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Abstract: Fungal infections in immune-compromised patients are an important cause of mortality
and morbidity. Amphotericin B (Amp B) is considered a powerful fungicidal drug but its clinical
usage has certain limitations when administered intravenously due to its toxicity and poor solubility.
In consideration of such challenges, in cutaneous leishmaniasis, the topical application of Amp B can
be a safer option in many aspects. Thus, herein, biopolymer of polycaprolactone (PCL) nanoparticles
(NPs) were developed with the loading of Amp B by nanoprecipitation for the treatment of topical
leishmanial infections. Various parameters, such as concentration of PCL and surfactant Poloxamer
407, were varied in order to optimize the formation of nanoparticles for the loading of Amp B.
The optimized formulation exhibited a mean hydrodynamic particle size of 183 nm with a spherical
morphology and an encapsulation efficiency of 85%. The applications of various kinetic models
reveal that drug release from nanoformulation follows Korsmeyer–Peppas kinetics and has a high
diffusion exponent at a physiological pH of 7.4 as well a skin relevant pH = 5.5. The activity of the
prepared nanoparticles was also demonstrated in Leishmania infected macrophages. The measured
IC50 of the prepared nanoparticle formulation was observed to be significantly lower when compared
to control free Amp B and AmBisome® for both L. tropica KWH23 and L. donovani amastigotes in order
to demonstrate maximum parasite inhibition. The prepared topical nanoformulations are capable of
providing novel options for the treatment of leishmaniasis, which can be possible after in vivo assays
as well as the establishment of safety profiles.

Keywords: Amphotericin B; anti-leishmanial; anti-fungal; nanoprecipitation; drug delivery;
polycaprolactone

1. Introduction

Leishmaniasis is a protozoal disease initiated by a parasite of genus Leishmania and mostly
caused by sand flies acting as vectors for transmission. It is a major health concern throughout the
world. Currently, infected people total 12 million while annually around 1–2 million new cases are
reported and could be fatal or self-healing [1]. The different infectious types of leishmaniasis are as
follows: (a) cutaneous leishmaniasis; (b) mucocutaneous leishmaniasis; and (c) visceral leishmaniasis.
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Exposed body parts are mainly targeted by cutaneous leishmaniasis, while systemic leishmaniasis
badly affects the internal organs of the body, including the spleen and liver. Multiple ulcers resulting
from multiple bites by the sand fly are prevalent in cases throughout the world. Although cutaneous
and visceral leishmaniasis represent major threats around the globe, mucocutaneous leishmaniasis is
rarely reported [2]. A cure for cutaneous leishmaniasis (CL) exists in the use of prevalent antimonial
modalities demanding different infusions with irregular sustainability and different reactions.

Amphotericin B (Amp B) is a second line leishmaniasis treatment which induces the eventual
death of the parasites by its release in intracellular parts. Amp B exhibits physicochemical properties,
such as a low molecular weight, low melting point and sufficient lipophilicity [3], which make it
appropriate for topical delivery. Amp B is commonly administered intravenously as a leishmanial and
anti-fungal agent which is associated with nephrotoxicity [4]. In cutaneous leishmaniasis, the topical
application of Amp B might be a safer tactic. Moreover, there are also numerous other treatments,
such as prime therapy, including meglumine antimoniate (Glucantime), but these are detrimental to
some extent, requiring prolonged parenteral administration courses [5].

Nanotechnology has been widely utilized for drug delivery and to encapsulate various
ingredients by multiple approaches including supercritical fluid technology, solvent diffusion methods,
solvent evaporation, microemulsion, nanoemulsion, controlled and interfacial polymerization and
nanoprecipitation [6]. For the encapsulation of hydrophobic drugs, emulsification techniques are
recurrently stated and the nanoparticles are being developed using evaporation techniques [7]. For the
improved outcomes of therapeutic regimens, polymeric nanoparticles have gained major attention
due to their affinity with skin structure. It has been reported that the methods of the preparation and
composition of polymers have a significant impact on encapsulation efficiency and particle size [8].
Nanocarrier-based topical drug delivery systems can be capable of overcoming various challenges
associated with oral and parenteral administration routes, such as inefficient or low solubility drugs,
and optimizing delivery within a desirable duration.

There is a need to develop novel drugs to counter leishmaniasis due to the existence of various
hazards, including the high cost of current medicines [9], along with their possible toxic effects [3],
and resistance development in parasites [10]. An appropriate topical formulation must be capable of
targeting the Leishmania parasites in the dermal layers of the skin. Therefore, carriers are decisive in
improving drug penetration into the skin and supporting drug release. In comparison to old-fashioned
formulations, chemical permeation enhancers (CPEs) based on polymeric nanocarriers interact with the
outermost components of the skin and the rate-controlling layer stratum corneum (SC), increasing its
permeability and being retained longer at the site of administration [11]. Dimethylsulfoxide (DMSO) is
one of the initial and most extensively studied chemical permeation enhancers (CPEs) and is frequently
used in numerous areas of pharmaceutical science as a “universal solvent”. The interface of DMSO
with lipids is believed to be significant in its enhancing action. It has been anticipated that DMSO could
encourage lipid fluidity by disrupting the organizational structure of the lipid chains, which improves
the diffusion transport of solutes [12].

The main objective of this study is the development of polymeric nanoparticles by nanoprecipitation
through high-pressure homogenization for the treatment of leishmaniasis. These formulations are
desirable to reduce the side effects specifically associated with the oral route of administration.
The purpose of using the topical route was to resolve the challenges associated with the low solubility
and poor absorption of the drug when administered through the oral route. To accomplish the desired
objectives, a combination of high-pressure homogenization (HPH) and solvent diffusion techniques was
used to fabricate nanoparticles. Particles of smaller sizes were obtained through the HPH technique,
which may be very helpful for topical drug delivery. Furthermore, to the best of our knowledge, Amp B
nanoparticles have not previously been formulated and explored in detail using polycaprolactone (PCL)
as the only ingredient. Polycaprolactone is a biodegradable polymer used for the delivery of various
active moieties through different routes and especially for topical drug delivery [13–15]. This approach
is able to eliminate the use of relatively scarce and costly ingredients, overcoming economic issues.
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This method can also provide better drug loading and improved entrapment efficiency. An overview
of the experimental work and observations are presented schematically in Figure 1 in order to elaborate
the preparation of the polymer nanoparticles with efficient Amp B drug loading and in vitro studies of
pH dependent release and anti-leishmanial activities against L. topicana KWH23 and L. donavini.
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Figure 1. Overview of the experimental work: From Amphotericin B (Amp B) loaded polymeric
nanoparticles preparation to in vitro drug release and anti-leishmanial activity.

2. Materials and Methods

2.1. Materials

The United States Pharmacopeia (USP) grade Amp B was acquired from Synbiotics,
Vadodara, Gujarat, India. Dimethylsulphoxide (DMSO), polycaprolactone (PCL), Poloxamer 407,
monobasic potassium phosphate, sodium hydroxide (NaOH) and Sabouraud dextrose agar (SDA)
were obtained from Sigma Aldrich, Humberg Germany. Leishmania tropica KWH23 (L. tropica) and
unicellular parasite Leishmania donovani (L. donovani) strains were obtained from the fungal culture
bank of Pakistan (FCBP) and maintained on SDA at 4 ◦C prior to use. During the experimental work,
deionized water with a resistivity of 18.2 MΩ.cm (at 25 ◦C) was used to prepare all the solutions.
Tissue culture slides (NUNC®; Thermo Fisher Scientific®, Waltham, MA, USA) were used to study the
anti-leishmanial activities of the prepared nanoparticle formulations.

2.2. Methods

2.2.1. Preparation of Solutions

For the preparation of the organic phase for blank emulsion, 10 mg of PCL was dissolved in 1 mL
of DMSO and the final volume was made up to 5 mL followed by sonication in a bath sonicator until
completely dissolved. For drug-loaded polymeric nanoparticles, the organic phase was prepared by
dissolving 10 mg of PCL in 1 mL of DMSO and the final volume was made up to 5 mL and sonicated
in the bath sonicator until completely dissolved. Then, 5 mg of Amp B was added with continuous
stirring until complete dissolution and the final volume was made up to 5 mL.

The nanoprecipitation method was used for the preparation of the nanoparticles with slight
modification. A high-pressure homogenization technique was used for this purpose and 10 mL of 2%
Poloxamer solution was placed at 6000 rpm with continuous stirring. The organic phase (5 mL) was
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taken into a syringe and injected slowly into a surfactant solution at a constant rate of 0.25 mL/min.
The formulation was left in open air overnight so the organic phase could be eluted in the aqueous phase.
Centrifugation was performed at 10,000 g for 30 min at 30 ◦C to in order to attain nanoparticle pellets.

For the optimization of the prepared formulation of PCL nanoparticles, various parameters, such as
polymer concentration, organic and aqueous phase ratio and surfactant concentration, were studied.

2.2.2. Formulation of Drug-Loaded Emulsion

The same procedure was followed to prepare the drug (Amp B) loaded polymeric nanoparticles,
and the only difference was in the organic phase. In this formulation, the organic phase contained
Amp B that had already been dissolved, which was injected into the surfactant solution at a constant
rate. Optimization of the formulation was carried out by changing the polymer, organic and aqueous
phase ratio and surfactant concentration.

2.3. Characterization Techniques

The prepared nanoparticles and formulations were thoroughly characterized using different
techniques to explore their size, size distribution, morphology and surface charge. A high-resolution
scanning electron microscope (TESCAN VEGA-3, MODEL IMU VP-SEM, New York, NY, USA)
was used to analyze the size and surface morphology. Particle size analysis (Nano Zetasizer (ZS),
Malvern Instruments, Malvern UK) was carried out to determine the effect of various parameters
on the formulation of the emulsion. The particle size distribution and surface charge of the blank
and drug-loaded nanoemulsions were analyzed in the diluted form with the help of dynamic light
scattering (Zetasizer). The results were obtained by repeating the method thrice and the mean value
was acquired in order to obtain both the particle size distribution and the polydispersity index (PDI) of
the prepared nanoparticle formulations. A UV-visible spectrophotometer (Dynamica, Halo DB-20,
Livingston, UK) was used to evaluate the amount of drug encapsulated in the polymeric nanoparticles.
The standard curve of the drug was established and, based on this, drug loading and release studies
were carried out.

2.4. In Vitro Drug Release Studies and Release Kinetics

A drug release study of the prepared formulations was carried out at pH = 7.4 and pH = 5.5.
A volume of 10 mL of the formulation in a dialysis bag was added to 50 mL of PBS solution that
was maintained at 37 ◦C on a shaking water bath for estimation of the drug release. A volume of
2 mL of the PBS solution was taken out after definite time intervals from 0.25 to 48 h and analyzed
through a UV-visible spectrophotometer at a 408 nm wavelength. The same amount of PBS solution
was added to compensate for the solution that was withdrawn. The drug release profiles were
compared at both pH values. The encapsulation efficiency was calculated by centrifugation of the
formulation for 1 h at 10,000 g at 30 ◦C. Before centrifugation, the formulation (1 mL) was taken into
a falcon tube and the volume was made up with DMSO up to 10 mL. For the determination of the
drug release and mass transport mechanism, various kinetic models, such as zero-order, first-order,
Higuchi and Korsmeyer–Papas, were applied [16]. Application of these models predicted the drug
release mechanism for the Amp B loaded nanoparticles.

2.5. In Vitro Anti-Leishmanial Activities

An amastigote model in a macrophage cell line was used to evaluate the anti-leishmanial activity
of the developed formulations. For this purpose, the J774 cells were resuspended (2.5 × 105 cells/mL) in
an RPMI-1640 culture medium without serum. The cells were plated onto 8-well Lab-Tek CCR2 tissue
culture slides at a density of 200× 103 cells/well and incubated at 37 ◦C for 24 h in a humidified incubator.
The cells were then washed twice with a serum-free medium and infected with 100 µL metacyclic
stage of L. tropica KWH23 at an infection ratio of 10:1 (parasites/macrophages) in 200 µL of the whole
medium (RPMI 1640 + 10% heat-inactivated fetal calf serum + 50 mg/L gentamicin), and then they were
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incubated for 12 h. Non-phagocytosed parasites were removed by washing three times with PBS and
the wells were supplemented with a RPMI-1640 complete medium. Stock solutions of native Amp B
and emulsion were prepared in 100% DMSO at 1 mg/mL Amp B formulations available commercially as
AmBisome®. The Amp B formulations were reconstituted consistent with the manufacturer’s protocol
in order to achieve a 5 mg/mL stock of Amp B emulsion. Working concentrations were prepared
in the whole medium (RPMI 1640 + 10% heat-inactivated fetal calf serum + 50 mg/L gentamicin).
The cells were treated with emulsion and Amp B formulations at six different drug concentrations
(1–0.004 µg/mL Amp B), prepared by serial dilution. Untreated infected macrophages were used as
positive controls. Each formulation concentration was tested in quadruplicate.

Statistical analysis was also performed using the unpaired, two tailed t-test with the significance
threshold set at * p < 0.05 and ** p < 0.01, which served as the cutoff level (α). If the p-value was
less than α, then this was considered to be significant for all analyses. Three statistical differences
were calculated to determine the p values: p1 was between Amp B/AmBisome®, p2 was between
AmBisome®/emulsion and p3 was between Amp B/emulsion. If the difference was lower than the
threshold (* = p < 0.05 and ** = p < 0.01), this meant that the difference was significant and hence the
results were indeed true in terms of creating an effect. Error bars show the standard deviation and
asterisks (* or **) represent significant p-values.

3. Results and Discussion

The development of polymeric nanoparticles by nanoprecipitation was carried out through
high-pressure homogenization for the treatment of leishmaniasis. The formulation was supposed to
reduce the side effects specifically associated with the oral route of administration. The purpose of
using the topical route was to treat local infections such as cutaneous leishmaniasis and to avoid high
systemic concentrations that cause side effects such as nephrotoxicity.

Amp B is one of the key drugs utilized for the treatment of fungal infections and leishmaniasis,
though poor bioavailability and gastrointestinal irritation may lead to reduced effects and patient
non-compliance. The structure of Amp B, as shown in Figure 2, indicates that it acts by binding
to sterols present in the cell membrane of vulnerable parasites that change the permeability of the
membrane. Among various biopolymers, polycaprolactone (PCL) has exhibited superior properties in
terms of sustained release, enhanced loading capacity and higher in vivo absorption of encapsulated
drugs [17]. Poloxamer 407 (P-407), a non-ionic surfactant, possesses the highest solubilization capacity
and the lowest toxicity compared to polyoxyethylene sorbitan monolaurate (Tween 20) [18]. It has
also been proposed that DMSO may intermingle with membrane proteins, leading to organizational
defects at the intercellular keratin protein in the stratum corneum–lipid border, which may heighten its
permeability. Hence, it is interesting to study the potential of DMSO and Poloxamer 407 to enhance
skin permeation of Amp B when supplemented into a polycaprolactone polymeric nanoemulsion.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 16 
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3.1. Optimization and Stability of the Formulations

For the optimization of the formulations, the polymeric nanoparticles were synthesized by varying
concentrations of surfactant (Poloxamer 407), polymer (PCL) and organic (DMSO) or aqueous solvents.
All the prepared emulsions were evaluated on the basis of their particle size and physical stability.
The physical appearance and stability status at the ambient temperature of the prepared polymeric
nanoparticle formulations are presented in Table 1, along with their mean sizes and polydispersity
index (PDI) values. It can be observed that for the stable formulation, an optimized range of polymer
or surfactant concentrations is required.

A preliminary study which varied the amount of PCL in the aqueous phase at a fixed amount of oil
and surfactant showed that a minimum of approximately 0.05% was required for a suitable consistency.
The different concentration of the polymer was 10 to 50 mg in the solution. Particle size and physical
stability were prominently affected by low and high concentrations of the polymer. Low concentration
of PCL produced particles of smaller sizes while for high concentrations, particle size was increased.
Higher PCL concentrations (FK-5) were observed to produce unstable nanoparticle formulations and
found to be relatively thicker with aggregates. The stability and consistency of these formulations were
generally lost within two days and also resulted in a globular appearance. The formulation with a PCL
concentration ranging from 10 to 40 mg resulted in fairly good stability in terms of appearance and
absence of phase separation for at least 30 days. The prepared nanoparticle formulation’s characteristics,
such as particle size and physical stability, were noticeably affected by the concentration of PCL. A low
concentration of PCL produced particles of smaller sizes while for a high concentration, particle size
was increased, as observed, respectively, in the FK-1 to FK-5 cases. The results showed that the size of
the nanoparticles depended on the polymer concentration, because polymers have the tendency to
coalesce at high concentrations [19]; alternatively, this could be due to density differences between
the external and internal phases, or it may have occurred due to the reduced diffusion rate of the
solute molecules in the outer phase [20]. The different concentrations of surfactant (from 0.5 to 2.5%)
were analyzed. It was revealed that the optimum surfactant concentration for a stable formulation
was between 0.5% and 2%, as shown in Table 1. The prepared formulations resulted in uniform
consistency which remained stable for more than 30 days. An increasing amount of surfactant resulted
in relatively unstable particles, as observed in the case of FK-10. A low concentration of surfactant
produced particles of larger sizes, while high concentrations reduced the particle size. An increment in
particle size with an increase in surfactant concentration might be due to a reduction in surface tension
between the organic and aqueous phases. The surfactant also prevents the aggregation of particles and
stabilizes the nanoparticles [12]. FK-9 with 2% surfactant, an organic to aqueous ratio of 1:2 (5 mL
DMSO) and 10 mg of PCL was used as an optimized formulation for drug loading and further analysis.
This was selected on the basis of the data presented in Table 1, as the formulation was physically stable
with a smaller particle size (167 nm).

Table 1. Composition of different formulations used in the study.

Code
Polymeric Phase Aqueous Phase Mean Particle

Size (nm) PDI * Zeta Potential
(mV) Observation

Polymer (mg) Solvent (mL) Poloxamer 407 (%)

FK-1 10 5 2.0 203 0.195 ~0 Stable
FK-2 20 5 2.0 240 0.191 ~0 Stable
FK-3 30 5 2.0 223 0.130 ~0 Stable
FK-4 40 5 2.0 225 0.102 ~0 Stable
FK-5 50 5 2.0 / / / Unstable
FK-6 10 5 0.5 196 0.111 ~0 Stable
FK-7 10 5 1.0 215 0.149 ~0 Stable
FK-8 10 5 1.5 221 0.173 ~0 Stable
FK-9 10 5 2.0 167 0.180 ~0 Stable
FK-10 10 5 2.5 / / / Unstable

* PDI: Polydispersity Index
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3.2. Size and Morphology of Prepared Polymeric Nanoparticles

Scanning electron microscopy (SEM) was utilized to determine the size and morphology of
the blank and drug-loaded nanoparticles. The SEM image in Figure 3 shows that the prepared
nanoparticles were spherical in shape and spatially separated, which confirmed the absence of
aggregation. The nanoparticles were uniform in size and shape. This gave a preliminary result about
the broadness of the particle size distribution (low polydispersity), which was in excellent agreement
with previous studies [21].
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Figure 3. Scanning electron microscope (SEM) image of the polycaprolactone (PCL) polymer
nanoparticles with spherical morphology and loaded with the Amphotericin B drug.

3.3. Surface Charge and Particle Size Distribution

The particle size distribution of the prepared blank and Amp B encapsulated formulations are
given in Figure 4a,b, respectively. The average size of the blank and drug-loaded nanoparticles was
167 nm and 183 nm, respectively. The polydispersity index (PDI) determined the homogeneity of the
nanoparticles, which was found to be 0.211 (in the case of Amp B loaded nanoparticles) and thus
indicated uniformity in the size and homogeneity in the size distribution of the prepared nanoparticles.
In general, when the PDI value is less than 0.1, it indicates the occurrence of a monodispersing system,
while PDI values in a range of 0.1–0.4 and more than 0.4 describe moderate and high polydispersity
aspects of the distribution, respectively [22]. The size of the nanoparticles ranged from around
80 to 300 nm in the case of the Amp B loaded nanoparticles, as shown in Figure 4b, and between
100 to 200 nm for the blank nanoparticles, as presented in Figure 4a. This reflects the narrow aspect of
the size distributions. This observation is in good agreement with the SEM analysis and indicates the
stability of the suspensions and the absence of aggregation.

The excellent stability of the polymeric nanoparticles prepared by the high-pressure
homogenization method can be attributed to their quasi-neutral charge, since the zeta potential
was almost zero for all the samples, as reported in Table 1. This is due to the ability of Poloxamer
to reduce the low repulsive electrostatic charge of PCL nanoparticles. The stability within all the
formulations is then due to the presence of Poloxamer around the PCL nanoparticles that provides
steric stabilization for the obtained colloidal dispersions. For the stable dispersion, the colloidal stability
can be attributed to sterical stability in the case of low Poloxamer amount, and in the case of moderate
Poloxamer amount, the colloidal stability can be attributed to depletion stabilization. Contrastingly,
for high amounts of Poloxamer, the observed instability is due to the depletion aggregation of the
formed particles.
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Moreover, the zeta potential of all samples was found to be close to zero and the zeta potential of
sample FK-9 has been measured as a function of pH ranging from 3 to 10. The observed values were
found to be around zero, irrespective of pH variation. This highlights the screening effect of the low
PCL-based particles by non-charged Poloxamer and thus corroborates the above mentioned observation.

3.4. In Vitro Drug Release Study

The drug release studies of Amp B encapsulated in polymeric nanoformulations was performed
by the diffusion method, using a dialysis bag for a period of 48 h in pH = 7.4 and pH = 5.5 phosphate
buffer solutions maintained at 37 ◦C using a water bath. A graphical representation of cumulative
drug release (in percent) versus time plots at pH = 7.4 and pH = 5.5 is shown in Figure 5. From the
graphs, it can be observed that there was a persistent drug release from the nanoformulation at
pH = 7.4 and approximately 78% of the encapsulated drug was released within 48 h. However, in the
case of pH = 5.5, only 22% of the drug was released, which shows reduced permeation through the
nanoparticles. The in vitro release of Amp B from the polymer at pH = 7.4 was found in a sustained
manner due to the cleavage of ester linkages of PCL [23].

The in vitro release study indicated the pH-dependent release profile of the drug, showing the
insignificant amount of drug released in the acidic medium (pH = 5.5) as compared to the drug released
at around a neutral medium (pH = 7.4). A continuous drug release was observed at pH = 7.4 as
compared to pH = 5.5, showing that pH has a strong influence on the release kinetics of Amp B from
the polymer matrix. A higher drug release at pH = 7.4 reveals a favorable interaction between Amp B
and the release neutral medium. Polymer-drug interaction, drug solubility in the medium and polymer
interaction with the release medium must also be considered in order to understand the drug release
kinetics [24]. The lower release at pH = 5.5 could be interpreted as a more favorable interaction between
drug and polymer than drug and release medium. This can be explained on the basis of the dissolution
behavior of the polymer nanoparticles loaded with Amp B in varied pH conditions. It is possible that
for the prepared nanoparticles, a relatively dense polymer chain structure originates when particles
interact with an acidic medium, but in relatively neutral conditions or a higher pH, Amp B easily
leaches out from the particle due to the relatively less dense or more porous structure. It should also
be considered that in general polyesters such as poly (glycolide), poly (lactide) and polycaprolactone
(PCL) or their copolymers have been used for drug delivery applications [25]. In the case of PCL,
the release of drugs can be incomplete because of its higher crystallinity and hydrophobicity [26].
In consideration of such challenges, the design and development of drug delivery systems based on
the blending of PCL with other polymers or its copolymers can be considered in principle to improve
the control release of drugs at various pH levels and to tune the permeability of PCL for achieving a
desirable delivery [27].
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The mechanism of Amp B release and the kinetics order of drug release from the polymeric
nanoparticles were studied by fitting the in vitro drug release data of the formulation at different pH
into different kinetic models, which were the zero-order, first-order, Higuchi and Korsmeyer–Peppas
models [13]. Zero-order release kinetics describe systems where the drug release rate is constant over a
period of time and independent of the concentration of drug in the polymeric system (Equation (1)) [28]:

Mt = M∞ + kt (1)

where Mt is the absolute cumulative amount of drug released at time t, M∞ is the absolute cumulative
amount of drug released at infinite time and k is the constant of the considered system.

A first-order model describes a system in which the drug release from the polymer matrix is
influenced by the external drug concentration. Its general equation is given as [28]:

ln
( Mt

M∞

)
= kt (2)

The Higuchi model describes the release of a drug from porous matrices as the square root of the
time dependent process, based on Fickian diffusion [29]. It was derived under pseudo-steady state
assumptions and it is given in its simplest form as:

Mt

M∞
= K
√

t (3)

The Korsmeyer–Peppas model is a generalization of the Higuchi model and describes drug release
from the polymeric system as a not fully known release mechanism, and hence release data are fitted
and described as [30]:

ln
( Mt

M∞

)
= ln(K) + n ln(t) (4)

where n is the drug release exponent or diffusion exponent. It is worth noting that for n = 1/2,
the Korsmeyer–Peppas model is equivalent to the Higuchi model.

Experimental kinetic release data were fitted using the four different models by a least-square
minimization algorithm and the R-squared (R2) values of the different cases are summarized in Table 2.
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Table 2. R2 values evaluated for kinetic modeling of in vitro drug release studies at pH values of 7.4
and 5.5.

pH of Release
Medium Zero-Order First-Order Higuchi Korsmeyer–Peppas Release

Mechanism

7.4 0.027 0.812 0.776
0.944 Non-Fickian

transport(n = 0.499)

5.5 0.577 0.652 0.948
0.992 Non-Fickian

transport(n = 0.694)

The R-squared value ranges from zero to 1 and provides information on the quality of the
regression. For a model that perfectly fits the experimental data, this indicator is equal to unity.
Note that the first three models give non-satisfactory fits since R-squared is far from unity, whereas
in the case of the Korsmeyer–Peppas model, the good choice of diffusion exponent (n) leads to the
very good fit of the experimental data for the two different pH conditions. The diffusion exponent (n)
values of Korsmeyer–Peppas plots are 0.499 and 0.694 at pH = 7.4 and pH = 5.5, respectively.

The value of n is very useful and provides information about the physical mechanism controlling
the drug release from the particles. Based on the value of this exponent, the drug release was controlled
by non-Fickian (anomalous) transport at both pH levels [31]. Data analysis using all mathematical
models reveals that drug release from the nanoparticles follows a Korsmeyer–Peppas release kinetics
with maximum R2 values and high diffusion exponents at both pH levels, as presented in Figure 6.
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3.5. Encapsulation Efficiency

The encapsulation efficiency (EE%) is the percentage of drug that is successfully entrapped into the
polymeric nanoparticles. The encapsulation efficiency of the Amp B loaded nanoparticles was analyzed
through a UV-visible spectrophotometer and found to be approximately 86% using Equation (5).
The higher EE% enables researchers to deliver the drug at a higher dose, more precisely at the site
of the action. The use of PCL enables them to enhance the nanoparticles in order to entrap drug
molecules, and it also enhances aqueous solubility, promoting drug escape from the nanoparticles [23].
As compared to the solvent emulsification method, the use of the HPH technique in the present work
led to a higher encapsulation efficiency [21].

Encapsulation E f f iciency (EE%) =
Total drug added−Drug f ound in supernatant

Total drug added
× 100 (5)
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3.6. Pharmacological Evaluation of Anti-Leishmanial Activities

For the efficiency of potential drugs against Leishmania, as an intracellular parasite, it is essential that
the drug is able to access the amastigote forms of the parasites inside their host cells. In consideration
of this, the activity of the prepared nanoparticles was determined in Leishmania infected macrophages.
In the current study, the Amp B formulations were prepared with different concentrations and
investigated against L. tropica KWH23 and L. donovani amastigotes in a concentration dependent
manner. Free Amp B and AmBisome® (a commercially available marketed formulation) were used
as controls. Figure 7 represents a pharmacological evaluation of the anti-leishmanial activities of
the polymeric nanoparticles, which are also compared with Amp B and AmBisome® at different
concentrations (1–0.004 µg/mL Amp B) as prepared by serial dilution. It was obvious that the prepared
emulsion loaded with Amp B significantly improved its anti-lesihmanial activitiy. As seen in Figure 7a,b,
the greatest mean percentage inhibition of the L. donovani amastigotes, mediated using the prepared
nanoformulations at different concentrations, was achieved by using the emulsion, followed by
AmBisome®and then Amp B, which showed the least amount of inhibition. For statistical analysis,
the difference in mean percentage at different formulation concentrations for 0.004, 0.0123, 0.037, 0.111,
0.333 and 1µg/mL were tested for significance using the unpaired, two tailed t-test, with the significance
threshold set at * p < 0.05 and ** p < 0.01. The difference in p1 between Amp B and AmBisome® was
significant for few formulation concentrations values while the difference in p3 between AmBisome®

and the emulsion was significantly different for many formulations’ concentration values. However,
the difference between Amp B and the emulsion was found to be significant for all values of the
formulation concentrations.
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Figure 7. Pharmacological evaluation of the anti-leishmanial activities of the polymeric nanoparticles
where different concentrations of nanoformulations were utilized: (a) inhibition of L. tropica KWH23
amastigotes at various concentrations and (b) inhibition of L. donovani amastigotes at various
concentrations. Results are presented as mean ± SD of four experiments and were analyzed by
paired t test and with a significance threshold denoted by p values set at * = p < 0.05 and ** = p < 0.01.

Exposure of the parasites to Amp B, AmBisome® and the emulsion demonstrated that all the
prepared samples were able to inhibit parasite growth. The measured half maximum inhibitory
concentration (IC50) of Amp B, AmBisome® and emulsion for L. tropica KWH23 was found to be
0.256 ± 0.09, 0.19 ± 0.05 and 0.03 ± 0.009 µg/mL, respectively; and for the L. donovani amastigotes
these values were 0.289 ± 0.07, 0.21 ± 0.05 and 0.023 ± 0.007 µg/mL, respectively. Macrophage
targeting through drug loaded formulations significantly enhanced and improved the anti-leishmanial
activity of Amp B for the inhibition of intracellular parasites. The prepared drug loaded formulation
for anti-leishmanial activity against infected macrophages provided maximum parasite inhibition.
The formulation with the low drug concentration was able to inhibit the intracellular replication of
parasites as compared to clinically used AmBisome®. The IC50 of emulsion was lower than Amp B
and AmBisome®, which was due to the enhanced anti-leishmanial activity. The emulsion reduced the
number of parasites and the macrophages were free of parasites after treatment the with emulsion at a
concentration of 1 µg/mL. Amp B and AmBisome® were less effective than the prepared emulsion at
reducing the intracellular parasites [32]. The interaction of PCL polymer with Amp B against Leishmania
showed a synergistic effect with a twofold reduction of parasites, by enhancing the ability of Amp B to
disrupt membrane function, as well as potential direct effects of Amp B on trypanothione reductase or
mitochondrial function. The percentage inhibition of the L. tropica KWH23 and L. donovani amastigotes
of the formulations were calculated by Equation (6), utilized at a concentration that was biocompatible
with the macrophages [33].

Inhibition (%) =
Number o f cells in control well−Number o f cells in treated well

Number o f cells in control well
× 100 (6)

The free Amp B and Amp B loaded emulsion reduced the infection index in a dose dependent
manner. The encapsulation of Amp B inside the polymer enhanced the oxidative damage activity
of Amp B to destroy parasites. The maximum DMSO concentration of 0.1% was found to have
no influence on macrophage/amastigote clearance. After 72 h of incubation (5% CO2 at 37 ◦C),
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slides were fixed with 100% methanol for 1 min and stained for 10 min with 10% Giemsa’s solution.
The Giemsa-stained intramacrophage amastigote slides were visualized under a light microscope (Zeiss,
Pleasanton, CA, USA). The percentage inhibition from the test formulations and the Amp B emulsion
were calculated as cells/100 nucleated nontreated control cells. Data were fitted using the nonlinear
dose-response sigmoidal curve, and the IC50 values were estimated by least-square regression fitting.
Similarly, therapeutic efficacy evaluations of the developed nanoformulations against L. donovani
were performed on the amastigote model in a macrophage cell line, as described above. It should be
noted that blank formulations were not introduced in the assay as negative controls because it was
expected that PCL and other related polymer-based formulations would have no significant effects
or activity when used alone. This hypothesis was also supported by the already published literature
discussing PCL-based as well as other polymer-based formulations of Amp B and for other drugs
where no negative control of the polymeric nanoparticles was used, as discussed elsewhere [34–36].
Additionally, studies using PCL-based drug formulations, where polymeric nanoparticles were used as
negative controls, reported no significant effects or activities of these negative controls, as reported for
Sertaconazole [37]. The development of the formulation exhibited a substantial anti-microbial response
and demonstrated its evident anti-leishmanial efficacy. The improved activity of the emulsion can
be attributed to the targeted delivery of the therapeutic agent at the intracellular sites that serve as a
reservoirs for parasites. The observed experimental results are significant and highlight the importance
of further exploring the development and applications of nanoparticle-based therapeutics for the
treatment of Leishmania infections.

4. Conclusions

Polyacaprolactone (PCL) nanoparticles loaded with Amp B were developed for topical application
in Leishmaniasis infections. Parameter optimization through variation of the concentrations of
PCL polymer and Ploxomor 407 surfactant at fixed DMSO solvent concentrations was carried out
in order to prepare the nanoparticles, using high-pressure homogenization and solvent diffusion
techniques. The average size of the optimized blank and drug-loaded nanoparticles was 167 and
183 nm, respectively. The lowest polydispersity index (PDI) was found to be 0.211 in the case of the
Amp B loaded nanoparticles. The zeta potential of the prepared nanoparticles was found to be close to
zero and did not appear to be affected by pH variations because of the possible screening effect of the
PCL-based particles by the non-charged poloxamer. The in vitro release followed a Korsmeyer–Peppas
release kinetics model, and a high diffusion exponent at a physiological pH of 7.4 as well at skin
relevant pH = 5.5 was pointed out. The pH dependent release profile of the drug was observed to
exhibit the lowest amount of drug released in the acidic medium (pH = 5.5), as compared to the
higher drug released in the neutral medium (pH = 7.4). The encapsulation efficiency of the Amp B
loaded nanoparticles was found to be 85.90%. The activity of the prepared nanoparticles was also
demonstrated in Leishmania infected macrophages. The Amp B formulations were prepared with
different concentrations (1–0.004 µg/mL) and investigated against L. tropica KWH23 and L. donovani
amastigotes in a concentration dependent manner. Free Amp B and commercially available AmBisome®

were used as controls. Exposure of the parasites to Amp B, AmBisome® and the emulsion demonstrated
that all the prepared samples were able to inhibit parasite growth. The measured IC50 of the prepared
nanoformulations was observed to be significantly lower as compared to free Amp B and AmBisome®

for the L. tropica KWH23 and L. donovani amastigotes. Macrophage targeting through drug loaded
formulations significantly enhanced and improved the anti-leishmanial activity of Amp B for the
inhibition of intracellular parasites. The prepared drug loaded formulation for anti-leishmanial activity
against infected macrophages provided maximum parasite inhibition. The formulation with low drug
concentrations was able to inhibit the intracellular replication of parasites as compared to clinically used
AmBisome®. The prepared nanoformulations were able to provide novel options for the treatment of
leishmaniasis, which will be possible after in vivo assays as well as the establishment of safety profiles.
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