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Abstract: We investigate the feasibility of obtaining multiple spatially-separated biopsies from a
single lesion to explore intratumor heterogeneity and identify actionable truncal mutations using
whole exome sequencing (WES). A single-pass radiologically-guided percutaneous technique was
used to obtain four spatially-separated biopsies from a single metastatic lesion. WES was performed
to identify putative truncal variants (PTVs), defined as a non-synonymous somatic (NSS) variant
present in all four spatially separated biopsies. Actionable truncal mutations—filtered using the
FoundationOne panel—were defined as clinically relevant PTVs. Mutational landscapes of each
biopsy and their association with patient outcomes were assessed. WES on 50 biopsied samples from
13 patients across six cancer types were analyzed. Actionable truncal mutations were identified in
9/13 patients; 31.1 ± 5.12 more unique NSS variants were detected with every additional multi- region
tumor biopsy (MRTB) analyzed. The number of PTVs dropped by 16.1 ± 17.9 with every additional
MRTB, with the decrease most pronounced (36.8 ± 19.7) when two MRTB were analyzed compared
to one. MRTB most reliably predicted PTV compared to in silico analysis of allele frequencies and
cancer cell fraction based on one biopsy sample. Three patients treated with actionable truncal
mutation-directed therapy derived clinical benefit. Multi-regional sampling for genomics analysis is
feasible and informative to help prioritize precision-therapy strategies.

Keywords: intratumor heterogeneity; multiple biopsies; tumor evolution; clonality classification;
strategic therapeutic intervention
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1. Introduction

Intratumor heterogeneity is a key challenge in precision cancer therapy, contributing to treatment
resistance, therapeutic failure and poor prognosis [1,2]. With the growing use and reducing cost of
next generation sequencing, the full extent of the complexity and genomic diversity within tumors
are becoming more apparent [1,3,4]. Genotype-directed targeted therapies are becoming the standard
of care, and as tumor molecular profiling becomes more widely used in routine practice, physicians
will require the necessary tools to translate genomic information into clinically actionable results.
The consequences of intratumor heterogeneity, such as resistance to drug therapy [3–5] leading to
disease recurrence and death, is at least partially the result of limitations in the ability to define the
clonal frequency of driver events for prioritization of drug targeting in tumors. Furthermore, it has
been demonstrated that high levels of ITH results in poorer survival outcomes across a wide range of
cancer types [6,7]. To mitigate this challenge, a more comprehensive view of the mutational diversity
of each tumor lesion is required.

The mutational diversity attributed to ITH limits our ability to resolve the full spectrum of cancer
pathway aberrations through a single biopsy of the tumor lesion and may under/overestimate driver
alterations [4,8,9]. Therefore, multi-region tumor biopsies (MRTBs) are highly beneficial to attenuate
the challenge of estimating the prevalence of oncogenic clonal driver mutations. Targeting clonal driver
(truncal) mutations would potentially be more effective than targeting subclonal (branch) mutations
in a tumor [10,11]. Yap et al. proposed the targeting of genetic alterations located on the trunk of
an individual’s phylogenetic tree as a more effective clinical strategy [10] as truncal mutations are
more likely to represent the core driver mutations within the tumor [10]. In view of the importance
of identifying truncal mutations, in silico approaches such as the ABSOLUTE algorithm [12] have
been developed to predict truncal variants from a single biopsy sample. However, their ability to
identify actionable truncal mutations that would be clinically relevant is hitherto unknown. Similarly,
various gene panels have been utilized for diagnostic purposes but the minimum number of MRTB
samples needed to address issues associated with ITH remains unknown. This study—conducted
across six major cancer types—aims to outline: (a) the safety and significance of MRTB to help navigate
the complexities of ITH, (b) the minimum number of MRTB samples required when different gene
panels were used for clinical assessment, and (c) the feasibility and clinical efficacy of the approach for
identifying clinically actionable truncal mutations (i.e., mutations present in all MRTB obtained from a
single tumor lesion) and their outcomes when targeted for strategic therapeutic intervention.

2. Results

A cohort of 15 patients with metastatic colorectal carcinoma (CRC; n = 1), non-small cell lung
cancer (NSCLC; n = 6), ovarian carcinoma (OV; n = 3), breast carcinoma (BC, n = 1), uterine carcinoma
(UC, n = 2), hepatocellular carcinoma (HCC; n = 1), or cervical cancer (CC, n = 1) were recruited to the
study. A single-pass radiologically-guided percutaneous biopsy technique was used to obtain MRTBs
from a dominantly-progressing metastatic lesion in each patient with core biopsies taken at least 2 mm
apart within the same metastatic lesion. Two patients (one with NSCLC and another with cervical
cancer) were excluded from analysis as all the MRTB samples collected from them failed quality control
(QC). One patient (UC) (P11; Figure 1) had two (out of four) biopsy samples that failed QC which were
subsequently excluded from the analysis. Similarly, one patient’s (P01) germline sample (i.e., buccal
swab) failed QC and was replaced with whole blood sample. All 15 patients tolerated the procedure
well with no significant adverse events, except for one patient (P09) who developed a moderately-sized
right sided pneumothorax requiring observation overnight and serial imaging to ensure spontaneous
resolution of the pneumothorax.
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Figure 1. Representative workflow of the processing pipeline. (A) Whole-exome sequencing was 
performed on all germline and MRTB samples obtained from each patient. Bioinformatics analysis 
was subsequently performed: (B) alignment of sequence reads; (C) somatic variant calling and variant 
annotation; (D) generation of non-synonymous somatic mutational landscape across all patients; (E) 
identification of truncal and branch variants present in each patient; (F) curation of statistically 
significant somatic cancer driver mutations; (G) construction of phylogenetic trees from non-
synonymous somatic variants; (H) filtering of genetic variants using AmpliSeq™, TruSight® and 
FoundationOne™ cancer gene panels; (I) statistical saturation analysis to determine the minimum 
number of MRTB samples needed (to alleviate challenges associated with ITH) in relation to the gene 
panel used; (J) copy number alterations analysis; (K) estimation of cancer cell fraction (CCF); (L) 
prediction of putative truncal variants using two different threshold metrics, namely variant allele 
frequency and CCF; (M) informed targeted therapies were performed based on patients’ mutational 
profile that reflects genes from the AmpliSeq™ cancer gene panel. MRTB: multi- region tumor biopsy; 
ITH: intratumor heterogeneity; TB: the number of MRTB samples resected from the patient; GL: the 
type of germline sample; BL: whole blood sample; BS: buccal swab sample. CRC: Colorectal cancer; 
NSCLC: Non-small cell lung cancer; OV: Ovarian Cancer; BC: Breast cancer; UC: Uterine Cancer; 
HCC: Hepatocellular Carcinoma; P: Patient 
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Figure 1. Representative workflow of the processing pipeline. (A) Whole-exome sequencing was
performed on all germline and MRTB samples obtained from each patient. Bioinformatics analysis
was subsequently performed: (B) alignment of sequence reads; (C) somatic variant calling and
variant annotation; (D) generation of non-synonymous somatic mutational landscape across all
patients; (E) identification of truncal and branch variants present in each patient; (F) curation of
statistically significant somatic cancer driver mutations; (G) construction of phylogenetic trees from
non-synonymous somatic variants; (H) filtering of genetic variants using AmpliSeq™, TruSight®and
FoundationOne™ cancer gene panels; (I) statistical saturation analysis to determine the minimum
number of MRTB samples needed (to alleviate challenges associated with ITH) in relation to the
gene panel used; (J) copy number alterations analysis; (K) estimation of cancer cell fraction (CCF);
(L) prediction of putative truncal variants using two different threshold metrics, namely variant allele
frequency and CCF; (M) informed targeted therapies were performed based on patients’ mutational
profile that reflects genes from the AmpliSeq™ cancer gene panel. MRTB: multi- region tumor biopsy;
ITH: intratumor heterogeneity; TB: the number of MRTB samples resected from the patient; GL: the
type of germline sample; BL: whole blood sample; BS: buccal swab sample. CRC: Colorectal cancer;
NSCLC: Non-small cell lung cancer; OV: Ovarian Cancer; BC: Breast cancer; UC: Uterine Cancer; HCC:
Hepatocellular Carcinoma; P: Patient.

The investigation pipeline adopted for analyzing whole-exome sequencing (WES) data that passed
QC is illustrated in Figure 1. All processed samples had a DNA concentration greater than 4 ng/µL.
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Average sequencing depth, Q30 percentage and uniformity of coverage obtained were 128X ± 29.2,
87.5% ± 4.35, and 91.2% ± 1.94 respectively.

2.1. Tumour Variant Load

The mutational landscape of each patient was examined to evaluate the extent of ITH across
different cancer types. The non-synonymous somatic mutational load (nssML)—defined as the total
number of non-synonymous somatic (NSS) variants present—was scrutinized for each biopsy sample
(Figure 2A). Results indicate that patient P04 has the highest average non-synonymous somatic
mutational load (608.0 ± 41.7), while patient P05 with NSCLC has the highest diversity (i.e., difference
in non-synonymous somatic mutational load) among the four MRTB samples analyzed (104.3 ± 49.3).
The median diversity across all patients was 7.46 (range: 0.957 to 49.3). Friedman test of difference
among the different MRTB samples indicated no statistically significant difference between the number
of non-synonymous somatic variants present in each MRTB sample (p = 0.691).

2.2. Intratumor Heterogeneity

To investigate the extent of the intratumoral heterogeneity, the amount of truncal (i.e., ubiquitous
non-synonymous somatic variants that occur in all MRTB samples analyzed) and branch
(i.e., non-synonymous somatic variants that do not occur in all MRTB samples) variants were analyzed
(Figure 2B). Phylogenetic trees were also constructed to illustrate this phenomenon graphically
(Figure 2C, Figure S1). As demonstrated, two patients (P01 and P05) did not have any truncal variants
while patients P03 and P13 only had two and one truncal variant(s), respectively. On average, 24.1%
± 20.7, 14.7% ± 13.7 and 61.2% ± 20.6 of non-synonymous somatic variants were truncal, branch
and private mutations, respectively. A high level of intratumoral heterogeneity (75.5% ± 34.6) across
different tumors was observed, with private mutations dominating the mutational landscape (p < 0.05).
When copy number alterations (CNAs) were interrogated, a moderate degree of diversity (branch
amplification: 54.3%± 34.7, p = 0.083; branch deletion: 59.4%± 34.8, p = 0.050) was observed (Figure 2D,
Figure S2).

Statistically significant somatic cancer driver mutations (ssCDMs) were juxtaposed with
non-synonymous somatic variants identified in our study cohort. Results indicate that detectable
somatic cancer driver mutations were more likely to be truncal variants (68.2%; Figure 2E,
Figures S3 and S4); however, the difference was not statistically significant (p = 0.177). Truncal
somatic cancer driver mutations across this study cohort include AKT1, ATM, BCOR, CHD4, KRAS,
MAP3K1, and PIK3CA; conversely, branch somatic cancer driver mutations include ERBB2, FOXA1,
and PPM1D. In our cohort, EGFR mutations were confined to lung cancers, with three out of four (75%)
NSCLC patients found to harbor a truncal variant in at least one reportable mutation in EGFR [13].

2.3. Statistical Saturation Analysis

The relationship between truncal variants and the number of MRTB samples analyzed was
examined. A unique variant in this case refers to a distinct non-synonymous somatic variant that
appears in at least one of the MRTB samples analyzed simultaneously. In general, with an increasing
number of MRTB samples, a monotonically increasing trend in the number of unique variants and
correspondingly decreasing number of truncal variants can be observed (Figure S5).

At the exome level (i.e., WES NSS gene panel), on average 31.1± 5.12 more unique non-synonymous
somatic variants were detected with every additional MRTB sample analyzed. Conversely, using the
number of MRTB samples analyzed simultaneously as the baseline reference to determine putative
truncal variants (PTVs), a monotonically decreasing number of PTVs can be observed with an
increasing number of MRTB samples. The number of PTVs dropped by 16.1 ± 17.9 on average with
every additional MRTB sample, with the decrease most pronounced (36.8 ± 19.7) when two MRTB
samples were analyzed compared to just one. Similar trends were observed from filtered variants
when the WES data was mapped to genes matching four cancer gene panels—namely COSMIC Cancer
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Gene Census (CGC), Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies, Carlsbad, CA,
USA), TruSight®Cancer panel (Illumina Inc, San Diego, CA, USA) and FoundationOne™ cancer gene
panel (Foundation Medicine, Cambridge, MA, USA) (Figure S5, Tables S1 and S2). However, the
change in the number of unique/truncal mutations with increasing MRTB samples was less pronounced
(<2 variants on average).

1 
 

 

(B) 

Figure 2. Mutational landscape of patients across six cancer types. (A) Boxplot illustrating nssML.
A cross (+) represents the mean value of the data. (B) Line chart and stacked bar chart representing
the number and proportion of truncal/branch variants, respectively. (C) Representative phylogenetic
tree and mutation heatmap for patient P03. Trunk, branch and private branches of the tree signify
mutations that occur in all, in some but not all, and only one MRTB sample(s) resected from the patient,
respectively. Heatmap demonstrates the presence (green: private; red: branch; blue: trunk) or absence
(gray) of NSS mutations in each MRTB sample. Bx denotes an MRTB sample with identification
number x. The total number of NSS, truncal (percentage), branch (percentage), and private (percentage)
mutations are denoted by ‘n’, ‘C’, ‘S’, and ‘P’, respectively. (D) Heatmap illustrating the presence and
absence (gray) of CNAs for patients with OV. Large-scale amplifications and deletions are represented
with areas filled with green and blue, respectively. (E) ssCDMs for OC and their associated AF and
CCF. CV: clonal (truncal) variant; Y: yes; N: no; AF: allele frequency; CCF: cancer cell fraction.

To quantitatively corroborate the minimum number of MRTB samples required across different
gene panels, statistical saturation analysis was conducted. Results (Figure S6) indicate that every
additional MRTB sample analyzed increases the ability to detect unique variants when WES
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non-synonymous somatic, TruSight®and FoundationOne™ gene panels were used; as for CGC
and AmpliSeq™ gene panels, at least two or three MRTB samples (depending on the panel used)
were required, respectively, before changes in the number of unique variants became statistically
not significant. To identify PTVs, results (Figure 3A) suggest that at least two MRTB samples were
required for the CGC, AmpliSeq™ and TruSight®gene panels, and three samples were required for
the FoundationOne gene panel; the WES NSS gene panel, on other hand, required four or more MRTB
samples based on our analysis. In addition, the positive predictive value (PPV) was determined
to evaluate the extent to which truncal variants (defined using four MRTB samples as the baseline
reference) can be identified among all variants found in a set of less than four MRTB samples.
Results (Figure 3B) indicate that four (or more) and two MRTB samples are needed for WES NSS
and FoundationOne™ gene panels, respectively, while CGC, AmpliSeq™ and TruSight®cancer gene
panels only require a single biopsy sample. The greatest significant increase in PPV based on WES NSS
and FoundationOne panels were from one analyzed sample to two samples (Figure 3B).
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Figure 3. Number, PPV and in silico prediction accuracy of truncal variants across different gene
panels. Five gene panels were scrutinized, namely WES NSS, CGC, AmpliSeq™, TruSight®and
FoundationOne™ cancer gene panels. (A) Boxplot illustrating the number of PTVs across different
numbers of MRTB samples analyzed concurrently. (B) PPV of PTVs in relation to the number of
MRTB samples interrogated simultaneously. (C) Best average prediction accuracy of PTVs across
different cancer types. Two types of thresholds were used to classify variants into either truncal or
branch, namely AF and CCF. Based on the respective threshold, the best average prediction accuracy
achievable (within the defined search domain) among all patients with the same cancer type (across
different gene panels) is portrayed above. A single asterisk (*) denotes p < 0.05, double asterisks
(**) signify p < 0.01, while triple asterisks (***) indicate p < 0.001. A cross (+) represents the mean value
of the data. ‘Not available’ signifies that no variants that are associated with the specific gene panel
were found.

2.4. Prediction of Truncal Mutations

To evaluate the ability to identify truncal variants (defined based on four MRTB samples) using
a single biopsy sample, two metrics were used as classification thresholds, namely allele frequency
(AF) and cancer cell fraction (CCF). Computation of CCF values—the proportion of cancer cells within
which the variant is present—for patient P07 (OV) was unable to be performed due to inadequate
information related to somatic copy number alteration. Hence, patient P07 was excluded for the
purpose of this analysis.

First, the threshold value (for each respective metric) that produces the best average prediction
accuracy across all patients was examined. Results, as illustrated in Figure S7, suggest that AF generally
outperformed CCF across different patients. Average prediction accuracy improved between 2.7%
and 15.3% (across different gene panels) when AF was used as the classification threshold. However,
statistical significance of difference was achieved for the WES NSS gene panel only (p = 0.021).

Next, the threshold value (for each respective metric) that produces the best average prediction
accuracy across patients with the same cancer type was scrutinized. Results, as demonstrated in
Figure 3C, show that AF outperformed CCF by 15.6% to 30.4% across the different gene panels, with the
FoundationOne™ cancer gene panel having the largest difference. Statistical significance of difference
was achieved for the WES NSS gene panel only (p = 0.031).

2.5. Clinical Therapeutic Intervention

Three (23.1%) patients (P06, P10, and P11) received an inhibitor targeting an actionable
truncal mutation based on molecular profiling while another six (46.2%) patients were treated
with non-actionable truncal mutation-directed therapy either because they did not have any actionable
truncal mutations or there was no available therapy to target the actionable truncal mutation at
our center (Table 1). An illustrative example of the patients’ mutational profile can be found in
Figures S8 and S9.

Table 1. Clinical details of patients who received therapy targeting their actionable truncal mutation.

Cancer
Type

Patient Age Sex

No. of MRTB
Samples with
Abnormality of
Interest

No. of MRTB
Samples that CCF
Metric
Classified as Clonal

Targeted
Abnormality

Therapeutic
Intervention

PFS (Months)

PFS Ratio

Radiological
RECIST
(v1.1)
Response

Initial
Therapy

Actionable Truncal
Mutation-Directed
Therapy

NSCLC P06 74 M 4/4 3/4 EGFR T790M T790M
inhibitor 2.5 25.5 10.2 PR

NSCLC P05 43 M 3/4 NA EGFR T790M T790M
inhibitor 2.1 3.6 1.71 SD

BC P10 41 F 4/4 4/4 PIK3CA
H1047R

PI3Kα/β
inhibitor 2 1.9 0.95 PD

UC P11 46 F 2/2 2/2 AKT1 E17K pan-AKT
inhibitor 4 6.1 1.53 SD

M: male; F: female; SD: stable disease; PR: partial response; PD: progressive disease (based on RECIST v1.1);
PFS: progression free survival. RECIST: Response evaluation criteria in solid tumors; EGFR: Epidermal
growth factor receptor; PIK3CA: phosphoinositide-3-kinase catalytic alpha polypeptide; AKT: RAC-alpha
serine/threonine-protein kinase.
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Using each patient as his/her own control as a strategy to attenuate confounding factors resulting
from the diverse patient population and tumor types, we assessed the clinical efficacy of actionable
truncal mutation-directed therapy by comparing progression free survival (PFS) on actionable truncal
mutation-directed therapy (PFS-actionable truncal mutation-directed therapy) or non-actionable truncal
mutation-directed therapy with the PFS for the most recent prior therapy (PFS-A) in each of these
patients [14]. Two NSCLC patients harboring an Epidermal growth factor receptor (EGFR)_T790M
mutation were treated with a single agent EGFR_T790M specific tyrosine kinase inhibitor [15] with
differing clinical outcomes. Patient P06 had a truncal EGFR_T790M mutation while patient P05 had
an EGFR_T790M mutation as a branch mutation. Patient P06 had a partial response and was still on
active treatment at last review with a PFS of >25 months (Figure S10a), while patient P05 developed
worsening neuro-cognitive defects resulting in cessation of treatment after two months. The PFS ratio
for patients P05 and P06 was 0.06 and 10.2, respectively.

Patient P10 with breast cancer and a phosphoinositide-3-kinase catalytic alpha polypeptide
(PIK3CA)_H1047R truncal mutation was enrolled into a highly selective PI3Kα/β inhibitor phase
1 (dose escalation) trial [16], but progressed shortly after with a PFS of 1.9 months and PFS ratio of
0.95 despite deriving symptomatic benefit while on the trial. Lastly, patient P11 with uterine carcinoma
harbored a truncal RAC-alpha serine/threonine-protein kinase (AKT1) E17K mutation in two out of
two of her MRTB cores analyzed (only two of four cores had DNA of sufficient quality for analysis in
her case). She had significant sacral bone pain from bone metastasis and received a pan-AKT inhibitor.
Strikingly, her pain significantly improved and subsequent scans revealed a 21% reduction in the sum
of target lesions with a PFS of 6.1 months (Figure S10b). When compared to the PFS from her most
recent physician’s choice therapy, a PFS ratio of 1.5 was observed.

It is noteworthy that the CCF metric performed relatively well in predicting the truncal status
of the variants targeted. The median PFS-actionable truncal mutation-directed therapy for the small
number of patients treated with actionable truncal mutation-directed therapy was 6.1 months, with
a median PFS ratio of 1.5. These findings do suggest that the truncal status of tumors influences
response and, if validated, could potentially be used in personalized cancer treatment to help prioritize
therapeutic strategies.

3. Discussion

ITH represents a significant challenge to precision medicine and contributes to drug resistance.
Several studies employing multi-region tumor sampling from post-surgical samples have greatly
increased our understanding of tumor evolution and highlighted the importance of tumor sampling
from spatially distinct areas in order to avoid erroneous interpretation of genomic data from single
sampling bias [8–10]. In clinical practice, however, a systematic regional analysis of resected tumor
specimens is unfeasible in the majority of patients with metastatic or recurrent cancer who may only
have limited accessible intracorporeal tissue for sampling/biopsy. Hence, high quality patient samples
across six major cancer types were analyzed to address certain exigent issues related to ITH and devise
a potential novel solution to tackling the complexities of tumor heterogeneity when confronted with
the reality of treatment decision-making based on limited access to tumor tissue.

Results in our small cohort demonstrate a high degree of ITH (>65% branch mutations) across
the majority of patients, with private mutations dominating the mutational landscape. Clearly, this
indicates that ITH is a ubiquitous issue that would confound the ability to identify bona fide truncal
variants. Statistical saturation analysis demonstrates that for small targeted cancer gene panels
like CGC, AmpliSeq™ and TruSight®, a minimum of two MRTB samples are required to identify
PTVs; for a larger cancer gene panel like FoundationOne™, at least three MRTB samples are needed.
The determination of the minimum number of MRTB samples required is highly valuable as it enables
clinicians to find the equilibrium between cost and accuracy (of identifying bona fide truncal variants),
and allows the choice of which cancer gene panel to use with the amount of tumor tissue available.
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Examination of the nssML of each patient indicates that individual intratumor biopsy samples
comprise a similar amount of NSS variants (Figure 2A) while the aggregated nssML shows that every
additional MRTB sample would offer a statistically significant increment in the total number of NSS
variants (Figure S6). Correlation analysis indicates a strong correlation between the average number of
NSS variants among individual intratumor biopsy samples and aggregated NSS variants across all
four MRTB samples (Pearson’s rho = 0.975, p < 0.001). This suggests minimal intratumoral variation in
the ML based on our series and that mutational burden is less likely to be impaired by sampling bias.

Given the coveted utopia of making informed clinical decisions based on a single biopsy sample,
in silico methods for predicting truncal variants are of particular interest. AF and CCF are two favored
metrics commonly used. Empirical experiments indicate that when AF was used as the threshold to
classify truncal variants, it achieved comparable, if not better, accuracy compared to CCF; although
both approaches were less compelling for some cancer types. Of note, different cancer types (at the
whole-exome level) favor different threshold values for segregating truncal from branch variants,
suggesting that each tumor type exhibits distinct biological characteristics that require dedicated
data analytics.

Improved clinical outcomes were observed in two out of three patients whose truncal mutations
were selectively targeted. Remarkably, all patients in our series treated with actionable truncal
mutation-directed therapy derived symptomatic benefit with improvement in their performance
status. The small patient numbers across a diverse spectrum of tumors limits our ability to draw
significant conclusions within each tumor type, but nonetheless demonstrates its applicability in
a variety of tumor types and preliminary evidence of clinical benefit when used for therapeutic
prioritization in selected patients. It is noteworthy that patient P05—who had an EGFR_T790M
branch mutation that was targeted—did not respond well to the treatment (Table 1). This reaffirms
the hypothesis that increased therapeutic efficacy can be achieved by targeting truncal mutations
within a tumor, and that targeting branch mutations may result in only partial treatment efficacy
and/or accelerated growth in non-targeted subpopulations [17]. Undeniably, the cost per patient of
this approach is high; it has been estimated at USD$5000 per patient for the acquisition of biopsy
samples and profiling of four biopsy core samples as well as a germline control, but this is likely to be
mitigated in the future as next generation sequencing technologies become more widely used and cost
of sequencing gradually decreases. Crucially, the data provided by multi-region sequencing of a tumor
could have important implications for the prioritization of druggable targets in the clinical setting.
To the best of our knowledge, this is the first study assessing the feasibility and utility of obtaining
tissue biopsies from multiple spatially separated regions from a single metastatic site percutaneously.
A limitation of this study is the small sample size. Nevertheless, it provides adequate resolution into
the complexity and management of ITH. In addition, the ITH analysis performed in this study is based
on the construction of phylogenetic trees with the implicit assumption that a tumor sample can be
meaningfully summarized as the collection of mutations observed in that sample, or that only a single
or dominant clone exists per sample that carries all mutations, which could lead to biased inferences.

In our study, we only analyzed single nucleotide variants (SNV) which may potentially
underestimate the frequency of clinically actionable mutations and the mutational load of the tumor.
We focused solely on SNV mainly because they make up the majority of pathogenic variants relevant
in solid tumor malignancies (59.39%) compared to other genomic alterations such as indels, structural
variants and copy number loss [18]. Indeed, the majority of annotated variants in oncogenic and
actionable target databases such as OncoKB and cancer hotspots consist of predominantly SNV.
In addition, the majority of approved targeted inhibitors available for solid cancers currently are also
mainly directed at aberrations associated with SNV. As our results relied entirely on WES analysis,
and so one of the limitations of our study is the dependence on the size of the panel testing. As the
number of variants being considered increases, so does the required number of samples. Our study
also used fresh frozen tissue for WES analysis, which resulted in 13 of the 81 samples collected failing
quality assurance due to degradation of DNA. As we continue to expand our taxonomy of tumors and
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seek to enhance the applicability of this approach in clinical practice, it would be ideal to optimize
this approach for the clinical grade analysis of formalin-fixed, paraffin-embedded tumor samples,
to enable histological and immunohistochemical analyses of samples to be performed in parallel
with genomic analysis in the future. It has been suggested that liquid biopsies based on genomic
analyses of circulating cell-free tumor DNA (ctDNA) and circulating tumor cells (CTC) may obviate
the need for tumor biopsies [19]. Liquid biopsy platforms offer the potential for real-time sampling
and resampling of tumor material for monitoring of therapeutic efficacy [20] and early detection of
resistance subclones [21]. Furthermore, the MRTB approach we have used in this study will not be
feasible in patients with inaccessible lesions. However, the inability to characterize liquid biopsies
histologically limits the extent of biomarker analyses, particularly where tumor microenvironmental
features (e.g., programme cell death-1/programme cell death ligand-1(PD1/PDL1) protein expression),
immune cell infiltrates and stromal content are concerned. Further studies comparing the clinical
utility of multi-spatial or multi-lesional biopsy approaches with that of liquid biopsies in monitoring
the emergence of resistance and therapeutic efficacy are eagerly awaited

4. Materials and Methods

4.1. Patients and Specimens Collection

All patients were recruited and treated at the National University Cancer Institute (NCIS),
Singapore, between December 2014 and May 2016. WES and data analytics were performed at the
National University of Singapore (NUS), Singapore. All procedures were conducted in accordance
with the approved protocols and written informed consent was provided by the patients (File S1).
Eligible patients were at least 21 years of age, had a histological or cytological diagnosis of advanced
or metastatic solid malignancy and had recurrent disease for which tissue biopsy was indicated as part
of routine clinical practice. This study was approved by the National Health Group Domain Specific
Review Board IRB number 2014/00665

Each patient had 5 tumor biopsy samples obtained from one metastatic lesion using a single-pass
radiologically-guided percutaneous biopsy technique. This technique involves the insertion of a
coaxial needle together with its trocar into a lesion. The trocar is subsequently removed to allow
for the introduction of a biopsy device that is composed of a needle with a 1.5 cm throw to facilitate
multiple passes along acute angles from a single lesion via a single percutaneous access. Each biopsy
sample was obtained at least 2 mm apart. One biopsy core was sent to the histopathology lab as part of
routine clinical management while the remaining four tumor biopsy samples were analyzed using
WES. Four patients had biopsies obtained from the lung (P3, P4, P5 and P6), four had peritoneal nodes
biopsied (P1, P7, P8 and P9), three patients underwent a liver biopsy (P10, P11 and P12) and one
patient each had a bone (P13) and supraclavicular lymph node (P2) biopsied. Germline samples were
collected from each patient in the form of a buccal swab. If the germline sample failed quantitative QC,
whole blood would be used as replacement. Samples with DNA concentration <4 ng/µL would be
deemed to have failed QC. Radiological images were obtained as part of clinical care.

4.2. Whole-Exome Sequencing

Extraction of genomic DNA from tumor samples was carried out using the Qiagen Allprep
DNA/RNA Micro Kit (Qiagen, Hilden, Germany). The MasterAmp Buccal Swab Kit (Epicenter,
Madison, WI, USA) was used to extract DNA from buccal swab samples while the Qiagen EZ1 DNA
Blood 350 µL Kit (Qiagen, Hilden, Germany) was used to process whole blood samples. An Illumina
NextSeq 500 Sequencing System (Illumina, San Diego, CA, USA) was utilized to perform 150 base pair
paired-end WES. All experiments were conducted in accordance to manufacturer guidelines at the
Cancer Science Institute of Singapore, NUS. Full patient data can be found in the National Centre for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession number SRP137039
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4.3. Sequencing Reads Alignment and Somatic Variant Detection

Sequence reads were aligned to the hg19 reference genome using the Burrows–Wheeler Aligner
(BWA) v0.7.7 [22] and realignment to the hg19 reference genome was performed by using the Genome
Analysis ToolKit (GATK) v3.3.0 [23]. Variant calling was performed with duplication removal and
base recalibration prior to variant calling using MuTect somatic variant caller v1.1.7 [24] and annotated
using Oncotator v1.8.0.0 [25]. Only NSS variants were filtered out for analysis independent of CCF or
AF. All sequencing data have been made available in the NCBI Sequence Read Archive (SRA) under
accession number SRP137039.

4.4. Copy Number Alterations

Somatic CNAs were detected using several algorithms. Succinctly, the computation of raw
copy number calls and the adjustment of GC content of the raw copy number calls were performed
using VarScan2 v2.3.9 [26]. Re-centering and segmentation of the adjusted copy number calls were
conducted using DNAcopy v1.44.0 [27]. Sample purity was assessed using the ABSOLUTE algorithm
(Appendix A, Table A1).

4.5. Cancer Gene Panels

Five gene panels—WES NSS, COSMIC Cancer Gene Census (CGC), the Ion AmpliSeq™ Cancer
Hotspot Panel v2, the TruSight®Cancer panel and the FoundationOne™ cancer gene panel—were
examined. The WES NSS gene panel comprises of all protein-coding genes (with NSS property) in the
genome, while the CGC gene panel consists of all statistically significant cancer-specific genes curated
from the COSMIC Cancer Gene Census (CGC) [28,29] and The Cancer Genome Atlas (TCGA) [30,31].
The complete list of CGC interrogated genes for CRC (n = 29), NSCLC (n = 30), OV (n = 10), BC (n = 52),
EC (n = 58), and HCC (n = 26) is available in Figures S3 and S4. Commercial cancer gene panels
like AmpliSeq™, TruSight®and FoundationOne™ are comprised of 50, 94, and 315 cancer-related
genes, respectively; their interrogated gene lists are available at ThermoFisher [32], Illumina [33], and
Foundation Medicine [34], respectively.

All NSS variants identified in the WES NSS gene panel were subsequently juxtaposed with
individual targeted cancer gene panels (i.e., CGC, AmpliSeq™, TruSight®and FoundationOne™) and
variants from mismatched genes were winnowed out. The resulting list of variants for each cancer
gene panel was used for subsequent downstream analysis.

4.6. Construction of Phylogenetic Trees

The construction of phylogenetic trees was carried out based on a binary table that represents the
presence or absence of variants across all MRTB samples. Using the PHYLogeny Inference Package
v3.695 (PHYLIP) [35] and matched germline information as the outgroup root, discrete character
parsimony was used to generate the topology of the phylogenetic trees. Based on the computed
mutation counts, the length of the trunk, shared and private branches were drawn accordingly.

4.7. Statistical Saturation Analysis

The computation of the average number of unique variants present when ‘k’ number of MRTB
samples were analyzed concurrently was performed based on the following Formula (1):

Average unique variantsk =
1
n

n∑
i=1

xi, (1)

where ‘n’ denotes the number of permutation combinations available when ‘k’ number of MRTB
samples were selected from 4 MRTB samples, and ‘xi’ refers to the number of variants that are present
in at least one of the MRTB samples examined in combination set ‘i’. Similarly, the average number
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of PTVs was calculated based on the formula above but with ‘xi’ defined as the number of variants
present in all MRTB samples scrutinized in combination set ‘i’.

PPV, on other hand, was computed based on the following Formula (2):

Average PPVk =
1
n

n∑
i=1

C
PCVi,k

, (2)

where ‘n’ denotes the number of permutation combinations available when ‘k’ number of MRTB
samples were selected from 4 MRTB samples, ‘C’ represents the number of variants that occur in all 4
MRTB samples, and ‘PTVi,k’ (i.e., putative truncal variant) refers to the number of variants present in
all ‘k’ number of MRTB samples examined simultaneously in combination set ‘i’.

All statistical hypothesis tests were conducted using the Wilcoxon signed rank test unless otherwise
stated. Statistical significance is considered when the p-value is less than 0.05.

4.8. Cancer Cell Fraction and Allele Frequency

The CCF value was estimated using the ABSOLUTE algorithm [13] for each somatic single
nucleotide variant (SNV) site based on its AF, CNAs, ploidy and purity of the tumor tissue analyzed.
Based on the computed CCF values, a range of thresholds—from 0.90 to 1.00 incremented at a step size
of 0.01—were used to classify variants into either truncal or branch.

AF was calculated by dividing the number of alternative sequence read counts with the total
number of (alternative and reference) sequence read counts. Likewise, the clonality of variants was
determined by comparing the variant’s AF with a range of thresholds (from 0.01 to 0.55 incremented at
a step size of 0.01). The respective thresholds used for both the cancer cell fraction and allele frequency
analysis according to the individual panels are shown in Table 2 below:

Table 2. Thresholds used to determine the clonality of the variants.

Panel CCF AF

FoundationOne 0.92 0.13
AmpliSeq 0.92 0.15
TruSight 0.96 0.13

WES 1 0.16

4.9. Prediction of Truncal Mutations

To stratify variants into either truncal or branch based on a single biopsy sample, different (AF and
CCF) threshold values were investigated. For each threshold value examined, the following formula
was employed to compute the average classification accuracy, by which 4 MRTB samples were used as
the baseline reference for defining bona fide truncal variants (3).

Average Accuracyk =
1
4

4∑
i=1

xi,k

yi
, (3)

where ‘k’ denotes the examined threshold value, ‘xi,k’ represents the number of correct classification
made for biopsy sample ‘i’ using threshold value ‘k’, and ‘yi’ refers to the total number of variants
assessed for biopsy sample ‘i’.

4.10. Assessing Targeted Therapy Outcomes

Treatment decisions were made using molecular profiling results from one core biopsy, as reported
in the Intergrated Molecular Analysis of Cancer (IMAC) study [14] while the remaining four core
biopsies were analyzed for this study. Using each patient as his/her own control as a strategy to attenuate
confounding factors resulting from the diverse patient population and tumor types, we assessed the
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clinical efficacy of actionable truncal mutation-directed therapy by comparing the PFS for each patient
who received actionable truncal mutation-directed therapy (PFS-actionable truncal mutation-directed
therapy) with the PFS for the therapy immediately before actionable truncal mutation-directed therapy
(PFS-A) [36]. If the PFS of PFS-actionable truncal mutation-directed therapy/PFS-A ratio was ≥1.3, then
the molecular profiling-selected actionable truncal mutation-directed therapy was defined as having
benefit for the patient compared to the physician’s choice chemotherapy. The PFS ratio was defined as

PFS–actionable truncal mutation–directed therapy
PFS for the therapy immediately before actionable truncal mutation–directed therapy (PFS–A)

and was used to evaluate
the efficiency of the therapeutic intervention [36].

5. Conclusions

In conclusion, this study has demonstrated: (i) the importance of performing multiple biopsies
despite extant in silico prediction methods, (ii) the minimum number of MRTB samples required to
alleviate challenges related to ITH is dependent on the tested hypothesis and the examined gene panel,
but that at least two biopsies should be submitted for analysis to achieve a PPV of >90% identifying
AT mutations, and (iii) the feasibility and clinical efficacy of adopting the proposed approach for
strategic therapeutic intervention. Further validation of this approach for identifying and targeting AT
mutations in larger cohorts will be required to fully assess its potential value as a precision medicine
strategy to circumvent the challenges of intratumoral heterogeneity in cancer therapy.
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from, Table S1: Average number of unique variants detected across different number of MRTB samples and gene
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Appendix A

Table A1. Assessment of tumor purity for each sample using ABSOLUTE algorithm. Abbrev: VAF, variant allele frequency; BRCA, breast carcinoma; CRC, colorectal
carcinoma; OV, ovarian carcinoma; UCEC, uterine carcinoma; LIHC, hepatocellular carcinoma; NaN, not computable.

Sample Patient Patient
label Disease

ABSOLUTE
_call

Status
(Called =
Clonal)

ABSOLUTE
_purity

ABSOLUTE
_ ploidy

ABSOLUTE
Cancer
DNA

Faction

ABSOLUTE
Coverage
for 80%
Power

VAF
Range-All
Variants

VAF
Range-

Putative
Truncal
Variants

VAF
Range-
Private

Variants

VAF
Range-
Branch

Variants

Mclust.wCN.
Cluster#

Mclust.
noCN.

Cluster#

VAF_ ROC
_ AUC_Truncal

VsNon
Truncal

VAF_Youden
Threshold_ Truncal
VsNon Truncal

VAF_ Youden
Threshold

_Truncal Vs
Non

Truncal_ Accuracy

Mclust.cn.
threshold
_clusterW

HighestVAF

Mclust.cn.
threshold_ Truncal

VsNon
Truncal_ Accuracy

Remark

RE3F1 RE3 P01 CRC called 0.25 5.86 0.49 64 0.14038 NaN 0.135531915 0.2446 2 2 NaN NaN NaN 0.241285714 NaN
No Truncal
Mutation
detected

RE3F2 RE3 P01 CRC called 0.21 1.94 0.2 52 0.134576087 NaN 0.099253968 0.152966942 1 2 NaN NaN NaN 0.1086 NaN
No Truncal
Mutation
detected

RE3F3 RE3 P01 CRC called 0.28 4.02 0.44 49 0.146770833 NaN 0.143824176 0.2004 2 2 NaN NaN NaN 0.348666667 NaN
No Truncal
Mutation
detected

RE3F4 RE3 P01 CRC high
non-clonal 1 2.06 1 8 0.383224409 NaN 0.30389313 0.467715447 2 2 NaN NaN NaN 0.447333333 NaN

No Truncal
Mutation
detected

RE4F1 RE4 P02 LUNG called 0.39 3.83 0.55 36 0.183591928 0.191490909 0.163944444 0.1565 2 2 0.675130617 0.076 62.27795193 0.419666667 50.49111808 —
RE4F2 RE4 P02 LUNG called 0.5 3.81 0.65 29 0.205012195 0.226848485 0.145166667 0.177076923 2 2 0.688477366 0.091 68.24915825 0.2135 57.35129068 —
RE4F3 RE4 P02 LUNG called 0.22 5.43 0.43 68 0.176941909 0.192266667 0.123045455 0.17203125 1 3 0.680582137 0.089 68.12599681 0.20575 55.2830941 —
RE4F4 RE4 P02 LUNG called 0.42 3.85 0.58 34 0.180034043 0.194939394 0.1438125 0.145815789 2 2 0.714545455 0.096 67.70562771 0.5995 49.89177489 —

RE6F1 RE6 P03 LUNG called 0.2 4.03 0.33 66 0.106431818 0.156 0.085482759 0.1505 0 2 0.659375 0.364 50 0.173 68.75

Only 2
Truncal

Mutations
detected

RE6F2 RE6 P03 LUNG called 0.16 1.96 0.16 66 0.106794118 0.12125 0.102037037 0.130333333 0 3 0.575 0.5 50 0.1345 63.33333333

Only 2
Truncal

Mutations
detected

RE6F3 RE6 P03 LUNG called 0.23 2.12 0.24 47 0.105585366 0.236 0.0839 0.124 0 2 0.692567568 0.524 62.5 0.327333333 73.64864865

Only 2
Truncal

Mutations
detected

RE6F4 RE6 P03 LUNG called 0.16 1.07 0.09 61 0.106481481 0.21825 0.079666667 0.191375 1 2 0.7525 0.52 50 0.072 60.5

Only 2
Truncal

Mutations
detected

RE8F1 RE8 P04 LUNG called 0.32 4.21 0.49 46 0.222009821 0.225307027 0.210836364 0.204115108 2 3 0.589563247 0.052 50.40747256 0.296918919 53.80586048 —

RE8F2 RE8 P04 LUNG high
non-clonal 0.58 4.34 0.75 28 0.29151633 0.316179459 0.201833333 0.234288194 2 3 0.655537557 0.084 55.15448764 0.565733333 54.26535877 —

RE8F3 RE8 P04 LUNG high
entropy 0.46 4.39 0.65 35 0.255151779 0.275265946 0.156716418 0.210709559 2 3 0.658003466 0.083 53.60034914 0.359983051 57.10528998 —

RE8F4 RE8 P04 LUNG called 0.27 3.33 0.38 47 0.192184165 0.198313514 0.113677419 0.187166667 3 4 0.619140554 0.049 50.58159754 0.332363636 51.06664348 —

RE9F1 RE9 P05 LUNG called 0.22 3.87 0.36 58 0.152 0.408 0.117938776 0.157363095 1 3 NaN NaN NaN 0.117214286 NaN
No Truncal
Mutation
detected

RE9F2 RE9 P05 LUNG called 0.31 5.63 0.56 55 0.229921642 0.414333333 0.141388235 0.268655556 2 3 NaN NaN NaN 0.416 NaN
No Truncal
Mutation
detected

RE9F3 RE9 P05 LUNG called 0.25 3.94 0.4 53 0.12454386 0.407 0.111265306 0.0852 2 2 NaN NaN NaN 0.08 NaN
No Truncal
Mutation
detected

RE9F4 RE9 P05 LUNG called 0.3 4.85 0.51 51 0.156137339 0.408333333 0.112022222 0.162778378 1 2 NaN NaN NaN 0.1255 NaN
No Truncal
Mutation
detected

RE10F1 RE10 P06 LUNG called 0.35 6.42 0.63 55 0.233589474 0.420242424 0.106076923 0.2807 2 4 0.9335 0.2235 89.71 0.4315 71.11 —
RE10F2 RE10 P06 LUNG called 0.24 3.98 0.38 56 0.154539216 0.229878788 0.117761905 0.126333333 2 2 0.8304787 0.167 80.57 0.193142857 72.99 —
RE10F3 RE10 P06 LUNG called 0.26 5.3 0.48 60 0.203761905 0.402121212 0.103064516 0.1735 2 2 0.962121212 0.311 88.13131313 0.336714286 82.07070707 —
RE10F4 RE10 P06 LUNG called 0.35 4.34 0.54 43 0.203847826 0.376272727 0.08216 0.247666667 2 2 0.942218798 0.273 91.88495121 0.332857143 76.91319979 —
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Table A1. Cont.

Sample Patient Patient
label Disease

ABSOLUTE
_call

Status
(Called =
Clonal)

ABSOLUTE
_purity

ABSOLUTE
_ ploidy

ABSOLUTE
Cancer
DNA

Faction

ABSOLUTE
Coverage
for 80%
Power

VAF
Range-All
Variants

VAF
Range-

Putative
Truncal
Variants

VAF
Range-
Private

Variants

VAF
Range-
Branch

Variants

Mclust.wCN.
Cluster#

Mclust.
noCN.

Cluster#

VAF_ ROC
_ AUC_Truncal

VsNon
Truncal

VAF_Youden
Threshold_ Truncal
VsNon Truncal

VAF_ Youden
Threshold

_Truncal Vs
Non

Truncal_ Accuracy

Mclust.cn.
threshold
_clusterW

HighestVAF

Mclust.cn.
threshold_ Truncal

VsNon
Truncal_ Accuracy

Remark

RE5F1 RE5 P07 OV non-aneuploid NaN NaN NaN NaN 0.341515366 0.456792381 0.119782946 0.288920635 4 3 0.953009939 0.278 93.77748109 0.547 55.3600356 —
RE5F2 RE5 P07 OV non-aneuploid NaN NaN NaN NaN 0.351859281 0.385497143 0.176089109 0.354071429 2 3 0.767505828 0.188 76.35164835 0.364184211 67.12687313 —
RE5F3 RE5 P07 OV non-aneuploid NaN NaN NaN NaN 0.372459689 0.42759619 0.138438095 0.315649351 1 3 0.858644689 0.258 82.34065934 0.378807692 79.35531136 —
RE5F4 RE5 P07 OV non-aneuploid NaN NaN NaN NaN 0.391212257 0.431544762 0.17428125 0.3839375 2 6 0.81843254 0.28 78.18055556 0.424096774 68.52380952 —
RE11F1 RE11 P08 OV called 0.27 3.6 0.4 48 0.182677632 0.214707071 0.109380952 0.174272727 2 3 0.825995807 0.093 80.05526968 0.458 53.09700781 —
RE11F2 RE11 P08 OV called 0.25 3.02 0.34 48 0.22096988 0.273212121 0.119104167 0.206105263 4 3 0.80830695 0.122 79.05924921 0.383 57.59837178 —
RE11F3 RE11 P08 OV called 0.25 5.06 0.46 59 0.219164894 0.279626263 0.135373134 0.202272727 1 3 0.806037907 0.123 79.04891613 0.15175 77.1422086 —
RE11F4 RE11 P08 OV called 0.22 4.74 0.4 65 0.225337079 0.294050505 0.1038 0.220416667 1 3 0.837424882 0.152 80.39253292 0.2655 67.40825981 —
RE13F1 RE13 P09 OV called 0.47 5.47 0.71 41 0.196666667 0.242578125 0.126136364 0.215 2 2 0.783166274 0.138 78.19870283 0.370333333 55.76356132 —
RE13F2 RE13 P09 OV called 0.32 5.19 0.55 50 0.254631944 0.317359375 0.103151515 0.275574468 1 3 0.741113281 0.229 71.875 0.259411765 66.40625 —
RE13F3 RE13 P09 OV called 0.31 5.3 0.55 52 0.267333333 0.34478125 0.112880952 0.299893617 1 3 0.738851826 0.172 72.05933989 0.222090909 64.9315309 —
RE13F4 RE13 P09 OV called 0.33 5.21 0.57 49 0.295875969 0.355515625 0.172761905 0.267886364 1 2 0.705288462 0.145 69.19471154 0.229583333 64.42307692 —
RE7F1 RE7 P10 BRCA called 0.82 2.3 0.84 11 0.31790099 0.44826087 0.1773125 0.425285714 1 2 0.832806324 0.289 82.74703557 0.325 79.48616601 —
RE7F2 RE7 P10 BRCA called 0.78 2.32 0.81 12 0.3082 0.423347826 0.131810811 0.483857143 1 2 0.863142292 0.304 86.56126482 0.2225 83.05335968 —
RE7F3 RE7 P10 BRCA called 0.29 5.98 0.55 59 0.311932584 0.433630435 0.11159375 0.385818182 1 2 0.861223458 0.3 89.76238625 0.269 86.27401416 —
RE7F4 RE7 P10 BRCA called 0.22 3.61 0.33 59 0.19171134 0.237978261 0.143681818 0.189571429 1 2 0.805626598 0.132 83.01364024 0.113666667 81.15942029 —

RE12F1 RE12 P11 UCEC high
non-clonal 0.63 2.24 0.66 14 0.221503448

*
0.32322666

6666667
0.112514286 NaN 2 2 0.903142857 0.164 88.28571429 0.31075 73.85714286 —

RE12F4 RE12 P11 UCEC called 0.66 4.45 0.81 26 0.267685185 * 0.4072 0.14737931 NaN 3 3 0.863984674 0.194 82.59770115 0.9165 52.09195402 —
RE14F1 RE14 P12 UCEC called 0.2 4.62 0.37 68 0.217402299 0.27652 0.110096774 0.279166667 4 3 0.885135135 0.121 86.83783784 0.518 52.2972973 —
RE14F2 RE14 P12 UCEC called 0.26 5.79 0.51 62 0.254321839 0.30418 0.1312 0.303083333 2 3 0.817567568 0.178 82.83783784 0.5225 51.94594595 —
RE14F3 RE14 P12 UCEC called 0.23 4.9 0.43 62 0.295 0.4168 0.101848485 0.3215 1 3 0.882173913 0.174 85.04347826 0.4595 60.65217391 —
RE14F4 RE14 P12 UCEC called 0.22 5.48 0.44 68 0.295521277 0.423 0.110857143 0.305444444 1 3 0.888636364 0.197 88.90909091 0.495 63.72727273 —

RE15F1 RE15 P13 LIHC called 0.43 4.05 0.61 35 0.266176 0.35 0.225596774 0.304672131 1 3 0.62601626 0.75 50 0.2527 46.54471545

Only 1
Truncal

Mutation
detected

RE15F2 RE15 P13 LIHC called 0.23 1.96 0.23 46 0.179296296 0.2475 0.176842105 0.164333333 0 4 0.72 0.667 50 0.428666667 73

Only 1
Truncal

Mutation
detected

RE15F3 RE15 P13 LIHC called 0.23 2.04 0.23 47 0.166075949 0.3635 0.15 0.163171875 0 0 0.948051948 1 50 NaN NaN

Only 1
Truncal

Mutation
detected

RE15F4 RE15 P13 LIHC called 0.2 3.91 0.32 66 0.1189 0.28 0.084888889 0.1479 0 0 0.946428571 0.667 50 NaN NaN

Only 1
Truncal

Mutation
detected

* data analysed based on two sample biopsies instead of four.
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