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Pertussis is a highly contagious disease 
caused by Bordetella pertussis, spread by 
respiratory droplets [1, 2]. B. pertussis is 
a strict human pathogen with no other 
known reservoir. The disease has an ini-
tial catarrhal phase of 1–2 weeks followed 
by several weeks of paroxysmal coughing. 
The severe coughing bouts are often fol-
lowed by post-tussive vomiting and an 
inspiratory whoop for which the disease 
is named [1, 2]. Other more severe signs 
can include apnea, cyanosis, seizures, en-
cephalopathy, and weight loss [1, 2]. The 
disease is milder in older children and 
adults and most severe in infants, with 
half of all deaths in the United States 
occurring in infants under 2  months of 
age [3]. Pertussis was common in the 
prevaccine era, with an average of 162 000 
cases per year in the United States with 
an average case fatality rate of 4% (1926 
and 1929 Annual Reports of the Surgeon 
General of the Public Health Service 
of the United States). Introduction of 
whole-cell pertussis (wP) vaccines in the 
1940s led to a rapid decline in the inci-
dence of reported pertussis [4]. However, 
the wP vaccine was commonly associated 

with mild injection site pain and swelling, 
low-grade fever, and fretfulness and less 
commonly with convulsions and hypo-
tonic–hyporesponsive episodes [5–8]. 
This reactogenicity led to reduced ac-
ceptance of the wP vaccine and declining 
vaccination rates in most high-income 
countries [9]. In response to public 
concerns about the wP vaccines, less 
reactogenic acellular pertussis (aP) vac-
cines were developed and licensed for 
use in the 1990s. These aP vaccines, con-
sisting of purified bacterial antigens com-
bined with aluminum adjuvant, were less 
reactogenic than the wP vaccines they re-
placed and demonstrated comparable ef-
ficacy against disease over the first 5 years 
following vaccination [8, 10–14]. The US 
Advisory Committee on Immunization 
Practices (ACIP) recommends the com-
bined diptheria, tetanus, and acellular 
pertussis (DTaP) vaccine adsorbed be ad-
ministered at 2, 4, and 6 months of age, 
between 12 and 18 months of age, and be-
tween 4 and 6 years of age [15]. A booster 
dose of tetanus toxoid, reduced diph-
theria toxoid, and acellular pertussis vac-
cine adsorbed (Tdap) is recommended 
between 11 and 12 years of age [15].

In the United States, approximately 95% 
of children receive at least 3 doses of aP 
vaccine by school entry, and >80% of chil-
dren receive the adolescent booster dose by 
middle school enrollment [16, 17]. Despite 
these near universal rates of vaccination, 
the United States has experienced a steady 
increase in reported cases of pertussis 
since 2000 (Centers for Disease Control 
and Prevention, Pertussis Surveillance 

and Reporting website; URL: http://www.
cdc.gov/pertussis/surv-reporting.html). 
Several factors likely contribute to this re-
surgence, including more rapid waning of 
protective immunity following aP vaccin-
ation, evolution of B.  pertussis to escape 
aP vaccine-mediated immunity, and in-
creased carriage and asymptomatic trans-
mission from individuals vaccinated with 
the aP vaccines [18, 19].

Studies conducted using a baboon 
model of pertussis demonstrated that in-
fection results in a strong immunity that 
prevents reinfection and disease upon 
a second exposure [20]. Baboons vac-
cinated with aP vaccines were protected 
against disease but were heavily colon-
ized and remained colonized longer than 
unvaccinated animals [20]. Despite a lack 
of symptoms, infected, aP-vaccinated ba-
boons were able to transmit to cohoused 
animals [20]. Examination of the immune 
response to vaccination in baboons dem-
onstrated that infection with B. pertussis 
as well as vaccination with wP vaccine in-
duced Th1 and Th17 responses, but both 
the Th1 and Th17 responses induced 
by infection were stronger than those 
seen following wP vaccination [20–22]. 
Neither infection nor wP vaccination in-
duced Th2 responses. In contrast, the aP 
vaccines induced strong Th2 responses 
without significant Th1 or Th17 responses 
[20–22]. Taken together, these results in-
dicate that Th2 responses induced by 
aP vaccination are sufficient to protect 
against disease but Th17 and possibly 
Th1 responses are likely required to pre-
vent B. pertussis colonization, persistence 
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and subsequent transmission. The results 
of immunogenicity studies in children 
following immunization or infection re-
vealed that aP vaccination induced strong 
Th2 responses and weak Th1 responses 
while wP vaccines induced strong Th1 
responses [23–25]. Th17 responses were 
observed in wP-primed adolescents but 
not in aP-primed adolescents following 
the adolescent booster vaccination, pro-
viding evidence of induction of Th17 
memory in children following wP vac-
cination [26]. These results mirror those 
observed in the baboon model.

Epidemiological studies following per-
tussis outbreaks indicate rapid waning of 
immunity following the primary aP vac-
cination series. The efficacy of DTaP is 
>85% following the first 3 vaccinations 
and >98% following the fifth dose [8, 
10, 27]. However, the risk of acquiring 
pertussis rises 4- to 15-fold by 5  years 
after the fifth dose [27–30]. Very rapid 
waning of protection was observed fol-
lowing booster vaccination with Tdap 
vaccine. Although initial vaccine efficacy 
for the Tdap booster was estimated to be 
70–75%, efficacy was estimated to wane 
to as low as 10–12% 4 years post booster 
vaccination [31–34].

The available evidence suggests that the 
resurgence of pertussis in high-income 
countries is due to increased asymptom-
atic carriage in aP-vaccinated populations, 
leading to increased pertussis exposure in 
those populations, in combination with 
reduced duration of immunity induced by 
aP vaccines relative to that induced by wP 
vaccines. Despite these shortcomings, it is 
important to recognize that aP vaccines 
were developed in response to a signifi-
cant need as acceptance of wP vaccination 
fell in high-income countries. The licensed 
aP vaccines have excellent safety profiles 
and protect vaccinated individuals from 
disease. The comparison of pertussis rates 
in high-income countries today with rates 
in the prevaccine era demonstrates that 
a significant level of control of pertussis 
is being maintained by aP vaccination. 
However, pertussis remains the most 
common vaccine-preventable disease, and 

we continue to observe increasing levels of 
pertussis in the face of high rates of vac-
cination. Next-generation vaccines are 
needed that combine the safety profile and 
protection against disease conferred by aP 
vaccines with protection against coloniza-
tion and enhanced duration of immunity. 
To accomplish this goal, next-generation 
pertussis vaccines will likely be designed 
to induce different, or additional immune 
responses than the current aP vaccines and 
may also include a broader set of antigens.

A significant hurdle to the introduc-
tion of next-generation pertussis vac-
cines lies in the challenge of developing 
strong scientific evidence of effective-
ness. The aP vaccines currently in use 
were shown to protect against disease 
in prospective, clinical-endpoint, effi-
cacy studies conducted in populations 
with high incidence of pertussis [8, 10–
14]. Comparable studies would be dif-
ficult and likely are not possible today. 
Although the incidence of pertussis is on 
the rise in high-income countries, the in-
cidence is likely too low for a prospective 
clinical-endpoint study to be feasible. The 
difficulty of conducting prospective per-
tussis vaccine studies is compounded by 
the fact that pertussis incidence is cyc-
lical, with peaks of infection alternating 
with troughs and different regions ex-
periencing peaks and troughs of pertussis 
incidence in different years. The baboon 
model of pertussis provides a powerful 
tool for evaluating the ability of new 
antigens and adjuvants to protect against 
disease, and the baboon model may be 
used to provide supportive proof of con-
cept for vaccines before their study in 
human clinical trials. However, clinical 
data will be required to demonstrate ef-
fectiveness in humans.

Multiple alternative approaches will 
likely be required to demonstrate sub-
stantial evidence of effectiveness of next 
generation vaccines. One component 
of such an approach may be the use of 
a pertussis controlled human infection 
model. In 2016, the US Food and Drug 
Administration licensed Vaxchora® for ac-
tive immunization against disease caused 

by Vibrio cholerae in the United States. 
The primary evidence supporting the ef-
fectiveness of Vaxchora® was derived from 
human challenge studies [35]. A  human 
challenge model of pertussis could be 
used to study early stages of infection, 
identify immune responses to infection 
and vaccination in humans, evaluate the 
effectiveness of novel antigens and adju-
vants in preventing infection, down-select 
vaccine formulations and, depending on 
the clinical endpoints, possibly provide 
clinical efficacy data for a next-generation 
pertussis vaccine.

There are significant challenges in 
developing a pertussis controlled human 
infection model. Pertussis is transmitted 
by airborne respiratory droplets; there-
fore, appropriate containment facilities 
and study design are required to prevent 
transmission to contacts within the clin-
ical center, and effective antibiotic treat-
ment is required to ensure clearance of 
pertussis prior to discharge at the end of 
the study to prevent accidental transmis-
sion to subject contacts outside the clin-
ical center. Antibiotic treatment provides 
an effective therapy for pertussis when 
administered early in infection. However, 
antibiotics have limited or no efficacy 
when administered late in infection, pre-
sumably due to damage to the host and/
or residual toxin resulting in prolonged 
disease despite clearance of the organism 
[36]. This point of no return with respect 
to rescue therapy and the potential for 
severe disease may limit a pertussis chal-
lenge model to the study of establishment 
of infection and evaluation of early mild 
disease symptoms. Even a pertussis con-
trolled human infection model limited 
to evaluating the initial infection would 
be valuable, particularly for the evalu-
ation of vaccines intended to prevent 
colonization.

In this issue of Clinical Infectious 
Diseases, Haans de Graaf, Robert Read, and 
colleagues describe the early steps in the 
development of a human challenge model 
using fully virulent B.  pertussis. Healthy 
adult subjects were inoculated intranasally 
with escalating doses of B. pertussis strain 
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B1917, a clinical isolate representative of 
strains currently circulating in Europe [37]. 
In order to avoid enrolling subjects with 
recent exposure to pertussis, antipertussis 
toxin titers were measured, and only 
subjects with titers below 20 international 
units were admitted to the study. Following 
inoculation, subjects were followed in an 
inpatient setting for disease symptoms, col-
onization, and shedding of B. pertussis. All 
subjects were treated with azithromycin 
starting on day 14 to ensure clearance 
prior to discharge and to limit develop-
ment of symptoms. In this study, the au-
thors demonstrated that human subjects 
can be safely and asymptomatically colon-
ized with B. pertussis and defined a chal-
lenge dose that resulted in colonization of 
80% of subjects. Nonspecific symptoms 
were reported in a minority of partici-
pants. Azithromycin eradicated coloniza-
tion within 48 hours in 88% of colonized 
individuals, and antipertussis toxin im-
munoglobulin G seroconversion occurred 
in 47% of colonized participants. These 
results demonstrated that B. pertussis col-
onization can be deliberately induced in 
a controlled manner that leads to a sys-
temic immune response without causing 
pertussis symptoms. The development of 
a B. pertussis human challenge model will 
allow researchers to confirm many im-
portant observations from animal models, 
will be useful in the evaluation of next-
generation pertussis vaccines that will 
likely be designed to reduce or eliminate 
carriage and, critically, may allow for con-
trolled pertussis vaccine efficacy studies 
and the exploration of correlates of im-
munity in humans.
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