Table 2.
A. CNN Models with Pretrained Weights on the ImageNet Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CNN | VGG16 | InceptionV3 | InceptionResNetV2 | |||||||
Epochs, n | 20 | 50 | 20 | 50 | 20 | 50 | ||||
Training set | 81% | 82% | 68% | 70% | 72% | 74% | ||||
Validation set | 81% | 81% | 59% | 64% | 62% | 60% | ||||
B. CNN Models with Weights Trained on the Training Set | ||||||||||
CNN | VGG16 | InceptionV3 | InceptionResNetV2 | |||||||
Epochs, n | 20 | 50 | 20 | 50 | 20 | 50 | ||||
Training set | 88% | 91% | 83% | 88% | 87% | 89% | ||||
Validation set | 83% | 86% | 86% | 85% | 85% | 84% | ||||
C. Different Image Input Sizes | ||||||||||
Input size, px | 128 × 128 | 256 × 256 | 395 × 395 | |||||||
Epochs, n | 20 | 20 | 20 | |||||||
Training set | 83% | 95% | 93% | |||||||
Validation set | 84% | 89% | 84% | |||||||
D. Different Batch Sizes | ||||||||||
Batch size, n | 8 | 16 | 32 | 64 | ||||||
Epochs, n | 20 | 20 | 20 | 20 | ||||||
Training set | 84% | 95% | 94% | 96% | ||||||
Validation set | 88% | 89% | 87% | 89% | ||||||
E. Different Dropout Rates | ||||||||||
Dropout rate | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||||
Epochs, n | 20 | 20 | 20 | 20 | 20 | 20 | ||||
Training set | 95% | 89% | 89% | 88% | 89% | 88% | ||||
Validation set | 89% | 86% | 84% | 86% | 86% | 89% |
CNN: Convolutional Neural Network.