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SUMMARY

Structural variants (SVs) underlie important crop improvement and domestication traits. However, 

resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-

read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV-

genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse 

genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of 

SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence 

quantitative trait variation. By combining quantitative genetics with genome editing, we show how 

multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and 

production. In the last example, higher-order epistasis among four SVs affecting three related 

transcription factors allowed introduction of an important harvesting trait in modern tomato. Our 

findings highlight the underexplored role of SVs in genotype-tophenotype relationships and their 

widespread importance and utility in crop improvement.

Graphical Abstract
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INTRODUCTION

Phenotypic variation in crop plants is shaped by genetic variation from their wild ancestors, 

as well as the selection and maintenance of collections of mutations that impact agricultural 

adaptations and human preferences (Meyer and Purugganan, 2013; Olsen and Wendel, 

2013). The majority of this variation is quantitative, and now more than ever a major goal of 

genetics is to identify and understand how specific genes and variants contribute to 

quantitative trait variation. In particular, this knowledge is necessary for designing and 

engineering favored alleles in crop improvement, enabled by genome editing (Chen et al., 

2019; Rodríguez-Leal et al., 2017; Wallace et al., 2018). While high-throughput short-read 

sequencing accelerated the discovery of natural genetic variants among diverse germplasm 

of major crops, it has also introduced an unavoidable bias: characterized variants are 

disproportionately skewed towards single nucleotide polymorphisms (SNPs) and small 

indels (De Coster and Van Broeckhoven, 2019). However, decades of research have shown 

that structural variations (SVs: large deletions, insertions, duplications, and chromosomal 

rearrangements) are important in plant evolution and agriculture, affecting traits such as 

shoot architecture, flowering time, fruit size, and stress resistance (Lye and Purugganan, 

2019). Compared to SNPs, SVs can cause large-scale perturbations of cis-regulatory regions 

and are therefore more likely to quantitatively change gene expression and phenotypes. SVs 

can also modify expression levels by directly altering gene copy number. However, despite 

their importance, identifying SVs with short-read sequencing is notoriously difficult and 

unreliable, leaving the vast majority of SVs poorly resolved and their molecular and 

phenotypic impacts largely hidden (Ho et al., 2020; Sedlazeck et al., 2018a).

High-throughput Oxford Nanopore Technology (ONT) long-read sequencing now enables a 

broad survey of population-scale SV landscapes. Such resources that capture the diversity of 

SVs, in combination with expression profiling and genome editing, immediately allow for 

the direct interrogation of the molecular and phenotypic consequences of SVs. Here, we 

present the most comprehensive panSV-genome for a major crop and study its significance 

in evolution, domestication, quantitative genetics, and breeding. We used ONT long-read 

sequencing to identify SVs from a collection of 100 diverse wild and domesticated tomato 

accessions. Tomato, in addition to its agricultural and economic importance, has extensive 

genetic resources, well-described phenotypic diversity, and efficient genome editing, making 

it an ideal system to investigate the broad significance of SVs in both fundamental plant 

biology and agriculture. Our long-read data provided continuous long-range information that 

allowed for the sequence resolved inference of more than 200,000 SVs, the majority being 

transposons and related repeat sequences. Patterns of SV distribution revealed extensive 

admixture and population-scale introgressions. RNA sequencing showed that gene 

expression is widely impacted by SVs affecting both coding and cis-regulatory regions. 

Establishing high-quality de novo genome assemblies for 14 selected genotypes allowed us 
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to resolve hidden genomic complexity involving SVs. To demonstrate the value of this 

panSV-genome, we directly linked these complex alleles with multiple domestication and 

improvement traits affecting fruit flavor, size and productivity. For two of these traits, 

modest changes in expression originated from gene copy number variation, and we used 

CRISPR-Cas9 genome editing to demonstrate causal quantitative relationships between gene 

dosage and phenotype. Our work uncovers the prevalence and importance of SVs in plant 

genomes and demonstrates the underexplored roles of SVs in trait variation.

RESULTS

Long-read Sequencing of 100 Tomato Accessions Establishes a PanSV-Genome

To deeply survey the landscape of natural structural variation in tomato, we collected long-

read sequencing data from a representative population-scale tomato panel (Figure 1A and 

Table S1A). To this end, we first used available short-read sequencing data to call SVs from 

over 800 tomato accessions and then applied the SVCollector algorithm to optimally select 

51 diverse modern and early domesticated samples that maximize SV diversity (Sedlazeck et 

al., 2018b). We then separately selected an additional 49 wild species and modern accessions 

that are used by tomato research and breeding communities (Table S1A). Our final set of 

100 accessions captures phylogenetic diversity spanning the closest wild relatives of 

domesticated tomato [S. pimpinellifolium (SP), S. cheesmaniae (CHE), S. galapagense 
(GAL)], early domesticated forms [S. lyc. var. cerasiforme (SLC)], and ‘vintage’ cultivars 

and modern varieties [S. lycopersicum, (SLL)] (Figures 1A and S1A–B) (Table S1B).

For each of the 100 accessions, we used Oxford Nanopore long-read sequencing to generate 

a minimum of 40X genome coverage, achieving a total of 7.77 Tb of long-read data with an 

average read length N50 of 19.6 kbp (Table S1C). Reads were aligned to the recently 

released SL4.0 reference genome (Heinz 1706, SLL) with NGMLR, and SVs were called 

with Sniffles (Figure S1C and S1D)(Hosmani et al., 2019; Sedlazeck et al., 2018a). We then 

filtered, sequence resolved, and merged all 100 sets of SV calls, revealing 238,490 total SVs 

(defined in this study as >30bp) that comprise the most comprehensive sequence-resolved 

panSV-genome in plants (see STAR Methods). Importantly, we confirmed that the majority 

of these variants would not have been revealed using solely short-read sequencing data 

(Figure S1E).

Individual accessions had between 1,928 and 45,840 SVs, with the wild SP, GAL and CHE 

accessions harboring the most structural variation relative to the Heinz reference genome 

(Figure 1B). Insertions and deletions were the most common SV type, though we also found 

dozens to hundreds of inversions, duplications, and translocations in all samples. SVs are 

with respect to the reference genome and do not necessarily reflect underlying evolutionary 

context. Clustering of the SV presence/absence matrix revealed a structure that mirrored the 

larger SNP-based tomato phylogeny, with accessions clustering within their known 

taxonomic groups (Figure 1C). Interestingly, the SLL “cherry” variety Sweet100 grouped 

with the SLCs, and the only two processing cultivars, M82 and EA02054, form a distinct 

group from the SLLs, suggesting admixture. Comparative analysis of the long-read SVs 

showed that SP and SLC have more SV diversity compared to SLL, consistent with the loss 

of genetic variation during the domestication and improvement of tomato (Figure 1D and 
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S1F) (Aflitos et al., 2014; Lin et al., 2014). This analysis also indicated that even sequencing 

100 accessions, many SVs remain to be discovered (Figure 1E). Consistently, the majority of 

SVs are singletons, or are otherwise rare, although tens of thousands of SVs are common 

(>5% detection frequency) (Figure 1F). We evaluated SV length distribution, which showed 

that most SVs were relatively small: 30.5%: 30–50 bp; 30.5%: 50–200 bp; 39%: >200 bp 

(Figure 1G). We note that our method has limited ability to detect larger insertions, since, 

unlike deletion calling, such detection is bounded by read length (see STAR Methods). SVs 

are typically composed of, or generated by, transposons and related repeats (Audano et al., 

2019; Fuentes et al., 2019), and annotation of our panSV-genome showed 84% of deletions 

and 76% of insertions larger than 100 bp match at least one repeat. Retrotransposon 

sequences, especially from Gypsy and Copia elements, are the most prevalent among the 

annotated SVs (Figure 1H).

Fourteen New High-Quality Tomato Reference Genomes

To supplement the panSV-genome with additional genomic resources, we selected 14 

diverse accessions for genome assembly and annotation (Table S2D). Combining long and 

short-read sequencing data, de novo assemblies using the MaSuRCA hybrid assembler 

yielded an average contig N50 of 1.9 Mbp (Figures S2A and S2B and Table S2A) (see 

STAR Methods) (Zimin et al., 2017). Reference-guided scaffolding with RaGOO produced 

chromosome-scale pseudomolecules that contained, on average, a single copy of 96% of 

complete benchmarking universal single-copy orthologues (BUSCO) genes (Figures S2C–

S2P) (Table S2B) (Alonge et al., 2019; Simão et al., 2015). Repeats were annotated using 

REPET, and genes annotations were “lifted-over” from reference annotations using geneLift 

(see STAR Methods) (Flutre et al., 2011). We used these new reference genomes (referred to 

as “MAS2.0”) to validate SVs in the same 14 accessions, of which 90% were also found in 

the assemblies (see STAR Methods). Owing to the diversity of these assemblies, which 

represent multiple SP, SLC and SLL accessions, we anchored 22% of recently discovered 

“pan-genome” genes that are missing from the ITAG reference annotation (Figures S2Q and 

S2R) (Table S2C) (Gao et al., 2019). These MAS2.0 genomes were critical to link complex 

SV loci with functional consequences shown below.

SV Distribution Reveals Extensive Admixture and Introgression

The chromosomal distributions of SVs from our panSV-genome revealed several 

hypervariable genomic regions relative to the Heinz reference shared among subsets of SLL 

accessions (designated SV “hotspots”) (Figure 2A). Since SP accessions have more 

structural variants than those of SLL, SV hotspots in SLL could reflect admixture and 

introgression between wild and domesticated accessions, which was previously partially 

explored using SNPs (Aflitos et al., 2014, 2015; Sato et al., 2012). Introgression is a 

common practice in tomato breeding, through which disease resistance genes and other 

desirable traits from wild donors are introduced into SLL breeding germplasm (Aflitos et al., 

2014). We found that SV hotspots in SLL correlated with genomic regions that show high 

similarity with SP and/or SLC based on the Jaccard similarity of SV content between 

accessions (Figure S3A–L) (Tables S3A–L). For example, multiple SV hotspots exist on 

chromosome 4, including a 2 Mbp region common to all SLL accessions that corresponds to 

a known unique introgression in the Heinz reference genome (Figure 2A) (Sato et al., 2012). 
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Most SP accessions show a decrease in SV frequency in this region, indicating these 

accessions are closely related to the introgression donor. We also found a large introgression 

block shared by five SLLs that occupies two-thirds of the chromosome (Figure 2B). Notably, 

two of these accessions are M82 and EA02054, which also carry large introgression blocks 

that span nearly all of chromosomes 5 and 11 (Figure 2A, S3E and S3K), explaining their 

distinct grouping in SLL and their relatively large number of SVs compared to Heinz 1706, 

which is also a processing type (Figure 1B and 1C).

Expecting that our panSV-genome would illuminate how breeding and introgression have 

shaped SV content, we examined 11 SLLs included in our 100 genomes from the University 

of Florida (UFL) tomato breeding program, which has a well-documented history of disease 

resistance gene introgression (Scott, 1999a). The devastating fungal disease Fusarium wilt 

first emerged in the 1930s, and the resistance genes I and I2 (from SP donors) and I3 (from 

S. pennellii) against three races of this disease were successively introduced into UFL 

breeding material between the 1930s and 1980s (Figure 2C) (Bohn and Tucker, 1939; Scott 

and Jones, 1989; Strobel et al., 1969). Furthermore, the Sm resistance gene against Grey leaf 

spot was introduced in the 1950s (Walter and Kelbert, 1953). Molecular mapping and gene 

cloning have shown that I and Sm are located on the opposite arms from I2 on chromosome 

11. The variants from our panSV-genome demonstrated overlapping introgressions from 

multiple donors, including those contributing resistance to other diseases (Foolad and 

Panthee, 2012), accounting for the large introgression block in the UFL accessions (Figure 

2D). Interestingly, the modern breeding line Fla.8111B carries the I, I2 and Sm resistance 

genes, but lacks a large portion of this introgression, suggesting this region was later purged 

during selection.

The I3 introgression on chromosome 7 was introduced in the 1980s (Figure 2C). The 

modern breeding lines Fla.7481 and Fla.7907B that carry I3 resistance show a 5 Mbp SV 

hotspot with low similarity to SP and SLC at the I3 locus, consistent with the donor being 

the distant green-fruited wild species S. pennelli (Figure 2E). Interestingly, UFL lines 

lacking I3 resistance have a 2 Mbp introgression from SP or SLC that first appeared in the 

1960s and overlaps the I3 introgression. The I3 introgression is negatively implicated with 

several horticultural characteristics, including reduced fruit size and increased sensitivity to 

bacterial spot (Hutton et al., 2014; Li et al., 2018; Scott, 1999b). The earlier introduced SP 

introgression may have provided tolerance to bacterial spot or benefitted other traits, as is 

likely for many other putative SP or SLC introgressions revealed by our panSV-genome 

(Figure S3A–S3L) (Tables S3A–L). The large number of SVs from wild species introduced 

in breeding could have broad functional consequences.

SVs Associated with Genes Have Widespread Impacts on Expression

SVs may influence the expression of nearby genes, by altering the sequence or copy number 

of a gene or by changing the composition or position of cis-regulatory sequences (Chiang et 

al., 2017; Yang et al., 2019). We explored this relationship with the comprehensive catalog 

of SVs across our tomato panSV-genome. Candidate SVs that could potentially impact gene 

expression were abundant in our collection. Nearly 50% (112,114) of SVs overlap genes 

and/or flanking regulatory sequences (+/− 5 kbp of coding sequence), and among 34,075 
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annotated genes, 95% have at least one SV within 5 kbp of coding sequences across the 100 

genomes, with the majority found in cis-regulatory regions (Figures 3A and 3B). To explore 

the impact of SVs on gene expression, we performed 3’ RNA-sequencing (RNA-seq) on 

three tissues (cotyledons, roots, apical meristems) for 23 accessions that capture 44,358 

gene-associated SVs. We evaluated a total of 21,156 SV-gene pairs, and found hundreds of 

significant expression changes (Figure 3C) (Tables S4A and S4B) (see STAR Methods). 

Nearly half of the SVs affecting coding sequences (Deletions of CDS start, Deletions of 

exons, and Duplications) are significantly associated with differences in expression, with 

many substantially reducing or eliminating expression (Table S4). In regulatory regions, 

1,534 SV-gene pairs (7.3%) showed significant differential expression across all tissues, and 

overall these differences were subtler compared to SVs in coding regions (mean log2 fold 

change 1.36 and 2.47, respectively) (Figure S4A).

Knowing that a substantial fraction of population-scale expression variation is explained by 

cis-eQTL (Aguet et al., 2017; Kawakatsu et al., 2016), we next formulated a classification 

task that uses changes in gene expression to predict the presence of a nearby SV (see STAR 

Methods) (Figure S4B). This classifier complements standard fold-change measurements 

among known SV-gene pairs and its performance can quantify the extent to which global 

expression changes are associated with SVs. Notably, this test is robust to population 

structure because global changes in expression or confounding variants can only serve to 

weaken any oneto-one relationship between gene expression variation and the existence of a 

nearby variant.

Broadly, differential expression significantly predicts genes with associated SVs (Figures 

3D–3E and S4C–S4E) (Tables S4C–L). As expected, this classifier performs best on the 

coding sequence SVs (e.g. Deletions of exons, apex tissue expression, AUROC > 0.78, FDR 

< 0.05), as reflected by the sharp initial rise in ROC curves (Figure 3D). The strength of this 

signature indicates that indirect effects (e.g. trans regulation) do not dominate the observed 

relationship, and also demonstrates the high accuracy of our variant calls. Importantly, we 

also observe subtle but significant effects of regulatory SVs on gene expression (e.g. 

deletions overlapping 3’ flanking sequence, apex tissue expression, AUROC > 0.53, FDR < 

0.05). The AUROC captures the individual cis-regulatory effect size, which is small on a per 

variant basis. However, in aggregate, these variants have a large impact on expression 

variation (Figure 3E), suggesting they globally shape expression profiles. Overall, our results 

show that SVs can impact gene expression in both substantial and subtle ways, and that 

many such variants in our panSV-genome may be functionally relevant (Figure 3F and S4F).

New Reference Genomes Resolve Multiple Haplotypes for the Smoky Volatile Locus

Our panSV-genome, new MAS2.0 assemblies, and expression dataset could help to reveal 

genes and variants underlying quantitative trait variation that has been masked by hidden 

genomic complexity. Many fruit aroma volatile QTLs that contribute to flavor have been 

identified through GWAS, but only a few have been functionally characterized (Tieman et 

al., 2017; Zhu et al., 2018). One such QTL involves the metabolically linked volatiles 

guaiacol and methylsalicyate, whose “smoky” or “medicinal” flavors negatively influence 

consumer appeal. A previous GWAS study identified a candidate gene E8 
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(Solyc09g089580), encoding a putative negative regulator of ethylene biosynthesis involved 

in fruit ripening (Tieman et al., 2017). While transcriptional knockdown of E8 resulted in 

accumulation of guaiacol and methylsalicylate, other volatiles were also modified. 

Furthermore, no causal mutations were identified, likely due to two large gaps flanking E8 
in the reference genome at the time (SL3.0).

A separate study found that mutations in the NON-SMOKY GLYCOSYLTRANSFERASE1 
(NSGT1) and NSGT2 paralogous genes, which are physically close on chromosome 9, 

cause an accumulation of guaiacol (Figure 4A) (Tikunov et al., 2013). Whereas NSGT2 
shows little expression and is believed to be non-functional, upregulation of NSGT1 during 

ripening converts guaiacol to non-cleavable triglycosides, preventing guaiacol volatilization 

(Tikunov et al., 2013). To investigate if NSGT genes could be linked to the smoky QTL, we 

inspected the previous reference genome SL3.0 and found a partial sequence of NSGT1 near 

the gap at the chromosome 9 GWAS locus and another NSGT1 fragment at a second GWAS 

peak on an unanchored contig (Figure 4B) (Tieman et al., 2017). Consistently, a recent 

short-read k-mer-based analysis also linked the two smoky GWAS peaks and suggested 

hidden structural complexity (Voichek and Weigel, 2019). However, all these studies failed 

to resolve this locus. Importantly, our new MAS2.0 assemblies not only filled the gaps 

flanking E8 with these two NSGT paralogs but also further revealed coding sequence 

variants and SVs that are resolved into five haplotypes (Figure 4B and 4C) (see STAR 

Methods).

Haplotype I is likely ancestral with the two paralogous NSGT1 and NSGT2 genes flanking 

E8. While an NSGT2 coding sequence mutation is found in all other haplotypes, haplotypes 

II and III have intact NSGT1, with the latter carrying two copies of NSGT1 (Figure 4C). 

Finally, copy number and functional variation are extended in haplotypes IV and V; 

haplotype IV has a 7 kbp duplication including mutant nsgt2 that disrupted NSGT1, 

rendering it non-functional, and haplotype V has a large 23 kbp deletion that removes both 

NSGT1 and E8, leaving only a single mutated copy of nsgt2 (Figure 4D).

These haplotypes, along with the previous characterization of NSGT1 (Tikunov et al., 2013), 

suggest that multiple mutant alleles of nsgt1 are responsible for natural variation in guaiacol 

(and methylsalicylate) accumulation and the smoky flavor. Using gene expression and 

metabolite data from fruits of more than 300 accessions (Tieman et al., 2017; Zhu et al., 

2018), we tested associations between functional (I, II, III), coding sequence non-functional 

(IV) and deletion non-functional (V) NSGT1 haplotypes and guaiacol accumulation (see 

STAR Methods). Accessions carrying the mutant haplotypes IV and V, which emerged early 

in domestication in the SLCs (Table S5A), exhibited lower combined NSGT1/2 expression 

levels compared to accessions with functional haplotypes, with no NSGT1/2 expression 

detected in the five accessions carrying the haplotype V deletion (Figure 4E) (see STAR 

Methods). Consistently, both mutant haplotypes accumulated more guaiacol, though the 

effect from the rare haplotype V showed weak statistical significance (Figure 4F). We 

validated these findings using a new GWAS panel of 155 accessions comprised primarily of 

SP and SLC genotypes (Razifard et al., 2020). Again, both nsgt1 coding and deletion 

mutation haplotypes accumulate significantly more guaiacol than functional haplotypes 

(Figure 4G). Finally, we generated an F2 population between two SLCs segregating for 
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haplotype V and functional NSGT1, which confirmed the deletion, lacking both NSGT1 and 

E8, is associated with accumulation of both guaiacol and methylsalicylate (Figure 4H). 

Together, our results anchored two NSGT genes to the smoky GWAS QTL and show that 

multiple nsgt1 mutations largely explain natural variations of the smoky flavor. This 

example demonstrates how our high quality long-read genome assemblies can resolve 

complex haplotypes and reveal causative variants for poorly understood QTLs.

The Fruit Weight QTL fw3.2 Resulted from a Tandem Duplication of a Cytochrome P450 
Gene

A substantial increase in fruit weight was a major feature of tomato domestication(van der 

Knaap et al., 2014). The genes underlying five major fruit weight QTL have been identified, 

with the responsible mutations being either SVs or SNPs (Chakrabarti et al., 2013; Frary et 

al., 2000; Mu et al., 2017; Muños et al., 2011; Xu et al., 2015). Among these is fw3.2, which 

is strongly associated with a SNP in the promoter of the cytochrome P450 gene SlKLUH, a 

known regulator of organ size in multiple species (Anastasiou et al., 2007; Chakrabarti et al., 

2013; Miyoshi et al., 2004). The promoter SNP was proposed to account for higher (2–3 

fold) SlKLUH expression (Figure 5A), and transcriptional knockdown of this gene results in 

smaller fruits, but a causative role for the SNP was unclear.

Our panSV-genome revealed a ~50 kbp tandem duplication at the fw3.2 locus containing 

three genes including two identical copies of SlKLUH (designated fw3.2dup) (Figure 5B). 

Although SNPs in promoters can affect expression by modifying cis-regulatory elements, we 

explored whether fw3.2dup is the causative variant, with the hypothesis that an increase in 

gene copy number explains the higher expression. In support of this, our expression analyses 

showed that all three intact genes within the duplication are expressed approximately two-

fold higher in accessions carrying fw3.2dup (Figure 5C and S5A). To disentangle the effects 

of these variants on fruit weight, we generated F2 populations segregating for fw3.2dup, but 

fixed for the promoter SNP and other known fruit weight QTLs. Higher fruit weight co-

segregated with the duplication allele (Figure 5D and S5B). In contrast, there was no 

association between the promoter SNP and fruit weight in F2 populations segregating only 

for the SNP (Figure S5C and S5D).

Our results suggested that the duplication carrying SlKLUH could explain fw3.2 due to an 

increase in gene copy number, and therefore dosage. We tested this by CRISPR-Cas9 

targeting SlKLUH in the processing cultivar M82 (carrying fw3.2dup and therefore four 

functional copies of SlKLUH) with multiple gRNAs. PCR genotyping and sequencing of 

independent T0 plants showed large deletions and small indels in the target sites. The 

majority of these plants, including three confirmed to lack wild type (WT) alleles, were 

much smaller than control plants, had tiny inflorescences, and flowers that were infertile 

(Figure 5E and S5E).

Fortuitously, one fertile plant (slkluhCR T0–1) showed a weaker phenotype from having both 

WT and mutant alleles, allowing us to directly test how changes in SlKLUH dosage affect 

fruit weight. To work in an isogenic background with uniform “cherry” type fruits that 

allows for a robust assessment of fruit size, we crossed the slkluhCR T0–1 with the SP 

accession LA1589. As LA1589 has only two copies of SpKLUH (Figure 5F), the M82 x 
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LA1589 F1 isogenic hybrids have three gene copies of KLUH (2 copies SlKLUH and 1 

copy SpKLUH). These control F1 hybrids (group A) were compared with F1 progeny 

resulting from the cross between slkluhCR T0–1 and LA1589 (see STAR Methods). Several 

F1 hybrid plants that inherited the Cas9 transgene produced small organs and were infertile 

(group C), which we confirmed was due to inheritance of mutated and further trans-targeting 

of all KLUH copies (Figure S5F and S5G). Among F1 plants lacking the Cas9 transgene, a 

subset inherited two mutated alleles of SlKLUH and a single functional allele of SpKLUH 
(group B) (Figure 5F, 5G and S5H). Notably, these group B plants produced 15% smaller 

flowers and 30% smaller fruits compared to group A plants (1 vs 3 functional alleles of 

KLUH) (Figure 5H and 5I). Thus, our panSV-genome and functional genetic dissection 

using CRISPR-Cas9 genome editing show that the duplication including KLUH, and the 

corresponding increase in gene dosage and expression, underlies fw3.2.

Genetic Interactions Involving Four SVs Allowed Jointless Breeding.

We revealed thousands of genes with expression variation that could be caused by SVs. 

These variants might have little or no phenotypic consequences; however, many may be 

“cryptic”, having little or no effect on their own but causing phenotypic changes in the 

context of other variants (Paaby and Rockman, 2014; Sackton and Hartl, 2016). The 

“jointless” fruit pedicel is an important tomato harvesting trait that originated by different 

mutations from wild and domesticated accessions (Soyk et al., 2017). The jointless trait 

allows complete separation of fruits from other floral parts, and is caused by a transposon 

insertion that eliminates functional transcripts of the MADS-box transcription factor gene 

JOINTLESS2 (J2). A cryptic insertion in the related ENHANCER OF J2 (EJ2) gene reduces 

functional transcripts and causes excessive inflorescence branching with reduced fruit 

production following introduction of the jointless trait (Figure 6A). Breeders overcame this 

negative interaction and restored normal inflorescences by exploiting two natural 

“suppressor of branching” (sb) QTLs that we designated sb1 and sb3 (Soyk et al., 2019). We 

recently showed that sb3 is an 83 kbp duplication that includes ej2w, which causes a dose-

dependent increase of weak allele expression that compensates for the reduced functional 

transcripts (Figure 6A).

The cryptic sb1 locus is a partial suppressor of branching, and our previous QTL mapping 

positioned sb1 to a 6 Mbp interval on chromosome 1 (Figure 6B and 6C). We searched for 

candidate genes and focused on two neighboring MADS-box paralogs, TM3 
(Solyc01g093965) and SISTER OF TM3 (STM3, Solyc01g092950) (Figure S6A). Notably, 

STM3 showed approximately two-fold higher expression in the branched parental line (M82 

j2TE ej2W) compared to the suppressed parent (Fla.8924 j2TE ej2W) (Figure S6B). There 

were no obvious coding or regulatory mutations in this gene; however, the Heinz 4.0 

reference genome has gaps in that area. Our MAS2.0 assemblies filled the gaps and revealed 

copy number variation for STM3, with an extra copy of the gene in the branched parent due 

to a near perfect 22 kbp tandem duplication (Figure 6D and S6C). Consistently, genotypes 

with four copies of STM3 showed two-fold higher expression compared to two copy 

genotypes (Figure 6E).
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To test if lower dosage and expression from a single STM3 gene is responsible for the sb1 
QTL, we used CRISPR-Cas9 to generate mutant alleles disrupting the complex STM3-TM3 
locus. A CRISPR construct with two gRNAs gave small indel mutations in all copies of the 

identical TM3/STM3 exon 2 (sb1CR−1), while a second construct with four gRNAs deleted 

the entire locus (sb1CR-del) (Figure 6F and S6D). Both sb1CR−1 and sb1CR-del plants were 

slightly late flowering, but their inflorescences were normal (Figure S6E). We then 

introduced each allele into the highly branched M82 j2TE ej2w double mutants and identified 

j2TE ej2w sb1CR−1 and j2TE ej2w sb1CR-del triple mutants from segregating F2 populations. 

Importantly, all of these plants (0 functional copies of STM3) showed practically complete 

suppression of branching compared to j2TE ej2w double mutants (4 functional copies of 

STM3) (Figure 6F, 6G and S6F). Moreover, j2TE ej2w plants that were heterozygous for the 

CRISPR alleles (2 functional copies of STM3) showed partial suppression of inflorescence 

branching, mimicking the effect of sb1 (e.g. Fla.8924, 2 functional copies of STM3) (Figure 

6F, 6G and S6F). Thus, a single-copy STM3, and the corresponding lower gene expression, 

explains sb1.

Short-read based genotyping of more than 500 accessions spanning tomato taxonomic 

groups showed that the duplication of STM3 arose early in domestication, but the ancestral 

single gene has remained common in tomato germplasm (Figure 6H and S6G) (Table S5B). 

In fact, the majority of vintage and modern fresh-market accessions have single-copy STM3, 

indicating that a lower dosage and expression level provided partial suppression of 

branching upon the introduction of j2TE into lines carrying ej2w. The duplication of ej2w, 

and the resulting increased expression of this weak allele, arose later and was likely selected 

to achieve complete suppression of branching. In support, all jointless fresh market 

accessions carry both sb1 (single-copy STM3) and sb3 (duplicated ej2w) (Figure 6I). In 

contrast, breeding for jointless in processing tomato accessions was achieved by selecting 

against ej2w (Figure 6I). Consistent with this, sb1 and SB1 (duplicated STM3) are present at 

equal frequencies in processing tomato accessions, maintaining cryptic variation in the 

context of inflorescence development (Figure 6I and 6J). Our analysis reveals STM3 as a 

new regulator of tomato inflorescence development, and the dissection of sb1 shows that the 

path of jointless breeding depended on four SVs affecting the expression levels of three 

MADS-box genes, and further illustrate how functional consequences of structural variation 

can remain hidden.

DISCUSSION

Raising the Curtain on Structural Variation

Advancements in genome sequencing technologies continue to revolutionize biology by 

providing an increasingly comprehensive view of the genetic changes underlying phenotypic 

diversity. The recent development of high-throughput Oxford Nanopore long-read 

sequencing has provided the opportunity to rapidly reveal the breadth and depth of 

previously hidden SVs in complex genomes and across populations (Beyter et al., 2019). 

Taking advantage of the expansive genetic diversity of wild and domesticated tomatoes, we 

sequenced a collection of 100 accessions and resolved hundreds of thousands of SVs. These 

SVs were shaped predominately by transposons, are abundant across all chromosomes, 
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frequently reside within or in close proximity to genes, are often associated with expression, 

and likely contribute to phenotypic variation. Integrating our panSV-genome, de novo 
assemblies, and expression data with genome-editing enabled us to resolve and functionally 

link SVs to three major domestication and breeding traits. The smoky and sb1 loci in 

particular demonstrate how these resources were essential to resolve complex haplotypes 

underlying QTLs where previous assemblies were thwarted by repeats, especially highly 

similar long and local duplications. Moreover, our analyses of the smoky and fw3.2 loci 

show that presumed causative variation may be incomplete or incorrect. More broadly, most 

QTLs discovered by GWAS in model and crop plants reside in regions with multiple 

candidate genes and variants. In addition to improving GWAS statistical power, long-read 

based discovery of abundant, sometimes complex, SVs, may immediately pinpoint high 

confidence candidate genes and variants for functional analyses. Similar progress in 

understanding functional impacts of SVs will likely emerge from generating population-

scale panSV-genomes in other species (Danilevicz et al., 2020; Song et al., 2020; Sun et al., 

2018; Yang et al., 2019; Zhou et al., 2019).

Duplications, Gene Copy Number Variation, and Dose-dependent Phenotypes

Our pan-SV genome revealed that fw3.2 and sb1 were both associated with previously 

hidden duplications. In both plants and animals, duplications that alter copy number and 

expression of dosage-sensitive genes were found to modify phenotypic diversity, including 

traits important in domestication and breeding (Lye and Purugganan, 2019). Large tandem 

recent duplications are one of the most challenging SVs to resolve, and even when a strong 

candidate gene is present, as with SlKLUH in the fw3.2 duplication, directly testing how 

modified gene dosage and expression impacts quantitative variation is challenging. Enabled 

by CRISPR-Cas9 genome editing, we generated plants with different gene copy numbers, 

and therefore dosages, for SlKLUH and STM3 in the fw3.2 and SB1 duplications, 

respectively. Establishing a dosage series of isogenic genotypes not only confirmed the 

causality of the duplications and the specific genes, but also directly demonstrated their 

quantitative impact. In particular, heterozygotes of sb1CR alleles (2 copies of STM3 on 1 

chromosome) suppressed inflorescence branching of j2TE ej2W plants to a similar degree as 

the natural dosage effect from single-copy STM3 (1 copy of STM3 on each chromosome). 

Similarly, reducing functional KLUH copy number from three to one recapitulated the 

natural quantitative effect on fruit size of having four or two copies. Manipulating gene copy 

number by genome editing now provides a way to systematically interrogate and explore 

dosage to phenotype relationships (Veitia et al., 2013), which will be important for guiding 

the design and engineering of specific dosages for crop improvement.

Cis-Regulatory SVs and Quantitative Variation

Our panSV-genome showed that the majority of gene-associated SVs are in cis-regulatory 

regions, and many are associated with subtle changes in expression. Expanding long-read 

sequencing and expression analyses to a wider population will reveal even more such SVs. 

This raises the question to what extent cis-regulatory SVs affect phenotypes. For genes that 

are dosage-sensitive, such as those encoding components of molecular complexes or 

involved in signaling networks, a subtle change in expression could alter phenotype (Veitia 

et al., 2013). However, the magnitude of phenotypic effect may depend on a threshold 
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change in expression and could be weak, making detection challenging in population 

genetics studies where other mutations and alleles influence trait variation. Genome editing 

could be used to study the effects of gene-associated SVs, by recreating specific mutations 

or mimicking the expression effects of natural cis-regulatory SVs in isogenic backgrounds. 

Our previous work characterizing collections of CRISPR-Cas9 engineered promoter alleles 

in multiple developmental genes showed that deletion and inversion SVs can affect 

expression and phenotypic outputs in various, often unpredictable, ways (Rodríguez-Leal et 

al., 2017). As SVs could be cryptic, a more powerful and informative approach would 

therefore be to combine natural cis-regulatory SVs with engineered SVs in the same 

promoter or with engineered mutations in related, potentially redundant genes. Resolving the 

functional impacts of SVs, particularly those whose effects are subtle or cryptic, will 

advance our understanding of genotype-to-phenotype relationships and facilitate the 

exploitation of natural and engineered SVs in crop improvement.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Zachary B. Lippman 

(lippman@cshl.edu).

Materials Availability—This study did not generate new unique reagents. Plasmids and 

transgenic plants generated in this study are available from the Lead Contact with a 

completed Materials Transfer Agreement.

Data and Code Availability—All sequencing data generated in this study have been 

deposited at the Sequence Read Archive (http://ncbi.nlm.nih.gov/sra) under BioProject 

PRJNA557253. Github repositories for software presented in this work are listed as follows: 

https://github.com/malonge/DupCheck, https://github.com/mkirsche/Jasmine, https://

github.com/srividya22/geneLift, https://github.com/malonge/CallIntrogressions. All genome 

assemblies/annotations and SV VCF files are available at the Solanaceae Genomics Network 

(https://solgenomics.net/projects/tomato100).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and growth conditions—A hundred tomato accessions were collected 

from TGRC (Tomato Genetics Resource Center), USDA (United State Department of 

Agriculture), University of Florida, EU-SOL (The European Union-Solanaceae project), 

INRA (The National Institute for Agricultural Research), IVF-CAAS (The Institute of 

Vegetables and Flowers, Chinese Academy of Agricultural Science) and our own stocks. 

The landrace collection (S. lycopersicum var. cerasiforme) was from the seed stocks of E. 

van der Knaap. Seeds of S. pimpinellifolium (LA1589), S. lycopersicum cv. M82 (LA3475), 

and j2TE ej2w mutant are from Lippman lab. All accessions used in this study are listed in 

Table S1B.
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Seeds were either germinated on moistened filter paper at 28 °C in the dark or directly sown 

in soil in 96-cell plastic flats. Plants were grown under long-day conditions (16-h light/8-h 

dark) in a greenhouse under natural light supplemented with artificial light from high-

pressure sodium bulbs (~250 μmol m−2 s−1). Daytime and nighttime temperatures were 26–

28 °C and 18–20 °C, respectively, with a relative humidity of 40–60%.

Quantification of fruit guaiacol and methylsalicylate contents in this study were conducted 

from plants grown in North Florida Research and Education Center-Suwannee Valley near 

Live Oak, Florida. Analyses of fruit weight in F2 segregation populations were conducted on 

plants grown at the University of Georgia (Athens, GA). Analyses of floral organ size, fruit 

weight of F1 hybrid plants and inflorescence branching in F4 generation were conducted on 

plants grown in the fields at Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, 

NY. Seeds were germinated in 96-cell flats and grown for 32 d in the greenhouse before 

being transplanted to the field. Plants were grown under drip irrigation and standard 

fertilizer regimes. Analyses of inflorescence branching in two sbCR j2TE ej2W F2 

populations were conducted on plants grown in the greenhouses at CSHL and Weizmann 

Institute of Science, Israel.

METHOD DETAILS

Short-Read Structural Variant Calling and Sample Selection—Publicly available 

short-read data came from a total of four sources (Aflitos et al., 2014; Lin et al., 2014; 

Tieman et al., 2017; Zhu et al., 2018). Phylogenetic trees derived from some of these data 

have been adapted from their original publication and are shown in Figure 1A, S1A and S1B 

(Razifard et al., 2020; Soyk et al., 2019). Phylogenetic classifications (branch coloring) were 

manually curated according to these previous phylogenetic studies and based on knowledge 

of tomato types and breeding classes. First, the raw reads were trimmed with Trimmomatic 

(v0.32, LEADING:30 TRAILING:30 MINLEN:75 TOPHRED33) (Bolger et al., 2014b). 

Reads we aligned to the SL4.0 reference genome with bwa mem (v0.7.10-r789, -M) 

(Hosmani et al., 2019; Li and Durbin, 2009) Alignments were then compressed, sorted and 

indexed with samtools view, sort, and index respectively (v0.1.19–44428cd) (Li et al., 2009). 

Next, PCR duplicates were marked with Picard (v1.126) (https://broadinstitute.github.io/

picard/). We removed any samples that had less than 5X alignment coverage or any samples 

that had a duplication rate >= 20%. If a given accession had more than one associated BAM 

file, they were merged with samtools.

An ensemble approach was used to call SVs from these short-read alignments. We and 

others have found that a consensus among multiple short-read SV callers can achieve higher 

precision without substantially decreasing sensitivity (Zarate et al., 2018). We used 3 

independent tools to call SVs: Delly (v0.7.3, -q 20), Lumpy (v0.2.13, -mw 4 -tt 0.0) and 

Manta (v1.0.3, -j 15 -m local -g 30) (Chen et al., 2016; Layer et al., 2014; Rausch et al., 

2012). For each accession, SV call sets from Delly, Lumpy and Manta were then merged 

with SURVIVOR (v1.0.7, minimum distance of 1kbp, types must match, and a minimum 

length of 10bp) (Jeffares et al., 2017). Only SVs called by at least 2 of the 3 tools were 

retained. In total, we produced short-read SV calls for 847 accessions.
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We then used SVCollector to select our first set of accessions for long-read sequencing 

(Sedlazeck et al., 2018b). For SVCollector, we further filtered short-read SV calls to only 

include SVs that intersect genes (+/− 5 kbp of flanking sequence). These filtered SVs were 

then used as input into SVCollector (greedy), and the top-ranked SLL (29) and SLC (22) 

accessions for which we had available seeds were selected (Table S1A). Aside from these 51 

accessions selected with SVCollector, we selected an additional 49 accessions for long-read 

sequencing. These included SLL, SP, GAL and CHE accessions which were not included in 

the short-read SV analysis. A list of all accessions and their associated SVCollector ranks 

(where applicable) is available in Table S1A.

Tissue collection and high molecular weight DNA extraction—For extraction of 

high molecular weight DNA, young leaves were collected from 21-day-old light-grown 

seedlings. Prior to tissue collection, seedlings were etiolated in complete darkness for 48 h. 

Flash-frozen plant tissue was ground using a mortar and pestle and extracted in four volumes 

of ice-cold extraction buffer 1 (0.4 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, and 5 

mM 2-mercaptoethanol). Extracts were briefly vortexed, incubated on ice for 15 min, and 

filtered twice through a single layer of Miracloth (Millipore Sigma). Filtrates were 

centrifuged at 4000 rpm for 20 min at 4 °C, and pellets were gently resuspended in 1 ml of 

extraction buffer 2 (0.25 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 1% Triton 

X-100, and 5 mM 2-mercaptoetanol). Crude nuclear pellets were collected by centrifugation 

at 12,000g for 10 min at 4 °C and washed by resuspension in 1 ml of extraction buffer 2 

followed by centrifugation at 12,000g for 10 min at 4 °C. Nuclear pellets were re-suspended 

in 500 μl of extraction buffer 3 (1.7 M sucrose, 10 mM Tris-HCl pH 8, 0.15% Triton X-100, 

2 mM MgCl2, and 5 mM 2-mercaptoethanol), layered over 500 μl extraction buffer 3, and 

centrifuged for 30 min at 16,000g at 4 °C. The nuclei were resuspended in 2.5 ml of nuclei 

lysis buffer (0.2 M Tris pH 7.5, 2 M NaCl, 50 mM EDTA, and 55 mM CTAB) and 1 ml of 

5% Sarkosyl solution and incubated at 60 °C for 30 min. To extract DNA, nuclear extracts 

were gently mixed with 8.5 ml of chloroform/isoamyl alcohol solution (24:1) and slowly 

rotated for 15 min. After centrifugation at 4000 rpm for 20 min, ~ 3 ml of aqueous phase 

was transferred to new tubes and mixed with 300 μl of 3 M NaOAC and 6.6 ml of ice-cold 

ethanol. Precipitated DNA strands were transferred to new 1.5 ml tubes and washed twice 

with ice-cold 80% ethanol. Dried DNA strands were dissolved in 100 μl of elution buffer (10 

mM Tris-HCl, pH 8.5) overnight at 4 °C. Quality, quantity, and molecular size of DNA 

samples were assessed using Nanodrop (Thermofisher), Qbit (Thermofisher), and pulsed-

field gel electrophoresis (CHEF Mapper XA System, Biorad) according to the 

manufacturer’s instructions.

Short-read DNA sequencing—Aside from the publicly available data used for short-

read-based SV calling, we produced additional short-read data in-house for use in genome 

assembly for all but 2 (M82 and Fla.8924) MAS2.0 accessions. Short-read sequencing was 

performed according to Soyk et al. Nature Plants, 2019 (Soyk et al., 2019). In brief, libraries 

were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 μg genomic DNA 

sheared to 550 bp insert size. DNA libraries were sequenced on an Illumina NextSeq500 

platform at the Cold Spring Harbor Laboratory Genome Center.
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Long-read DNA Sequencing—Libraries for Oxford Nanopore genome sequencing were 

constructed using high-quality HMW DNA. DNA was sheared to ~20 kb using Covaris g-

tubes or ~75 kb using Megarupter (Diagenode) and purified with a 1× AMPure XP bead 

cleanup. Next, DNA size selection was performed using the Short Read Eliminator kit 

(Circulomics). Library preparation was performed with 1.5 μg of size-selected HMW DNA, 

using the Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore Technologies) 

following manufacturer’s guidelines. Libraries were loaded on MinION or PromethION 

flow cells and sequenced according to standard protocols. Runs were basecalled with either 

Albacore v2.3 or with Guppy v2.1 through 3.2. Basecalling was performed using the 

PromethION r9.4.1 model, with recommended settings for the SQK-LSK109 kit and the 

FLO-PRO001 or FLO-PRO002 flowcells. At least 40G of data with mean read quality above 

or equal to Q7 were produced for each sample. Statistics describing the long-reads for all 

100 accessions can be found in Table S1C.

Long-read Structural Variant Calling, Filtering, and Merging—A diagram 

describing the SV calling pipeline is depicted in Figure S1C. For each of our 100 accessions 

selected for long-read sequencing, we aligned a maximum of 60X coverage to the SL4.0 

reference genome. The SL4.0 reference genome is a recently published preprint that 

improves to the previous (SL3.0) tomato reference genome (Hosmani et al., 2019). This 

PacBio long-reads assembled genome is the most complete and accurate representation of 

the Heinz 1706 reference genome to date. ITAG4.0, the reference gene models used in this 

study, are the accompanying reference gene annotation set. To call SVs relative to this 

reference, we aligned reads with NGMLR (v0.2.7, -x ont --bam-fix) and called SVs with 

Sniffles (v1.0.11)(--cluster --min_homo_af 0.7 -n 1000) (Sedlazeck et al., 2018a). As is 

convention, SV labels (insertions, deletions, duplications, inversions and translocations) are 

defined with respect to this single reference genome and do not necessarily define the 

underlying mutations causing the genetic variation. We further note that long insertions are 

somewhat underrepresented since Sniffles’ power to call insertions is bounded by read-

length. For read sets exceeding 60X coverage, the longest set of reads achieving 60X was 

used. We then filtered SVs to remove potentially spurious calls. First, we identified regions 

of the reference genome prone to producing false SV calls and removed any SVs 

intersecting these regions (a total of 2,961,888 bp of the SL4.0 reference genome). To define 

these regions, we simulated ONT reads using SURVIVOR from the SL4.0 reference genome 

and called SVs with Sniffles. We performed this simulation a total of 9 times and merged the 

9 VCF files with SURVIVOR (minimum distance of 1kbp, types must match, and a 

minimum length of 50bp). We then masked any region of the reference implicated in any SV 

from this simulation, including 2.5 kbp of flanking sequence. Next, we removed any SVs 

mapping to the ambiguous reference “chromosome 0” (SL4.0ch00). We also removed SVs 

larger than 100 kbp or SVs with a “0/0” genotype.

Using this same process described above, we also aligned Heinz 1706 PacBio reads to the 

SL4.0 reference genome to assess the propensity of the reference genome to produce false 

positives (Hosmani et al., 2019). We called only 75 from these alignments, suggesting that 

spurious false positives due to reference bias in our panSV-genome are rare.
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For some accessions, duplications were filtered by observing short-read coverage across 

putative duplications. To do this, we wrote a custom tool similar to CNVnator’s genotyping 

functionality (Abyzov et al., 2011). First, for each accession, we calculated short-read 

coverage in non-overlapping 200bp windows of the reference genome using bedtools 

(Quinlan and Hall, 2010). The same reads and alignments as described in “Short-Read 

Structural Variant Calling and Sample Selection” were used here. Coverage was then 

corrected for GC bias using a custom version of the algorithm outlined in Yoon et al., 2019 

(Yoon et al., 2009). The global mean coverage was calculated by first removing outliers 

(using the 1.5 x IQR rule) then fitting a Gaussian distribution to the coverages using SciPy 

(stats.norm.fit) (Virtanen et al., 2020). Finally, in order to verify a duplication, we required 

that the coverage roughly spanning the duplication boundaries must be greater than 1.75X 

the global mean coverage. Only duplications at least 1 kbp in size were considered. In order 

to calculate the coverage of the duplicated region, adjacent 200 bp windows were merged 

together via averaging to obtain 1 window close to the true duplication size. The coverage 

for this window, aligned to the original duplication coordinates (rounded to the nearest 

200bp interval) was then compared to the global mean coverage. The above duplication 

filtering was only performed on samples for which we had short-read data available. The 

source code for duplication filtering can be found on GitHub (https://github.com/malonge/

DupCheck).

By default, Sniffles provides supporting reads for each insertion call but reports the insertion 

sequence from a single noisy read. To associate each insertion with an accurate sequence, we 

used Iris (v1.0.1)(https://github.com/mkirsche/Iris). Iris extracts the reads supporting the 

insertion sequencing using samtools, computes their consensus using Racon (Vaser et al., 

2017), and then replaces the original insertion sequence with the polished consensus. 

Finally, we used Jasmine to merge SVs across all accessions (v1.0.1, min_support=1 

max_dist=500 k_jaccard=8 min_seq_id=0.25 spec_len=30)(see “Merging SVs with 

Jasmine” below). We used the default distance metric for merging, which is Euclidean 

distance. Briefly, 2-dimensional coordinates for each SV are given by (SV start position, SV 

length). SVs may be candidates for merging if their Euclidean distance between these 2D 

points is <= 500. The primary SV set was merged across all 100 accessions, though we also 

produced group-specific merged call sets for SLL, SLC, and SP using the same parameters.

Merging SVs with Jasmine—We developed a new SV merging tool called Jasmine, 

which is available open-source on GitHub (https://github.com/mkirsche/Jasmine). Jasmine 

constructs a graph G in which nodes represent SVs from individual samples. Edges connect 

pairs of SVs that may be merged based on criteria such as the distance between their 

breakpoints, and in the case of insertions, their sequence similarity. Next, the variants are 

partitioned based on reference sequence, SV type, and strand. In order to compute the best 

possible set of SV merges for a given group, Jasmine computes a forest on the graph which 

has a few key properties: 1) The edges in the forest are a subset of the edges in G, 2) No tree 

in the forest contains multiple nodes representing SVs from the same sample, 3) There are 

no unused edges in G which can be added to the forest while maintaining the previous 

properties, and 4) The sum of the breakpoint distances of edges in the forest is minimized. 

To do this, Jasmine uses a variant of Kruskal’s algorithm for computing minimum spanning 
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trees. By considering the edges in non-decreasing order of edge weight, Jasmine greedily 

adds edges to the forest if they will not violate any of the required properties. To avoid 

storing this potentially very large network in memory, the network is computed dynamically 

by finding low-weight edges for each node with a KD-tree. Initially, a small constant 

number of edges incident to each node is stored, and as these are processed in increasing 

order of edge weight, new edges to process are added to the set by finding the next nearest 

neighbors for each node. As a result of this optimization, Jasmine is efficient in terms of 

both memory and runtime and can merge the entire set of over 1.7 million tomato SV calls 

in less than ten minutes on a single thread of a laptop.

We tested the efficacy of Jasmine on a simulated dataset. In this experiment, we use our 

merged tomato panSV-genome as our “ground truth”. This provides us with a realistic 

distribution of allele frequencies, SV types, and SV genomic positions. From this merged 

SV set, we then derived 100 individual SV sets, essentially reversing the merging process. 

When assigning variants to their original individual set, we added noise to the SV genomic 

position. The noise was modeled with a uniform distribution centered at 50 bp for both the 

start positions and lengths. In addition, the sequences of insertions were changed to model 

10% sequencing error. Then, we reran Jasmine (using the same parameters as those used for 

our panSV-genome) on these noisy individual call sets and compared the results to the 

original merging. 98.98% of the 19.4 million variant pairs which were merged initially were 

also merged in the simulated results, while only 0.93% of the merged pairs from the 

simulation were unmerged in the original dataset. We also found that of the 238k variant 

calls which originally consisted of merged variants from multiple samples, 97.78% of them 

contained exactly the same sets of variants after the simulation. The added noise to the 

variant boundaries caused some previously merged variants to exceed the distance threshold. 

Also, some originally close variants in the same sample traded places during the merging 

process. This analysis shows that the method is highly robust to variation in the positions 

and lengths of structural variants across samples.

MAS2.0 Genome Assembly—We established de novo genome assemblies and 

associated gene and repeat annotations for a subset of the 100 accessions sequenced for SV 

analysis. This included the PAS014479 (SP), BGV006775 (SP), BGV006865(SLC), 

BGV007989 (SLC), BGV007931 (SLC), PI303721 (SLL), PI169588 (SLL), EA00990 

(SLL), LYC1410 (SLL), Floradade (SLL), EA00371 (SLL), M82 (SLL), Fla.8924 (SLL), 

and Brandywine (SLL) accessions. Collectively, we refer to these assemblies and 

annotations as “MAS2.0”, and they are freely available to download at the Sol Genomics 

Network (https://solgenomics.net/projects/tomato100).

A diagram describing the assembly pipeline is depicted in Figure S2A. A hybrid assembly 

was performed for each accession using the MaSuRCA assembler (v3.3.3 or v3.3.4) (Zimin 

et al., 2017). Sequencing data used for assembly are described in “Short-read DNA 

sequencing” and “Long-read DNA sequencing” and Table S2D. M82 and Fla.8924 were not 

sequenced in-house for this study, but rather come from a previous publication (Alonge et 

al., 2019). As is recommended by the MaSuRCA documentation, no preprocessing was done 

on any of the sequencing data. For the ONT reads, we used the longest 35X coverage of 

reads with an average Phred quality score of at least 7. Library insert sizes for all Illumina 
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data was set to 500 +/− 50. All assemblies employed the Flye unitigger during the final stage 

of MaSuRCA, except M82, which used default unitigging settings. All other MaSuRCA 

parameters were set to default values. The MaSuRCA draft assembly stats are found in Table 

S2A.

Each set of initial draft contigs underwent two rounds of short-read polishing with POLCA 

(MaSuRCA v3.3.4)(Zimin and Salzberg, 2019). As input for each of the two rounds of 

polishing, we used seqtk to randomly sample ⅔ of the Illumina data used during assembly 

(https://github.com/lh3/seqtk). After polishing, we screened each set of contigs for bacterial 

contamination by aligning them to the tomato SL4.0 reference and a bacterial reference 

genome. Every RefSeq bacterial genome, downloaded on October 1st, 2019, comprised our 

bacterial reference. Contigs were mapped to both references with Minimap2 (-k19 -w19) 

(Li, 2018). Any contig covered more by bacterial alignments than by tomato alignments 

were deemed contaminated and removed from the assembly. Only the BGV006865 and 

PI303721 accessions contained contaminated contigs. Finally, polished and screened contigs 

were scaffolded according to the SL4.0 reference genome using RaGOO (v1.1) (-T corr) 

(Alonge et al., 2019). The MaSuRCA mega-reads associated with the initial assemblies were 

used for misassembly correction. “Chromosome 0” of the SL4.0 was not considered during 

RaGOO scaffolding (-e). We generated dotplots for each assembly by aligning the final 

pseudomolecules to the SL4.0 reference genome using nucmer (-l 100 -c 500) and finally 

plotting with mummerplot (--fat --layout) (Figures S2C–S2P) (Kurtz et al., 2004). Finally, 

we used BUSCO to assess genome completeness (v3.0.2, -l solanaceae_odb10 -m genome -c 

10 -sp tomato)(Table S2B) (Simão et al., 2015).

To observe SV concordance between our panSV-genome and the MAS2.0 assemblies, we 

called SVs from the assemblies using two techniques. First, we aligned the MAS2.0 

assemblies to the SL4.0 reference genome using Nucmer (v3.1, -maxmatch -l 100 -c 500) 

and called SVs with Assemblytics (unique_length_required=500 min_size=15, 

max_size=100500)(Nattestad et al., 2016). Additionally, we simulated 60X coverage of 

perfect 25 kbp reads from the MAS2.0 assemblies and called SVs with NGMLR (v0.2.7, -x 

ont –bam-fix) and Sniffles (v1.0.11, -s 2 -l 15 –cluster –min_homo_af 0.7 -n 1000) with 

respect to the SL4.0 reference genome. Combining the Assemblytics and Sniffles MAS2.0 

SV sets, we observed the pairwise SV concordance with the corresponding 14 accessions in 

our panSV-genome. The % SV overlap for each of the 14 accessions is as follows: 

BGV006775: 95.5571, BGV006865: 94.5002, BGV007931: 95.8251, BGV007989: 

91.8735, Brandywine: 91.1921, EA00371: 87.8088, EA00990: 86.9073, Fla.8924: 89.4226, 

Floradade: 84.7832, LYC1410: 93.3863, M82: 90.3600, PAS014479: 92.8686, PI169588: 

88.5430, PI303721: 70.9839.

We note that we do not expect perfect overlap between the read-mapping and assembly-

based SV calls, since both have unique fallibilities and biases. For example, larger variants 

found with one approach may be broken into multiple smaller variants found by the other 

approach. Or, the exact position of variants may shift within genomic repetitive elements. 

Also, SVs in regions of the genome that fail to assemble may still be detected by aligning 

reads to a reference genome. Furthermore, expected variability in nanopore sequencing, 

along with other factors, likely contributes to the between accession variation that we 
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observe. Broadly, an average overlap of 90% is a positive indication of SV accuracy and data 

quality.

MAS2.0 Gene Annotation—We used a “lift-over” approach to annotating the MAS2.0 

assemblies with gene models. Along with the tomato reference ITAG4.0 gene models, our 

reference gene model set included previously published “pan-genome” genes which may be 

missing from ITAG4.0 but present in our assemblies (Gao et al., 2019). Gene models were 

lifted-over onto each of the 14 MAS2.0 assemblies with geneLift (v1.1, -c 90 -i 95) (https://

github.com/srividya22/geneLift). Briefly, geneLift maps reference cDNA sequences to target 

assemblies using GMAP and Minimap2 and retains alignments with at least 90% coverage 

and 95% identity (Wu et al., 2016). The remaining non-overlapping GMAP alignments 

constitute the initial gene models, which are then supplemented by Minimap2 alignments to 

unannotated regions providing additional non-redundant gene models. Gene IDs reported by 

geneLift match the reference gene IDs and any gene duplications reported have an added 

suffix “-c” followed by the respective copy number of the gene to make them unique. 

Annotated “pan-genome” genes can be distinguished by a “TomatoPan” gene ID prefix. The 

geneLift statistics for each assembly can be found in Table S2C.

MAS 2.0 and SV Repeat Annotation—We used REPET to annotate MAS2.0 

assemblies and panSV-genome insertion/deletion sequences with repeats (Flutre et al., 

2011). From each MAS2.0 genome assembly, we built a sub-genome by selecting the 

longest contigs up to a cumulative size ranging 360–380 Mbp. This allowed us to sample a 

large portion of the genome while keeping the downstream computation tractable (Jouffroy 

et al., 2016). Each sub-genome was used to generate libraries of consensus sequences that 

are representative of repeats present therein using the TEdenovo pipeline from the REPET 

package v2.4 (parameters were set to consider repeats with at least 5 copies). The libraries 

produced were filtered to keep only those sequences that are found at least once as a full-

length copy in the respective sub-genomes. Each resulting library of consensus sequences 

was then used as query for annotation of respective whole genomes using the TEannot 

pipeline from the REPET package v2.4. The library of consensus sequences was classified 

using PASTEC followed by semi-manual curation (Hoede et al., 2014).

For the annotation of insertions and deletions, the filtered consensus libraries obtained from 

ten of the 14 MAS2.0 assemblies (the first 10 to be completed) were pooled and appended to 

those from SL4.0 which were generated previously using the protocol described above. This 

combined library was then used as query for whole genome annotation by TEannot using 

default settings.

PI129033 NSGT Local Assembly—None of our 14 MAS2.0 assemblies contained the 

NSGT deletion allele described in “New Reference Genomes Resolve Multiple Haplotypes 

for the “Smoky” Volatile Locus”. Therefore, we performed a local assembly of the NSGT 
locus in PI129033, a sample known to carry this deletion allele. Using the same long-read 

alignments as described in “Long-read Structural Variant Calling, Filtering, and Merging”, 

we extracted PI129033 reads that aligned to the NSGT locus (SL4.0ch09:65168601–

65653800) using samtools view. These reads were then error corrected with Canu 

(corOutCoverage=999, genomeSize=475k) and assembled with Flye (--nano-corr, --genome-
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size 475k) (Kolmogorov et al., 2019; Koren et al., 2017). Flye produced a single contig 

534,847 bp in length representing the NSGT locus in PI129033. We next sought to polish 

this contig with short reads to produce an accurate representation of the locus. To do this, we 

first placed the contig into the SL4.0 reference genome in order to provide a suitable 

reference genome for short-read mapping. This avoids the potential poor quality of mapping 

when aligning WGS reads to a small segment of the genome. To create this pseudo-

reference genome, we first started with the SL4.0 genome and replaced the NSGT locus 

(SL4.0ch09:65168601–65653800) with our local assembly. We also added 100bp gaps to the 

flanks of the inserted contig so that we could identify and retrieve it after polishing. We 

aligned short reads to this pseudo-reference using bwa and performed two rounds of short-

read polishing with Racon (-u). Finally, we removed the local assembly from the pseudo-

reference using samtools faidx and aligned it with Minimap2 (-ax asm5) to the SL4.0 

reference genome to precisely define the deletion coordinates.

SV Hotspot and Introgression Analysis—For each accession, we counted the number 

of SVs in non-overlapping 1Mpb windows of the reference genome. Bins with a relatively 

large number of SVs are informally referred to as “SV hotspots”. An example distribution of 

SV frequency in 1 Mbp bins for M82 is shown in Figure S3M. SV frequency, shown in 

heatmap and circos form, is depicted in Figure 2A and S3A–S3L (http://omgenomics.com/

circa/). Our observation of “hotspots” usually results from visual interpretation of these 

plots. SV hotspot heatmap rows are ordered within each phylogenetic group (GAL, CHE, 

SP, SLC, SLL) by the R “heatmap.2” default row ordering. These ordered groups were then 

concatenated to produce the final heatmap.

Since we hypothesized that introgression from wild donors could account for many of the 

observed SLL hotspots, we developed a technique to compare accessions to look for 

genomic regions of SV similarity. The custom Python code used for this task can be found in 

a GitHub repository (https://github.com/malonge/CallIntrogressions). The script 

“get_distances.py” compares SLL accessions to one or many accessions from any other 

“comparison” group (SP, SLC, GAL, or CHE). The algorithm considers successive 1Mpb 

windows of the reference genome. For each SLL accession, its set of SVs in a given window 

is compared to the set of SVs in all accessions in the comparison group in the same window. 

To compare two sets of SVs, we calculate the Jaccard similarity, requiring at least 5 SVs in 

both SV sets. The script then outputs, for each 1 Mpb window and for each SLL accession, 

the maximum Jaccard Similarity with any other comparison accession. If all comparisons for 

a given window had fewer than 5 SVs in either SV set, an “NA” value is reported.

We calculated similarity for all 45 SLL accessions at the same time by comparing each 

accession to each non-SLL accession. Comparisons against GAL and CHE did not yield any 

candidate introgressions from these groups, so we did not display those results. Comparisons 

against SP and SLC, which both show many regions of putative admixture/introgression 

from donors of these groups, are shown in Figure S3A–S3L. Tables S3A–S3L report the 

comparison accessions which yielded the maximum Jaccard similarity for each window 

depicted in Figures S3A–S3L. In Figures 2D and 2E, we also show an instance where we 

compare SLL accessions against a single SP comparison accession (LA1589).

Alonge et al. Page 21

Cell. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://omgenomics.com/circa/
http://omgenomics.com/circa/
https://github.com/malonge/CallIntrogressions


SV Genomic Feature Annotation—Throughout the manuscript, we describe various 

relationships between SVs and other genomic features such as genes. Generally, we 

annotated our panSV-genome with genomic features using vcfanno (Pedersen et al., 2016). 

We define an “annotation” as the association of a particular SV with particular feature IDs 

(such as a gene ID) based on some relationship. vcfanno annotates SVs by finding their 

intersection (overlap) with genomic feature intervals. Accordingly, some of the annotations 

reported in the manuscript can be directly interpreted from vcfanno, such as “Insertions in 

exons”, or “Deletions overlapping 5 kbp upstream”, since these can be directly interpreted 

from feature intersection. Other annotations, such as SV containment of genes, required 

some combination of intersection calculations. For example, to detect genes contained by 

SVs, we first checked if the gene start and end positions intersected a given SV. If that SV 

intersected both the start and end of a gene, it contains that gene.

We ultimately produced many SV/feature annotation classes which are explained in more 

detail here. In any applicable annotation, “upstream” or “downstream” refers to the 5’ or 3’ 

flanking regions of genes, respectively. In supplemental material, these “upstream” and 

“downstream” regions may also be referred to as “5’ UTR” and “3’ UTR” respectively. 

“Insertions in exons”, “Insertions in introns”, “Insertions in 5 kbp downstream”, “Insertions 

in 5 kbp upstream”, “Deletions overlapping 5 kbp upstream”, and “Deletions overlapping 5 

kbp downstream” are self-explanatory. “Duplications” are duplications that contain entire 

genes. “Deletions of exons” are deletions that delete at least one entire CDS exon of a gene, 

but do not delete the entire gene. Finally, “Deletions of CDS start” are deletions that contain 

50 bp upstream and downstream of a CDS start site.

The Impact of SVs on Gene Expression—Data analysis was performed in R using 

custom scripts. In each tissue (apex, cotyledon and root), gene expression was averaged over 

the biological replicates in each accession (23 accessions with 3 replicates each in apex and 

root, and 22 accessions with 4 replicates each in cotyledon), and the genes with average 

expression count of at least 1 across the accessions were retained for further analysis. We 

averaged read counts across replicates to effectively treat the replicate expression as 

estimating a fixed effect. These gene expression averages within each accession/tissue were 

ranked and standardized so that the values were constrained between 0 and 1. While most of 

our analyses operate on these rank data, in order to provide estimates of fold change, we 

used the average expression profiles across replicates directly. These values were normalized 

by division of total read count of each accession and then fold changes were calculated 

across these normalized values between accessions with and without the SV.

Are SV-associated genes differentially expressed?: We first defined a list of SV-gene pairs 

based on SV annotations (see SV Genomic Feature Annotation). We filtered this list to only 

include SV-gene pairs which had the SV present in at least 5 and absent in at least 5 of the 

accessions for which we had RNA-seq data. For each of the SV-gene pairs, the accessions 

were split into two groups: with and without the SV. The extent of differential expression of 

the associated gene was calculated using a two-sided Mann-Whitney U test across the 

accession split. The Mann Whitney U test is a rank-based test that is very robust to 

underlying distributions in the expression values. The p-values among a specific annotation 
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and tissue type were adjusted by applying Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995). The adjusted p-values for each annotation and tissue type were aggregated 

using two methods: Fisher’s method and a harmonic mean estimate (Sitgreaves and 

Haggard, 1960; Wilson, 2019), and are listed in Table S4A.

At least half of the SV-associated genes in each SV type were common to all three tissues, 

exhibiting different levels of differential expression across the same accession split. In order 

to determine an average differential expression across the tissues, we used Fisher’s method 

to aggregate p-values across the three tissues for each SV-associated gene, and subsequently 

applied Benjamini-Hochberg method to limit the number of false positives (Table S4B).

Can we predict SV-associated genes from their differential expression?: For this 

analysis, we formulated a prediction task: Using the SV annotations as a “ground truth” 

labeled feature set (the gene associated with the SV is positively labeled and all other genes 

are negatively labeled), we measured how well we could predict the presence of an 

associated SV (positive label) given differential expression. A diagram depicting the 

workflow of this analysis is shown in Figure S4B. We used AUROC (Area under the ROC) 

scores as a measure of the performance of this task, which is calculated as follows: For each 

SV of a given annotation type, the p-values corresponding to the differential expression 

across the accession split (with or without the SV) was calculated for all genes in a given 

tissue via a two-sided Mann-Whitney U test, and the list of p-values was ranked (highest 

rank corresponds to the most significant p-value). For each SV, AUROC scores were 

analytically calculated by determining the positively labeled gene’s position in the ranked 

list of all gene p-values (high AUROC score corresponds to a near-perfect identification of 

the SV-associated gene). In other words, genes are predicted to be associated with a variant 

if they exhibit excess differential expression when comparing accessions with vs. without 

the SV. Conceptually, this can also be described as our classifier choosing a series of cutoff 

positions in this list, generating a ROC curve (and associated AUROC) by calculating the 

true and false positive rate associated with each cutoff (Figure S4B). Since all genes are 

affected by the underlying phylogenetic structure in the data, successful prediction of the 

true SV-associated gene in the list of all genes only occurs when predictions are robust to 

confounding population structure.

We have thus far described our prediction task when considering a single SV-gene pair. To 

assess the broad impact of SVs on expression, we combined all SV-gene pairs in a given 

annotation and tissue type. This is conceptually the same as for single SV-gene pairs, except 

the gene labels are combined into an aggregated labeled set where there is one positive gene 

label for each SV-gene pair (Figure S4B). The resulting ROC curve and associated AUROC 

effectively measures the average performance of the classifier over all SV-gene pairs. A high 

AUROC would indicate SVs globally have a significant impact on associated gene 

expression.

Our aggregated classifier’s performance can be measured by computing an overall p-value 

as follows. For a given variant and tissue type, the ranks of p-values of all SV-associated 

genes are removed from the list of sequential ranks of all expressed genes in a given tissue 

(for example, the ranks of 17 genes associated with duplications in apex tissue are removed 
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from the sequence of ranks 1:20029 of the 20029 expressed apex genes). A One-tailed 

Mann-Whitney U test was performed to evaluate if the median of the ranks of SV-gene pair 

p-values was lower than the median of ranks of p-values of all other expressed genes. The 

resulting p-value is depicted by the size of the circle in Figure 3E. It is important to note that 

the overall p-values (circle size) are influenced by the number of SV-associated genes used 

in classification in each case, as well as the fold change in expression. For instance, 

duplications in apex have a larger p-value (p <4.06×10−4, with 17 variants used in 

classification) than insertions in 5 kbp downstream (p <1.72×10−16, with 1129 variants used 

in classification). Lists of AUROC scores of all SV-associated genes for each tissue and 

variant type are provided in Tables S4C–S4L.

Plant phenotyping—To quantify floral organ size, lengths of sepals and anther cones of 

closed yellow flower buds just before opening were measured. Inflorescence complexity was 

measured by counting the number of branching events per inflorescence. Flowering time 

was quantified by counting the number of leaves before the first inflorescence.

NSGT haplotype analyses—Thirteen of the fourteen MAS2.0 genome assemblies filled 

the gaps at the chromosome 9 “guaiacol” GWAS locus. To annotate this region, the full-

length protein sequence of NSGT1 was used for BLAST search against the Heinz SL4.0 

reference genome and the 14 MAS2.0 assemblies. We used the protein sequence as the 

query for BLAST to achieve more sensitive and more contiguous alignments while still 

allowing for the discrimination of NSGT alleles. Based on the BLAST results and sequence 

differences, four coding sequence variants including NSGT1, NST2, nsgt1 and nsgt2 are 

annotated in these genomes (Tikunov et al., 2013). We observed several accessions missing 

sequencing coverage at this locus, suggesting a deletion. We selected one such accession 

(PI129033) for a local assembly of the deletion haplotype (see “PI129033 NSGT Local 

Assembly”). The local assembly revealed the large deletion haplotype V.

Short-read based genotyping

NSGT locus coding sequence variants genotyping: From short-read alignments to the 

SL4.0 reference genome, we extracted reads overlapping with NGST locus 

(SL4.0ch09:65390765–65417476) using samtools view. In addition, we included previously 

unmapped reads. These mapped and unmapped read sets were converted back to a fastq files 

using samtools bam2fq. Subsequently, the reads were mapped to the unique portion of nsgt1 
(117bp, 

GTTAGGTTTTAGGGTTTCAATTATGCTTGGAAATTTGGAagaagccatttgaaaggcttgaataag

gttt aggtaccATCTTTAACAACTACCTCCAAAATTATAAACCTTTTTCTT), nsgt2 (86bp, 

CCAATACTTGAATGgttcaaaattagactttgtactttcaagaaaaccttgtGGAACCATTTCTTCAATTGT

TT TGTTCACCCCTT), NSGT1 (100bp, 

ATATAATAGCTTCAACAACTTTTTAACCCCTTcatcaatagctttcaattttatcttctcactcaattgCATT

G CCTTCAAATGAATTTGTTTCCTAGGC) and NSGT2(123bp, 

CAAAGGCTTTCTCATCGCGTGGTTTTATTGGTTTCATATCTAATTTCTTGatctcatagtcat

ga 

agaaaaggAAAAGATGTAAGGCTTGAACTCCCATAAAGAAATTGGTGGTAAAGGTAG

G) simultaneously using bwa mem (-M). After mapping, reads with edit distance (NM tag) 
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smaller than 15 and a minimum mapping quality of 20 were extracted. We used samtools 

depth to compute the coverage of the filtered reads across only the core of the unique 

regions (lower case sequences above) for nsgt1, nsgt2, NSGT1 and NSGT2. If more than 4 

core bp had 0 coverage, we discarded the total mapped read counts for the sequence. If there 

was read count support for any of the nsgt1, nsgt2, NSGT1 or NSGT2 haplotypes, we report 

as them as “presence”. Since the “unique” sequence of NSGT1 is also present in nsgt1, if 

both nsgt1 and NSGT1 were genotyped as “presence”, we only labeled nsgt1 as “presence”. 

This is based on the observation that no sequencing resolved haplotypes have both nsgt1 and 

NSGT1 together. This genotyping was consistent with the observed haplotypes in our 

MAS2.0 assemblies.

NSGT locus deletion variant genotyping: From the short-read alignments to SL4.0, we 

counted the reads with a mapping quality of at least 20 in the middle region of the haplotype 

V deletion: SL4.0ch09:65401889–65404136. Accessions with less than 5 mapped reads 

were genotyped as “deletion”. The pipeline was benchmarked against PCR genotyped 

samples including 138 accessions with no deletion and 17 accession with deletions. Results 

from our pipeline were 100% consistent with PCR genotyping results.

sb1 duplication genotyping: From the short-read alignments to SL4.0, we extracted the 

reads mapped to a broad region that contained the sb1 duplication locus: 

SL4.0ch01:77727550–77765153. For each sample, we also extracted the unmapped reads. 

Mapped and unmapped read sets were converted to fastq files using samtools. Subsequently, 

we aligned the extracted reads to a portion of the sb1 locus (SL4.0ch01:77737550–

77745153), which avoided high copy number TEs and represented a unique sequence of this 

locus. This was done with bwa mem (-M). We counted the number of reads mapped to this 

locus using samtools idxstats. The raw counts were normalized based on the total number of 

reads mapped for each sample. We manually checked the read alignments to SL4.0 and 

verified 22 single-copy accessions and eight duplication accessions. Accessions with 

normalized coverage lower than mean (verified single-copy accessions) – 1 standard 

deviation were genotyped as “single-copy” and accessions with normalized coverage greater 

than mean (verified duplication accessions) + 1 standard deviation were genotyped as 

“duplication”.

Tissue collection, RNA extraction and quantification—For 3’ RNA-sequencing (3’ 

RNA-seq), seeds were treated with 50% bleach for 20 minutes to homogenize germination 

and were germinated in petri dishes with moistened filter paper in the dark at 28 °C. Whole 

root tissues were collected 3 days after germination with a mixture of several seedlings as 

one biological replicate and three such replicates for each of a total of 23 accessions. For 

cotyledon tissues, seedlings after germination at similar stages were transplanted to soil in 

96-cell flats and grown in the greenhouse. Cotyledons of seedlings were collected when two 

true leaves start to visibly emerge (10~11 days after sowing). Four biological replicates each 

with several seedlings combined for each of a total of 22 accessions were collected. For apex 

tissue, seedlings after germination at similar stages were transplanted to soil in 96-cell flats 

and grown in the greenhouse. For apex tissue collection, seeds were germinated, and 

seedlings were transplanted as above. Vegetative apical meristem together with the two 
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youngest/smallest leaf primordia were collected 4 days after transplanting (Park et al., 

2012). Eight to twelve apices were combined as one biological replicate and three replicates 

were collected for each of a total of 23 accessions. Total RNA was extracted using the 

RNeasy Plant Mini Kit (Qiagen) and treated with the RNase Free DNase Set (Qiagen) 

according to the manufacturer’s instructions. Total RNA samples were sent to the Genomic 

Diversity Facility at Cornell University for high-throughput 3’ RNA (single-end, read 

length=75bp) as described (Kremling et al., 2018).

For quantitative RT-PCR, seeds were germinated on moistened filter paper at 28 °C in dark. 

After germination, seedlings at similar stages were transferred to soil in 96-cell plastic flats 

and grown in the greenhouse. Shoot apices were collected at the transition and floral 

meristem stage of meristem maturation (Park et al., 2012), and immediately flash-frozen in 

liquid nitrogen. Total RNA was extracted as described above. 100 ng to 1 μg of total RNA 

was used for cDNA synthesis using the SuperScript III First-Strand Synthesis System 

(Invitrogen). qPCR was performed with gene-specific primers using the iQ SYBR Green 

SuperMix (Bio-Rad) reaction system on the CFX96 Real-Time system (Bio-Rad). Primer 

sequences are available in Table S6.

NSGT1/2 expression analysis—Published RNA-seq data of tomato fruit pericarp tissue 

from 405 accessions were downloaded from SRA PRJNA396272. Reads were trimmed by 

quality using Trimmomatic (ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE 

LEADING:30 TRAILING:30 MINLEN:100) and aligned to the cDNA annotation of 

reference genome sequence of tomato (SL4.0) using kallisto quant (Bray et al., 2016). The 

output of kallisto generates normalized transcripts per million reads (TPM) which was used 

for quantifying NSGT1/2 expression. Because only one copy of NSGT1/2 is annotated in the 

SL4.0 and sequences of NSGT1 and NSGT2 are highly similar, we used the TPM of the 

annotated copy of NSGT (Solyc09g089585) to represent the expression level of both 

NSGT1 and NSGT2. TMPs are in Table S5C.

Metabolite profiling—Published fruit guaiacol contents were obtained from (Tieman et 

al., 2017). To minimize environmental effects, only data from one field season (2015) were 

used (Table S5D).

Fruit guaiacol and methylsalicylate contents in our new GWAS panel were quantified as 

previously described (Tieman et al., 2017). Briefly, at least six fruits (two fruits for each 

replicate) of red ripe stage were collected from each variety. Volatile compound 

identification was determined by gas chromatography-mass spectrometry and co-elution 

with known standards (Sigma-Aldrich, St. Louis MO). Metabolite contents are in Table S5E 

and S5F.

3’ RNA-seq data processing and gene expression analysis for individual 
duplication locus—3’ RNA-seq reads were trimmed by quality using Trimmomatic 

(v0.36, ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:30 TRAILING:30 

MINLEN:30 HEADCROP:12) and mapped to SL4.0 reference genome using STAR with 

default parameters (Dobin et al., 2013). Bam files generated by STAR were sorted by read 

name and gene expression was quantified as uniquely mapped reads to annotated gene 
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features in the ITAG4.0 reference annotation using HTSeq-count (--format=bam --

order=name --stranded=no --type=exon --idattr=Parent) (Anders et al., 2015). Gene counts 

were processed in R for visualization. First, we filtered expressed genes by only keeping 

genes with sum of counts across all samples greater than the sum of replicates. Then the 

count table was imported into R package “DESeq2” (Love et al., 2014) and normalized 

counts were used for making box plots.

Generation of F2 populations segregating for the fw3.2 duplication or 
promoter SNP—The fw3.2 duplication and the derived allele of the promoter SNP are 

highly, but not completely associated. From our collection of accessions, we carefully 

selected four pairs of accessions carrying either single or double copies of fw3.2 but fixed at 

the promoter SNP (M9) of KLUH and all other known fruit weight QTL genes (Figure 

S5D). Four bi-parental F2 populations were developed from each pair of accessions, so that 

the duplication of fw3.2 would segregate. We genotyped the F2 plants by fw3.2 duplication 

markers and markers flanking the entire duplicated region. Similarly, six bi-parental F2 

populations that segregated for the promoter SNP but fixed as the single-copy of fw3.2 and 

other known fruit weight QTL genes were developed. We genotyped F2 plants using M9 

markers. In each population, ten homozygous F2 plants carrying each of the contrasting 

genotype were grown in the field. At harvest, we selected 15 to 20 large fruits after mature 

green stage and recorded their average weight to represent the potential of largest fruit from 

a single plant. Poor fruit setting was observed in population 19S313 so only about 10 

representative fruits were used for each plant. In extreme cases, the fruit weight of three 

plants were represented by less than 5 fruits. Fruit weight data are in Table S5G.

CRISPR-Cas9 mutagenesis, plant transformation, and selection of mutant 
alleles—CRISPR-Cas9 mutagenesis and generation of transgenic tomato was performed 

following our standard protocol (Brooks et al., 2014). Briefly, guide RNAs (gRNAs) were 

designed using the CRISPRdirect tool (https://crispr.dbcls.jp/) (Naito et al., 2015). Binary 

vectors for gRNAs and Cas9 were assembled using the Golden Gate cloning system as 

described (Rodríguez-Leal et al., 2017; Soyk et al., 2017; Werner et al., 2012). Final binary 

vectors were transformed into the tomato cultivar M82 by Agrobacterium tumefaciens-

mediated transformation through tissue culture (Gupta and Van Eck, 2016). Transplanting of 

first generation transgenic (T0) plants and genotyping of CRISPR-generated mutations were 

performed as (Soyk et al., 2017). Briefly, CRISPR-targeted region was PCR amplified and 

wild type (WT) size products were sequenced for T0 plants and those with mutations were 

selfed or crossed to WT M82 plants for further characterization of mutant alleles. All gRNA 

sequences are listed in Table S6.

Generation of hybrid plants for different KLUH dosages—To test the dosage-

dependent effect of KLUH in an isogenic background with uniform “cherry” fruit type, the 

fertile T0 plant with CRISPR-Cas9 targeting SlKLUH (slkluhCR T0–1) was crossed with the 

SP accession LA1589. About half of F1 plants carried the Cas9 transgene (1:1 segregation 

of transgene). Analyses were focused on F1 plants that did not inherit the Cas9 transgene, 

because they are a fixed, uniform genotype. In contrast, plants with the Cas9 transgene 

would be genetically intractable for dosage analyses, because of the random chimerism that 
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occurs within individual plants carrying the Cas9 transgene. From eight individual F1 plants 

without the Cas9 transgene (genotypic group B), KLUH gene PCR products were cloned 

and eight individual clones were sequenced. All eight plants were confirmed to have only 

mutant slkluh alleles and a WT SpKLUH allele (Figure S5F). Sepal length, flower length 

and fruit weight were quantified from these plants. Most of the F1 plants with the Cas9 
transgene showed slightly smaller floral organs, and several of these plants had extremely 

small floral organs and no fruit set. From four individual F1 plants with the Cas9 transgene 

that showed tiny floral organs (genotypic group C), sepal length and flower size were 

quantified. To determine whether this effect was due to trans-targeting of SpKLUH, two 

plants with extremely small floral organs were randomly selected and sequenced for 

multiple PCR-cloned KLUH alleles. Consistently, sequencing of the two plants showed only 

mutant alleles for SlKLUH and SpKLUH (mutant alleles and their combinations are shown 

in Figure S5F and S5G), consistent with the CRISPR-Cas9 trans-targeting the SpKLUH 
gene copy. WT M82 was crossed with LA1589 and the F1 plants were used as controls. 

Quantification data of sepal, flower length and fruit weight are in Table S5H and S5I.

STM3 Phylogenetic analyses and sequence analyses—Sequences of homologous 

proteins of STM3 and TM3 were obtained from tomato and Arabidopsis genome and 

aligned using the ClustalW2.1 program in Geneious 11.1.5. Phylogenetic tree was 

constructed using “Geneious Tree Builder” with Jukes-Cantor genetic distance model and 

Neighbor-Joining method with 1,000 bootstrap replicates. STM3 and TM3 fell in the same 

clade with Arabidopsis flowering time regulator SOC1 (Lee and Lee, 2010).

Delta SNP index plot and genome coverage plot—Mapping of genomic position of 

sb1 was reported in (Soyk et al., 2019). Briefly, F2 segregation population was generated 

from crosses between a branched M82 j2TE ej2W double mutant with an unbranched j2TE 

ej2W double mutant (Fla.8924). A group of excessively branched inflorescences (6–36 

branches) and a group of clearly suppressed plants (1–4 branches) were selected. An equal 

amount of tissue from each plant (~0.2 g) was pooled for DNA extraction for the two groups 

using standard protocols. Libraries were prepared with the Illumina TruSeq DNA PCR-free 

prep kit from 2 μg genomic DNA sheared to 550 bp insert size and sequenced on an Illumina 

NextSeq platform at the CSHL Genome Center. After aligning reads to reference genome 

(SL3.0), SNPs were called with samtools/bcftools (Li, 2011; Li et al., 2009) using read 

alignments for the two genomic DNA sequencing pools in addition to the M82 (Bolger et 

al., 2014a) and Fla.8924 (Lee et al., 2018) parents. Called SNPs were then filtered for bi-

allelic high-quality SNPs at least 100 bp from a called indel using bcftools (Li, 2011). Read 

depth for each allele at segregating bi-allelic SNPs in 100-kb sliding windows (by 10 kb) 

was summed for the various sequencing pools and allele frequencies were calculated. 

Finally, the difference in allele frequency (SNP index) between the branched and 

unbranched pools was calculated and plotted across the 12 tomato chromosomes. One of the 

two regions that exceeded a genome-wide 95% cut-off in SNP index was located on 

chromosomes 1 and was named sb1. The candidate interval based on SL3.0 is 

SL3.0ch01:80006250–86570024.
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To show the genome coverages at the sb1 locus in M82, M82 j2TEej2W, Fla.8924 and S. 

pimpinellifolium, we calculated the coverage from Illumina data using bedtools multicov 

only counting properly paired reads in 10-kb windows across chromosome 1. Depths in the 

four genotypes were normalized by dividing by the average depth using R.

Generation of F2 populations segregating for sb1 CRISPR alleles, j2TE and 
ej2W—Homozygous sb1CR−1 and sb1CR-del plants were each crossed with M82 j2TEej2W, 

respectively, to construct two F2 populations segregating at those three loci. In the F2 

generation, plants were first genotyped for j2TE and ej2W mutations at seedling stage in 

flats. All double mutants were transplanted and further genotyped for CRISPR alleles and 

quantified for inflorescence complexity/branching. Genotyping primer sequences are in 

Table S6. Phenotype related to sb1 are in Table S5J, S5K and S5L.

QUANTIFICATION AND STATISTICAL ANALYSES

“n” is defined in all relevant figure legends. All statistical tests were performed in R. 

Significance is only ever defined for the SV differential expression analysis (Figure 3C) 

(Table S4A and S4B) and it is defined as a p-value less than 0.05. Two-sided Mann-Whitney 

U tests were used for analysis in Figures 3C–F. The Mann-Whitney U test provides a robust 

estimate to compute the significance of the expression change that does not depend on any 

assumption of underlying distributions. The p-values for these tests underwent FDR 

correction with the Benjamini-Hochberg procedure. Adjusted p-values were aggregated 

using Fisher’s method and a harmonic mean estimate. Detailed methods for these analyses 

can be found in “The Impact of SVs on Gene Expression”. For expression analysis in 

Figures 4E, 5C, 6E and S5A, numbers of accessions for each genotype are presented in the 

figures and differences between groups were compared using two-tailed, two-sample t-tests. 

Fruit guaiacol and methylsalicylate contents were compared between genotypes using two-

tailed, two-sample t-tests. For quantitative analysis in sepal length, flower length, fruit 

weight and inflorescence complexity n= number of flowers and inflorescences quantified 

was used for two-tailed, two-sample t-tests. The number of plants (n =) used for each 

genotype is also labeled in the figures. For above analysis, all data points were plotted as 

single dots in the box plots. For expression analysis with qRT-PCR, three biological 

replicates of pooled meristems were used for each genotype and two technical replicates 

were performed for each biological replicate. Mean values of normalized expression were 

compared using two-tailed, two samples t-tests. For flowering time quantification, number of 

plants of each genotype is labeled in the figure. Means ± s.d. were shown and mean values 

between groups were compared by two-sample t-tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The tomato panSV-genome
(A) SNP-based phylogenetic tree based on short-read sequencing of more than 800 tomato 

accessions. Major taxonomic groups are marked by colored lines along the circumference. 

Colored dots indicate a subset of the 100 accessions selected for long-read sequencing.

(B) Stacked bar graph showing SV number and type from the 100 accessions. Colored dots 

indicate the taxonomic group of each accession, corresponding to colors in (A).

(C) Hierarchical clustering dendrogram of the SV presence/absence matrix across the 100 

accessions, with colors corresponding to (A). Bold branches and names highlight an 

outgroup of two SLL processing tomato accessions.

(D) SVCollector curves of SVs in the three major taxonomic groups. The “greedy” 

algorithm determines the order of accessions and depicts the cumulative number of SVs as a 

function of the number of accessions included.

(E) Graph showing the number of SVs (y-axis) in “no more than” or “at least” the number of 

accessions indicated on the x-axis.

(F) Histograms of detection frequencies for different SV sizes.

(G) Histogram of SV sizes for insertions and deletions.
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(H) Annotation of the panSV-genome. The proportion of repeat types for all insertions and 

deletions annotations is shown in stacked bar graphs. “Count” shows the proportion of 

individual repeat annotations, and “bp” shows the proportion of cumulative repeat (not 

indel) sequence length. “Other” refers to other repeat types. Only indels at least 100 bp in 

size were considered. See also Figure S1.
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Figure 2. SV distribution reveals large-scale admixture and introgression between wild and 
domesticated genotypes
(A) Heatmap (top) showing SV frequency in 1 Mbp windows (columns) of chromosome 4 

relative to the reference genome. Accessions (rows) are grouped by taxonomic group 

(colored bars). Dotted colored lines mark three notable regions: black, a large SV hotspot for 

5 SLLs; red, a small hotspot shared by most UFL SLL lines; yellow, a SP group with 

reduced SV frequency, reflecting a small SP introgression in the reference genome. Circos 

plot (bottom) depicting genome-wide SV frequency for five notable accessions. Rings depict 

line plots showing the SV number in successive 1Mbp windows (y-axes are not shared 

between rings). Chromosomes 4, 5, 7 and 11 are highlighted to show regions of high SV 

frequency.

(B) Heatmaps showing admixture and introgressions on chromosome 4 measured by Jaccard 

similarity between accessions of SLL and SP (top) and SLC (bottom) in the same row-order 

as (A, top). For each 1 Mbp window, the SVs for a given SLL accession are compared to the 

SVs for all SP (top) or SLC (bottom) accessions, and the maximum Jaccard similarity is 

reported. Windows with fewer than 5 SVs in the SLL set are excluded and colored grey. 

Black and red dotted regions correlate with marked SV hotspots in (A, top).
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(C) Timeline of UFL fresh market variety release over the last century. Approximate periods 

of introgression of key disease resistance genes are shown in red, along with major donor 

genotypes for Fusarium wilt (I, I2, I3) and grey leaf-spot (Sm).

(D) Jaccard similarity for chromosome 11 between the UFL lines (ordered chronologically) 

and LA1589, the closest SP to this introgression. Locations of I, Sm and I2 are shown in red.

(E) The UFL varieties on chromosome 7 showing a small SP introgression in all but two 

accessions; Fla.7481 and Fla.7907B carry a unique SV hotspot (left) due to introgression of 

the I3 resistance gene (red) from S. pennellii.
See also Figure S3.

Alonge et al. Page 39

Cell. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Gene associated SVs impact expression
(A) Stacked bar chart showing total counts of SVs overlapping different genomic features in 

major taxonomic groups. N represents the number of accessions in each taxonomic group.

(B) Percentage of SVs overlapping different genomic features in 100 accessions. Each point 

is one sample. Fewer SVs are found within genes compared to surrounding regulatory 

regions.

(C) Stacked bar charts showing numbers of differentially expressed genes affected by 

insertion, deletion, and duplication SVs overlapping coding sequences (left) and regulatory 

regions (right)*. Differential expression was tested on common SVs in the 23 accessions 

used for RNA-sequencing (frequency between 0.2 and 0.8) (see STAR Methods).

(D) ROC curves for the top three SV annotation types, with high AUROC (Area Under the 

Receiver Operating Characteristics) scores across the three tissues demonstrating the ability 

to identify genes containing SVs using changes in expression across the accession split. The 

AUROC is specified within the ROC curve in each case. The steep rise of the curves in the 
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top panel correspond to a near-perfect identification of a large fraction of the genes 

containing SVs based on differential expression. CDS, coding sequence.

(E) Differential expression significantly predicts genes with SVs. Overall performance of 

using “SV splits” and differential expression to predict associated gene(s) (see STAR 

Methods). Analyses are broken down into 9 categories across three tissues. Each category is 

defined based on SV type and relative position to genes. Circle sizes and colors represent the 

significance of performance (−log10 p-value) the magnitude of AUROC, respectively. SV 

categories are ranked in decreasing order of average AUC (Area Under the Curve) across the 

three tissues. Note that the significance of performance for each SV type is enhanced by the 

number of annotated SV-gene pairs (for example, p < 1×10−4 for ≈ 16 duplications, while p 
< 1×10−4 for ≈ 468 insertions in introns).

(F) Volcano plots for four regulatory SV-gene pair examples with the highest AUROC score 

highlight the extent of differential expression of SV-containing genes (marked in orange 

circles), compared to all expressed genes (black dots). Additional examples are presented in 

Figure S4F. p-values and expression fold changes are computed across two groups of 

accessions (with and without the indicated SV). Data shown for apex tissue. Exons (orange), 

UTRs (yellow), and SVs (red) are not drawn to scale. Distances between genes and SVs are 

shown.

* Significance is defined as an adjusted p-value less than 0.05. See also Figure S4.
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Figure 4. New reference genomes anchor candidate genes and resolve multiple SV and coding 
sequence haplotypes for the “smoky” volatile GWAS locus
(A) Schematic showing a key step of the metabolic pathway underlying the “smoky” aroma 

trait. During fruit ripening, activation of glycosyltransferase NSGT1 prevents release of 

smoky-related volatiles by converting them into non-cleavable triglycosides (top). nsgt1 
mutations result in the release of the smoky volatile guaiacol.

(B) Genomic resources used to resolve the GWAS locus for guaiacol (top) and summary of 

haplotypes (bottom). The published locus mapped to a region of chromosome 9 with one 

candidate gene and multiple gaps, and also to an unanchored contig with a fragment of an 

NSGT gene (top). MAS2.0 assemblies revealed multiple haplotypes that include copy 

number variation for the NSGT1 and NSGT2 paralogs and loss-of-function mutations 

(Bottom). A local assembly revealed haplotype V (asterisk) (see STAR Methods).

(C) Schematics depicting the five resolved haplotypes. The assemblies and major taxonomic 

groups from which the haplotypes were identified are shown below. Red “X”s mark coding 

sequence (CDS) mutations. Grey bars mark duplication in haplotype IV. Red rectangle 

marks a large deletion in haplotype V.

(D) PCR confirmation of the deletion in haplotype V. Primers (F1, F2, R1) are shown in (C).

(E) Quantification of NSGT1/2 expression by RNA-sequencing. Haplotypes are grouped 

according to functional NSGT1 (I, II, III), nsgt1 CDS mutation (IV) and nsgt1 deletion (V) 

(see STAR Methods). Expression data are from pericarp tissue of ripe fruit (Zhu et al., 

2018).

(F-G) Guaiacol content of fruits from a previous GWAS study (F) (Tieman et al., 2017) and 

a new GWAS analysis using a collection of 155 SP and SLC accessions (G). Mutations in 

NSGT1 are associated with guaiacol accumulation. Accessions are grouped as in (E).

Alonge et al. Page 42

Cell. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(H) Quantification of guaiacol and methylsalicylate content in an SLC x SLC F2 population 

segregating for the haplotype V 23 kbp deletion.

In (E-H), n represents sample size in each group. All p-values are based on two-tailed, two-

sample t-tests.
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Figure 5. The fruit weight QTL fw3.2 resulted from a tandem duplication that increased 
expression of a cytochrome P450 gene
(A) Published mechanism for fw3.2 positing that a SNP in the promoter of the cytochrome 

P450 gene SlKLUH increased expression ~2-fold, resulting in larger fruits.

(B) SV analyses revealed a 50 kb tandem duplication at the fw3.2 locus that included 

SlKLUH (left). PCR validation of the duplication (right). Primers (F1, F2, R1) are labeled 

on the left. “No duplication” refers to the accession without this duplication and “fw3.2dup” 

refers to the accession that carries the duplicated copy of fw3.2 as shown by the PCR 

product across the duplication junction (F2 + R1).

(C) Expressions of genes within the fw3.2 duplication are ~2-fold higher. Gene coordinates 

and the duplication region (top), and RNA-seq box plots of duplicated and flanking genes 
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(bottom) are shown. Each point is one biological replicate from one accession (see STAR 

Methods). n, number of accessions.

(D) An SLC x SLC F2 population segregating for the fw3.2 duplication, but fixed for the 

promoter SNP (see STAR Methods). Increased fruit weight is associated with the 

duplication.

(E) CRISPR-Cas9 mutagenesis of SlKLUH in the M82 background. SlKLUH gene model 

with gRNA targets (top), PCR genotyping (middle) and representative inflorescences 

(bottom) of slkluhCR T0 plants. The three slkluhCR T0 plants shown have mutations in all 

four copies of SlKLUH and exhibit similar tiny inflorescences, suggesting a null phenotype. 

Strong phenotypes were also observed for other T0 plants with sequenced indels (red font) 

except T0–1, which showed a weaker phenotype and was fertile, allowing a genetic test of 

dosage.

(F) Altering tomato KLUH gene dosage shows that copy number variation explains fw3.2. 

Schematic showing the M82/M82CR slkluh T0–1 (SL) x LA1589 (SP) crossing scheme used 

to test the phenotypic effects of altering tomato KLUH functional copy number in an F1 

hybrid isogenic background. Genotypic groups A and B are isogenic for M82 x LA1589 

genome-wide heterozygosity and differ only in having 3 or 1 functional copies of tomato 

KLUH, respectively. Genotypic group C effectively has 0 functional copies due to 

inheritance of the single insertion Cas9 transgene that targets the single SpKLUH allele in 

trans.

(G) Mutated slkluh alleles and the SpKLUH allele in genotypic group B. Red font, guide 

RNA targets. Cyan font, mutations. An LA1589 SNP (blue font) permits distinction of 

KLUH allele parent-of-origin. All SpKLUH sequences in genotypic group B are wild type.

(H) Decreasing tomato KLUH functional copy number reduces flower organ size. 

Representative inflorescences (left) and quantifications of flower and sepal length (right) 

from all three genotypic groups.

(I) Decreasing tomato KLUH functional copy number reduces fruit weight. Representative 

fruits (left) and fruit weight quantification (right) from genotypic groups A and B. Reducing 

tomato KLUH copy number from three to one reduces fruit size by 30%. Genotypic group C 

plants with mutated SpKLUH alleles fail to produce fruits.

Scale bar is 1 cm in (E and H) and is 2 cm in (I). In (H and I), N indicates plant number; n 

indicates flower/fruit number. All p-values are based on two-tailed, two-sample t-tests. See 

also Figure S5.
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Figure 6. Four SVs in three MADS-box genes were required to breed for the jointless trait
(A) Genetic suppressors were selected to overcome a negative epistatic interaction on yield 

caused by mutations in two MADS-box genes. The SV mutation j2TE causes a desirable 

jointless pedicel that facilitates harvesting. Introducing j2TE in backgrounds carrying the 

cryptic SV mutation ej2w results in excessive inflorescence branching and low fertility. The 

sb1 and sb3 QTLs were selected to suppress j2TE ej2w negative epistasis. sb3 is an 83 kb 

duplication harboring ej2w. sb1 is cloned in this study.

(B) Quantification of sb1 partial suppression of branching in the j2TE ej2w background. The 

SB1 j2TE ej2W and sb1 j2TE ej2W genotypes were derived from F3 families. Each data point 

is one inflorescence from F4 plants (n).
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(C) Delta SNP index (deltaSNPi, QTL-seq) plot shows the sb1 locus contains the TM3-

STM3 MADS-box gene cluster (see STAR Methods).

(D) Schematic of the TM3-STM3 locus in the SLL genotypes M82 and Fla.8924, with M82 

having a ~22 kb tandem duplication (designated SB1) containing STM3.

(E) RNA-seq showing increased expression of STM3 from the SB1 duplication compared to 

sb1.

(F) CRISPR-Cas9 mutagenesis of the TM3-STM3 cluster (sb1CR) suppresses branching in 

the j2TE ej2w background. Schematics at top depict two CRISPR lines with indel mutations 

in the STM3 and TM3 genes (sb1CR−1) and a large deletion spanning all three genes 

(sb1CR-del) (top). Representative inflorescences from the indicated genotypes (bottom). 

Arrowheads mark branch points.

(G) Quantification and comparison of suppression of inflorescence branching by 

homozygous and heterozygous sb1CR−1 and sb1CR-del mutations in the background of j2TE 

ej2w. Genotypes were derived from F2 populations (see STAR Methods). N, plant number. 

n, inflorescence number.

(H) STM3 duplication allele frequency in wild tomato species (distant relatives, SP), early 

domesticates and cultivars (SLC, SLL vintage) and modern cultivars (SLL fresh market and 

processing).

(I) Distribution of J2 EJ2 SB1 genotypes in fresh market and processing/roma tomato types. 

All j2 fresh market genotypes carry sb1 and sb3, whereas processing/roma genotypes have 

SB1 or sb1, because EJ2 is functional.

(J) Schematic showing the history of breeding for the jointless trait, including when SVs in 

EJ2 and STM3 arose. The pre-existing sb1 cryptic variant (single copy STM3) mitigated the 

severity of branching caused by introduction of j2TE in varieties carrying the cryptic variant 

ej2w. Selection of the sb3 cryptic variant (two copies of ej2w) resulted in the complete 

suppression of branching and restoration of normal yield. Gradient colored bar represents 

timeline. The table summarizes genotypic combinations. Blue and black bold fonts indicate 

solutions for jointless breeding in fresh market and processing/roma types, respectively (I 

and J).

In (B, E, H and I), n represents sample size. P-values in (B and G) are based on two-tailed, 

two-sample t-tests. See also Figure S6.
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