B) all image patches have a
≥90% probability to belong to one class (image QC passed in all image patches). As >90% of image
patches belong to the class with the largest proportion (light grey), the case QC passed.

First, the image patch QC was increased from 50% to 90% in 10% increments. With increasing values
for the image patch QC, the number of image patches that did not pass the QC increased from 1/2448
(<1%) at an image patch QC of 50% to 386/2448 (16%) at an image patch QC of 90%. Simultaneously,
the classification accuracy increased from 89% to 95% in the whole cohort. Most misclassifications
were found between ADC and SqCC (Table A1).

The classification results separated for the whole cohort, for the three lung cancer subtypes, and
for the NSCLC subgroup are displayed in Table 3.
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Table 3. Proportion of image patches with failed QC and classification accuracy according to image
patch QC.

Image
Patch QC

Value

Image Patches
with Failed

QC (n)

Proportion of
Image Patches

with Failed
QC (%)

Classification Accuracy
of ADC, SqCC, SCLC,
Skeletal Muscle Image

Patches (%)

Classification
Accuracy of ADC,

SqCC, SCLC Image
Patches (%)

Classification
Accuracy of ADC,

SqCC Image
Patches (%)

50% 1 0.04 89 87 85

60% 79 3 91 89 87

70% 150 6 92 90 89

80% 255 10 93 92 90

90% 389 16 95 94 92

The proportion of image patches with failed QC was calculated in all ADC, SqCC, SCLC, and skeletal muscle image
patches of the test set (noverall = 2448).

Second, case QC was evaluated in combination with image patch QC from 50% to 90% in 10%
increments. The results for the whole cohort are displayed in Table 4A. Regardless of the combination
of QC values, SCLC and skeletal muscle cases were always correctly classified. Thus, the classification
accuracy for the whole cohort was better than that for the NSCLC subgroup. With increasing values
for case QC, the number of patients who did not pass increased from 0% to 19% in the whole cohort.
The classification results and the number/proportion of cases that did not pass the QC for the three lung
cancer subtypes and for the NSCLC subgroup are displayed in Table 4B,C. In the NSCLC subgroup,
a classification accuracy of 100% was achieved using image patch and case QCs of 90%. Using these
parameters, 31% of cases did not pass QC.

Table 4. Classification accuracy and proportion of cases in which QC failed.

Case QC Value 50% 60% 70% 80% 90%

Parameter CA
(%)

QC
Failed

(%)

CA
(%)

QC
Failed

(%)

CA
(%)

QC
Failed

(%)

CA
(%)

QC
Failed

(%)

CA
(%)

QC
Failed

(%)

A. ADC, SqCC, SCLC, and Skeletal Muscle Cases

Im
ag

e
pa

tc
h

Q
C

va
lu

e 50% 94 0 96 6 98 11 100 19 100 24

60% 94 0 98 4 98 9 98 17 100 22

70% 94 0 98 6 98 9 98 15 100 20

80% 94 0 98 4 98 9 98 13 100 19

90% 96 0 98 4 98 7 98 9 100 19

B. ADC, SqCC, and SCLC Cases

Im
ag

e
pa

tc
h

Q
C

va
lu

e 50% 94 0 96 6 98 13 100 21 100 27

60% 94 0 98 4 98 10 97 19 100 25

70% 94 0 98 6 98 10 98 17 100 23

80% 94 0 98 4 98 10 98 15 100 21

90% 96 0 98 4 98 8 98 10 100 21

C. ADC and SqCC Cases

Im
ag

e
pa

tc
h

Q
C

va
lu

e 50% 91 0 93 9 96 19 100 31 100 41

60% 91 0 97 6 96 16 96 28 100 38

70% 91 0 97 9 96 16 96 25 100 34

80% 91 0 97 6 96 16 96 22 100 31
90% 94 0 97 6 96 13 96 16 100 31

The proportion of cases with failed QC was calculated in all ADC (n = 16), SqCC (n = 16), SCLC (n = 16) and skeletal
muscle (n = 6) cases of the test set (n = 54).
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4. Discussion

The morphological evaluation of tissue specimens in lung cancer diagnostics is the basis for further
molecular testing and therapy stratification [12]. Criteria for additional IHC testing after morphological
assessment are subjective. The combination of digital pathology and machine learning has the potential
to support this decision process in an objective manner [37,38]. In a previous investigation, the
application of deep learning to classify cytological preparations and histological specimens yielded
promising results in various cancer types including lung cancer [39–41].

In this study, we analyzed whether a CNN-model (InceptionV3 CNN) could be used to differentiate
the most common lung cancer subtypes—SCLC, ADC, and SqCC. To check the plausibility of the
results, skeletal muscle was also included in the analysis. Histologically, the distinction of skeletal
muscle and the three tumor entities is unambiguous. Furthermore, high classification accuracies were
expected for the distinction between SCLC and NSCLC, as the cell size is commonly very different [12].
Only in unique cases can separation be difficult by morphology alone, e.g., when the tumor cell count
is low, or in specimens with pronounced crush artifacts. The separation between ADC and SqCC is
often possible by morphological evaluation alone, but in a subset of cases, only reliable if additional
IHC stains are applied. Specifically, poorly differentiated tumors require the use of IHC to identify
metastases from extrapulmonary tumors [24,26,28,42,43]. Thus, it was expected that the classification
accuracies would be high for skeletal muscle and SCLC but rather intermediate for ADC and SqCC.

In this study, we used a TMA to extract the image patches for several reasons. First, the
tumor-containing area of each patient is comparable [18]. Second, the number of extracted image
patches is limited, which saves computational resources. Third, the scan time and hard drive space is
lower, and fourth, more tumors can be annotated at the same time by using whole slide annotations.
Moreover, a TMA is suitable to mimic the biopsy situation [44]. Once the algorithm is trained, it can be
applied to image patches extracted from TMAs, biopsies or resection specimens and therefore is in
principle applicable in the routine setting.

The creation of image patches from a scanned image is necessary, as CNN can process only limited
image sizes [45]. The separation of 60%, 20%, and 20% for the training, validation, and test sets was
arbitrary, and there is currently no established gold standard [38,46–48]. A higher proportion of cases
in the training set would result in a more robust model, but the data in the validation and test cohort
would possibly not be representative. Nonetheless, separation into the three sets is mandatory, as
during hyperparameter tuning, information from the training set migrates into the validation set. Thus,
the capacity of the model must be tested on a separate test set.

In the past, various CNN architectures and modifications have been developed, and some show a
high classification accuracy in the ImageNet dataset [49–51]. However, as the newer CNN architectures
were not (yet) implemented in the software that was used here, we choose CNN architectures that
were previously used to classify image data and were available in our software. Because it has been
shown that the pretrained weights from the ImageNet dataset can also be used to efficiently classify
new images, the CNN architectures were evaluated both with and without pretrained weights [38,46].
However, as the classification accuracy was distinctly lower with pretrained weights, we choose to
use the CNN architectures without pretrained weights [38]. There is no established standard for the
optimization process of a CNN model, but all parameters used in this study were within the range of
reported variations [52–55].

The final model was robust and reached an image patch classification accuracy of 88% in the
training as well as in the validation set which is comparable to previous studies using histological
images [56,57] Mainly ADC and SqCC were misclassified, as expected. For a routine application of
a CNN for entity subtyping, a classification based on patients is much more meaningful. Therefore,
the entity was defined by the proportion of image patches that were most common. As expected,
a higher value for the QC resulted in a higher proportion of cases with a failed QC. Irrespective of
the evaluated subset (whole cohort, three lung cancer subtypes or NSCLC cases), the classification
accuracy increased to 100% using image patch and case QC cutoffs of 90%. For the ADC and SqCC
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subgroups, 31% of patients did not meet the QC criteria using image patch and case QC cutoffs of 90%.
Thus, the CNN classification model and the subsequent application of QC measures allowed us to
objectively identify cases that needed further IHC evaluation for definite entity subtyping.

The limitations of our study are the sample size, the number of extracted image patches in some
cases, the number of included entities and the process for hyperparameter tuning. Herein, we examined
80 cases per lung cancer entity. Based on the random separation into training, validation and test
sets, only 48 tumors were included in the training set. ADC and SqCC may be morphologically very
different, and many variants are recognized in the current World Health Organization classification [12].
Furthermore, there may be mixed tumors such as SCLC combined with large cell neuroendocrine
tumors or adenosquamous carcinomas [58,59]. Based on the broad biological variation, it becomes clear
that the limited number of cases and extracted image patches per patient can only display a fraction
of the possible morphological spectrum. Moreover, it is apparent that mixed tumors are a particular
challenge for CNN-based classifications. Our model was trained to detect only the three most common
lung cancer entities. Therefore, it cannot be expected that the CNN will reliably classify entities that
were not trained, including other pulmonary or extrapulmonary tumors. Moreover, a small number of
tumor cells per image patch may be a limiting factor and the minimal number of tumor cells needed
for a reliable result is currently not clear. Thus, additional QC measures merit further investigation.
Based on the abovementioned statements, the application of CNN for tumor classification must always
be conducted under the supervision of a pathologist to avoid misdiagnosis and potentially harmful
consequences for patients. Finally, hyperparameter optimization was conducted sequentially. As not
all possible hyperparameter combinations were tested, there is a possibility that there is an even better
combination of hyperparameters. However, as hyperparameter tuning in our study resulted only in
minor improvements, it was assumed that the influence of a better combination of hyperparameters
would be minimal.

5. Conclusions

In summary, we trained and optimized a CNN model to reliably classify the three most common
lung cancer subtypes. Moreover, we established QC measures to objectively identify cases that need
further IHC validation for reliable entity subtyping. Our results highlight the potential and limitations
of CNN image classification models for morphology-based tumor classification.
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Table A1. True and predicted diagnoses of test set image patches according to different image patch
QC values.

Image Patch QC Value True Diagnosis
Predicted Diagnosis

Image Patch QC Failed
ADC SqCC SCLC Skeletal Muscle

50%
ADC 798 137 12 0 1

SqCC 116 624 0 0 0

SCLC 0 0 385 0 0

Skeletal muscle 0 0 0 375 0

60%
ADC 776 109 12 0 51

SqCC 101 611 0 0 28

SCLC 0 0 385 0 0

Skeletal muscle 0 0 0 375 0

70%
ADC 753 86 12 0 97

SqCC 89 598 0 0 53

SCLC 0 0 385 0 0

Skeletal muscle 0 0 0 375 0

80%
ADC 721 66 11 0 150

SqCC 71 564 0 0 105

SCLC 0 0 385 0 0

Skeletal muscle 0 0 0 375 0



Cancers 2020, 12, 1604 13 of 16

Table A1. Cont.

Image Patch QC Value True Diagnosis
Predicted Diagnosis

Image Patch QC Failed
ADC SqCC SCLC Skeletal Muscle

90%
ADC 672 46 10 0 220

SqCC 51 523 0 0 166

SCLC 0 0 385 0 0

Skeletal muscle 0 0 0 375 0

The values represent absolute numbers.
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