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Bisphosphonates (BPs) are inhibitors of osteoclast-mediated bone resorption used for the treatment of multiple myeloma (MM)
patients with osteolytic lesions. Bisphosphonate-induced osteonecrosis of the jaw (BONJ) is an infrequent drug-caused adverse
event of these agents. Long noncoding RNAs (lncRNAs) are a set of more than 200 base pairs, noncoding RNA molecules,
which are critical posttranscriptional regulators of gene expression. Our study was aimed at evaluating 17 lncRNAs, whose
targets were previously validated as key elements in MM, bone metabolism, and angiogenesis in MM subjects without BONJ
(MM group), in MM subjects with BONJ (BONJ group), and a group of healthy controls (CTRL group). Our results
demonstrated a different lncRNA profile in BONJ patients compared to MM patients and controls. Two lncRNAs (DANCR and
MALAT1) were both downregulated compared to controls and MM, twelve (HOTAIR, MEG3, TP73-AS1, HOTTIP, HIF1A-
AS2, MANTIS, CTD-2201E18, CTD1-2003C8, R-471B22, RP1-43E13, RP11-553L6.5, and RP1-286D6) were overexpressed in
MM with BONJ, and one (H19) was upregulated compared with only MM. Two lncRNAs (JHDMD1 and MTMR9LP) had
higher expression, but these differences were not statistically significant. The examined lncRNAs target several genes and
metabolic pathways. An altered lncRNA signature could contribute to the onset of BONJ or have a protective action. Targeting
these lncRNAs could offer a possibility for the prevention or therapy of BONJ.

1. Introduction

Long noncoding (lnc) RNAs are a set of noncoding RNAs
longer than 200 base pairs [1]. lncRNA biogenesis is similar
to that of protein-coding RNAs and mRNA, since most of
them have a poly-A tail; however, they cannot be translated
into proteins [2]. For this reason, lncRNAs were believed to
be “transcriptional noise” with no biological actions [3];
however, whole-genome transcriptomic investigation dem-
onstrated that they are implicated in several biological
functions [4].

To date, 15,778 human lncRNAs have been recognized
[5, 6], although only a little part of these is typified. lncRNAs
comprise enhancer RNAs, intergenic transcripts, and
snoRNA host [7]. They have been discovered in almost every
cell type and act as central controllers of numerous cellular
activities, comprising cell proliferation, cellular architecture,
cell cycle progression, nuclear-cytoplasmic passage, and tran-
scriptional and posttranscriptional control. Moreover, they
act on the epigenetic regulation of gene expression [8–12].

lncRNAs have different mechanisms of action. They can
fold into a tertiary structure and offer support for the creation
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of a quaternary structure for proteins [13]. Moreover, they
regulate the gene expression at the posttranscriptional level
by influencing the stability of mRNAs, changing the transla-
tion effectiveness of target mRNAs, and determining aug-
mented mRNA expression [10].

Tumours are the consequence of genomic instability due
to an alteration of the systems regulating cell proliferation,
survival, and apoptosis. Several lncRNAs have been recog-
nized as relevant components in tumour genomics, and
decreased or increased expression of lncRNAs in tumour
cells is connected to better or poor prognosis [14].

Multiple myeloma (MM) is a malignant neoplasm of
plasma cells conducting bone lesions and marrow failure.
Bioinformatic analysis recognized more than 3000 dysreg-
ulated lncRNAs in MM patients [15], while 176 lncRNAs
were identified as biomarkers for the prognosis of the
MM subjects [16, 17].

Moreover, alteration of lncRNAs could be crucial in the
onset and progression of the disease. It has been discovered
lncRNA KIAA0495 showed a gradual downregulation from
healthy controls to MGUS to symptomatic MM.

Finally, lncRNAs could play an essential role in bone
metabolism and perhaps in MM bone disease. Recent exper-
imentations have evaluated the action of lncRNAs during
osteogenic lineage commitment or osteocyte terminal differen-
tiation [18–21]. For example, lncRNA-1 displayed augmented
expression during osteogenesis. Moreover, knockdown of
lncRNA-1 expression in primary animal preosteoblasts was
found to block osteogenic differentiation, as demonstrated
by a decreased transcription of the Sp7 and Runx2/p57 bone
master genes [22]. Recent findings have also shown that
lncRNAs have a crucial action in angiogenesis, by modulat-
ing several mediators, such as vascular endothelial growth
factor (VEGF) [23].

Bisphosphonates (BPs) aredrugs employed for the therapy
of bone lesions, including those connected to MM. Generally,
they are a well-tolerated drug; however, several reports have
described osteonecrosis of the jaw (ONJ) as a potentially seri-
ous adverse effect associated with the use of these drugs [24].

The pathophysiology of BONJ (bisphosphonate-induced
osteonecrosis of the jaw) has not been completely clarified.
Possible factors comprise the block of osteoclastic bone
resorption and remodelling, inhibition of angiogenesis, or
repeated microtrauma. The other causes include alteration
of humoral and cell-mediated immunity and BP toxicity in
soft tissues. Moreover, infections and inflammation are cen-
tral elements of BONJ, namely, persistent exposed bone in
the jaw [25–28].

In previous works, we have demonstrated the presence
of a modified microRNA signature in the peripheral lym-
phoid compartment of MM subjects and MM patients
with BONJ [29, 30].

Our research was aimed at evaluating 17 lncRNAs, whose
targets were previously validated and reported as key ele-
ments in MM, bone metabolism, and angiogenesis in MM
patients without BONJ (hereafter identified as the MM
group), MM patients with BONJ (hereafter identified as the
BONJ group), and healthy controls (hereafter identified as
the CTRL group).

2. Materials and Methods

2.1. Samples. The study was in accordance with the ethical
standards of the responsible committee on human experi-
mentation (institutional and national) and with the Helsinki
Declaration of 1975, as revised in 2008. The Local Ethics
Committee approved this study protocol before the initiation
of any study-related procedures (Protocol No. 36/18 of 07
May 2018—resolution No. 887).

After every subject was informed about the research and
informed consent was signed, venous blood samples were
collected in tubes containing a heparin anticoagulant from
8 healthy subjects (CTRL group, 4 men and 4 women,
median age 57 ± 10 years), from 8 MM patients without
BONJ (MM group, 5 men and 3 women, median age 58 ± 8
years), and 8 MM patients with BONJ (BONJ group, 3 men
and 5 women, median age 60 ± 9 years). The mandible was
more frequently implicated (five patients) than the maxilla
(three patients).

MM and BONJ patients had been treated with BPs. The
duration of therapy with zoledronic acid was higher than 1
year in all patients.

According to the Durie–Salmon staging system, in the
MM group, five patients were MM disease stage II and three
patients were disease stage III. Median plasmocytosis of bone
marrow was 65% (range 51–89%). The paraprotein class was
immunoglobulin G (IgG) in all patients.

As regards the BONJ group, according to the Durie–
Salmon staging system, four patients were MM disease stage
II and four patients were disease stage III. Median plasmocy-
tosis of bone marrow was 74% (range 56–95%). The parapro-
tein class was immunoglobulin G (IgG) in all patients.

The patients’ characteristics are summarized in Table 1.
The blood samples were diluted (1 : 3) in PBS, mixed

gently, and layered onto equal amounts of Lymphoprep
(Cederline, Canada) for density centrifugation at 800g for
30′ at room temperature, to allow stratification of the cells
on the medium. Then, the buffy coat was collected with a
Pasteur pipette, transferred onto a clean tube, washed 3 times
with PBS, and centrifuged at 600g for 10′, discarding the
supernatant each time.

2.2. RNA Isolation and cDNA Synthesis. Total RNA was
extracted from a lymphomonocyte pellet using the TRIzol
reagent (Life Technologies, USA), according to the manufac-
turer’s instructions. Total RNA was quantified at 260nm
(40 ng/ml RNA = 1:0 OD) using a spectrophotometer (Bio-
Mate 3, Thermo Electron Corporation, Marietta, OH, USA);
its purity was assessed by the ratio of readings at 260nm
and 280nm. The integrity of total RNAwas checked by dena-
turing agarose gel electrophoresis and fluorochromatization
with ethidium bromide.

Total RNA was transcribed into cDNA through a
high-capacity cDNA reverse transcription kit (Applied
Biosystems, CA, USA), according to the manufacturer’s
recommendations.

2.3. Selection of lncRNAs and RT-qPCR. lncRNAs were cho-
sen based on their role as key factors in bone homeostasis
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(HOTAIR, MALAT1, MEG3, TP73-AS1, HOTTIP, and
DANCR) and numerous types of human cancer, including
myeloma (HOTAIR, MALAT1, MEG3, H19, MANTIS,
RP1-286D6, MTMR9LP, RP1-43E13, RP11-553L6.5, CTD-
2201E18, CTD1-2003C8, and R-471B22) and angiogenesis
(HIF1A-AS2, MANTIS, and JHDMD1). The expression pro-
file was measured by real-time qPCR using a 7500 Real-Time
PCR System (Applied Biosystems, CA, USA). Reactions were
performed using the PowerUp SYBR Green Master Mix
(Applied Biosystems, CA, USA) to test a total of 17 lncRNAs
and β-actin, used as an endogenous control for the subse-
quent data normalization. Primer sequences were designed
in-house for each lncRNA, as reported in Table 2. A denatur-
ation cycle was added at the end of all reactions to evaluate
the specificity of each result.

The RT-qPCR results were analyzed using the 2-ΔΔCt

method for relative quantification, using the average of ΔCt
values from the control subjects as a calibrator. The results
are expressed according to the 2-ΔΔCt calculation as fold
change relative to controls.

2.4. Statistical Analysis. All data were analyzed by one-way
analysis of variance (ANOVA) followed by the Student–
Newman–Keuls test, using PRISM software (version 5.0;
GraphPad Software, CA, USA). The statistical significance
was set at p < 0:05, and data are expressed as the mean ± S:
D: values. All assays were repeated three times to ensure
reproducibility.

3. Results

3.1. Detection of Significantly Dysregulated lncRNAs in ONJ.
We performed an analysis on 17 lncRNAs involved in bone
homeostasis, cancer, and angiogenesis. Our data revealed
that 15 lncRNAs were significantly differentially expressed
in BONJ patients compared with both CTRL and MM sub-
jects (Figure 1).

In particular, in BONJ patients, two lncRNAs were
downregulated compared to CTRL and MM (DANCR and
MALAT1, see Figures 1(a) and 1(b)), twelve were overex-
pressed compared to either CTRL or MM (HOTAIR in
Figure 1(c), MEG3 in Figure 1(d), TP73-AS1 in Figure 1(f),
HOTTIP in Figure 1(g), HIF1A-AS2 in Figure 1(h), MAN-
TIS in Figure 1(i), CTD-2201E18 in Figure 1(l), CTD1-

2003C8 in Figure 1(m), R-471B22 in Figure 1(n), RP1-
43E13 in Figure 1(o), RP11-553L6.5 in Figure 1(p), and
RP1-286D6 in Figure 1(q)), and one was upregulated com-
pared with MM only (H19, see Figure 1(e)). The last two
lncRNAs JHDMD1 and MTMR9LP (see Figures 1(j) and
1(k)) had higher expression levels in BONJ subjects com-
pared to either MM or CTRL subjects, but all these variations
were not statistically significant.

4. Discussion

The possibility to use new drugs, such as immunomodulatory
drugs, proteasome inhibitors, monoclonal antibodies, and
inhibitors of heat shock proteins; vaccine therapy; or adop-
tive immunotherapy has drastically bettered the clinical out-
come of MM subjects [31–36].

However, the use of polychemotherapy for disease treat-
ment and its complications expose MM patients to the onset
of even more serious side effects such as BONJ. For this rea-
son, the identification of novel therapeutic targets seems
imperative.

Recently, Wang et al. described the lncRNA expression
profile of bone marrow mesenchymal stem cells (BMSCs)
from subjects with steroid-induced osteonecrosis of the
femoral head (SONFH). 1878 lncRNAs were upregulated
and 1842 lncRNAs were reduced in SONFH patients, and
several lncRNAs of these were involved in osteogenic differ-
entiation [37].

In our study, we established a different lncRNA signature
for MM patients with BONJ compared to MM patients with-
out BONJ and healthy controls. These lncRNAs target several
genes and biological pathways involved in bone formation,
osteogenic differentiation, osteoblastic differentiation, angio-
genesis, and bone repair in the tooth extraction socket. Their
alteration could, therefore, constitute a contributing factor in
the pathogenesis of BONJ.

For instance, although the action carried out by BPs on
bone metabolism and, in particular, on osteoclasts and oste-
oblasts is certainly not the sole pathogenetic factor, it
assumes great importance in the onset of the disease. This
is also demonstrated by the fact that numerous biomarkers
of bone metabolism are altered in patients with BONJ. For
instance, PTH level is statistically higher and TSH, Vit-D,

Table 1: Number of controls and patients and clinical features of the examined disease.

Group
No. of patients
(males, females)

Age (years) Area with BONJ
BP treatment

(yes/no (duration))

Durie–Salmon
disease stage

(no. of patients)

Median
plasmocytosis

(range)
Ig class

CTRL 8 (4 M, 4 F) 57 ± 10 N/A No N/A N/A N/A

MM 8 (5 M, 3 F) 58 ± 8 N/A Yes (>1 year) II (5)
III (3)

65% (51–89%) IgG

BONJ 8 (3 M, 5 F) 60 ± 9
Mandible
(5 patients)
Maxilla

(3 patients)

Yes (>1 year) II (4)
III (4)

74% (56–95%) IgG

CTRL: control group; MM: multiple myeloma patients without bisphosphonate-induced osteonecrosis of the jaw; MM+BONJ: multiple myeloma patients with
bisphosphonate-induced osteonecrosis of the jaw; BP: bisphosphonates.

3BioMed Research International



osteocalcin, and NTX levels are statistically lower compared
to the control group [38, 39].

Bisphosphonates can affect osteoclast-mediated bone
resorption in a variety of ways, including effects on osteo-
clast recruitment, differentiation, and resorption, and they
can induce apoptosis [40]. Compared to osteoclasts, the
scientific literature regarding the effect of bisphosphonates
on osteoblasts is less conclusive. The conflicting apoptotic
and antiapoptotic effects could be explained by the differ-
ent bisphosphonates studied and concentrations used [41].
Mounting evidence suggests that cells of the osteoblast lin-
eage are affected directly by bisphosphonates in a dose-
dependent manner that contributes to the development
of BONJ [42].

In our study, we have shown that some of the long non-
coding RNAs examined, capable of intervening in osteogen-
esis and the activity of osteoclasts, are differently expressed
in patients with BONJ.

Regarding the influence of DANCR (Differentiation
Antagonizing Nonprotein Coding RNA) on bone metabo-
lism, it decreases osteogenic differentiation blocking the
p38MAPK pathway [43] and inhibiting the Wnt/β-catenin
pathway [44]. Moreover, this lncRNA decreases the expres-
sion of the transcription factor FOXO1, which in turn
increases osteoblast differentiation and reduces osteoblast
proliferation [45, 46]. A study aimed at evaluating DANCR
expression in human periodontal ligament stem cells dem-
onstrated that downregulation of DANCR was crucial for
osteogenesis [47]. Our results show reduced expression of
DANCR in MM patients with BONJ. Lower lncRNA levels
in MM patients with BONJ could correlate with the inhibi-
tion in osteoblast differentiation, which in turn affects the
jaws during the development of lesions.

The downregulation of MALAT1 (Metastasis-Associated
Lung Adenocarcinoma Transcript 1) could have a similar
meaning. It controls concentrations of integrins, such as
ITGB1, which perform a relevant action in osteoclast genesis
and cytoskeletal structure [48]. MALAT1 regulates miR-124
which in turn negatively controls bone formations and
osteogenic differentiation by working with Dlx transcrip-
tion factors [49].

Our data revealed significant downexpression ofMALAT1
compared to both the controls and MM patients, probably
related to increased osteoclast genesis associated with bone
lesions.

Through different mechanisms, also the upregulation of
some lncRNAs could have a negative action on osteogenesis.

HOTAIR (HOX Transcript Antisense RNA) can inhibit
osteogenic differentiation. It was observed that the expres-
sion of HOTAIR was greater in patients with nontraumatic
osteonecrosis of the femoral head (ONFH) compared with
osteoarthritis samples. The concentration of osteogenic dif-
ferentiation biomarkers, comprising COL1A1 and RUNX2
mRNA levels, was increased by si-HOTAIR [50]. Moreover,
HOTAIR is mechanoresponsive and therefore may have an
action in mechanically controlled calcification.

HOTAIR revealed higher expression in MM patients
with BONJ compared to both controls and MM patients.
These results were in line with the findings found in nontrau-
matic osteonecrosis of the femur, indicating that this lncRNA
could negatively control osteogenic proliferation and differ-
entiation [50].

A partially different effect could instead be exercised by
the upregulation of H19. It is a 2.3 kb lncRNA that can con-
trol numerous components with a regulatory action on oste-
ogenesis [51]. H19 can operate as a “sponge” to reduce the

Table 2: Primers used for RT-qPCR analysis of lncRNAs.

Gene Forward primer 5′-3′ Reverse primer 5′-3′
β-Actin TTGTTACAGGAAGTCCCTTGCC ATGCTATCACCTCCCCTGTGT

CTD-2201E18 TCTATGCTCCTCCTGCTTACG GGCGGTTCCTCTTCTGATGTA

CTD1-2003C8 GGAGGCTGGAGGAAGAGATAAG GTATGGAGAAGCTGCAGGCA

DANCR GCCACTATGTAGCGGGTTTC CGTAAGAGACGAACTCCTGGA

H19 CCAGAACCCACAACATGAAAG TCACCTTCCAGAGCCGATT

HIF1A-AS2 ATGAGTTGGAGGTGTTGAAGC TTTGCTCTTTGTGGTTGGATCT

HOTAIR T1 GCACTCACAGACAGAGGTTTA CTCTGTACTCCCGTTCCCTAGA

HOTTIP T2 CAGGTTTGTCTGAGAGGGATG CGCCACATTTAAGGAGCAAAG

JHDMD1 CCACAACACCCAAATAAGGACT GGAGGGATTCACAGGCATTT

MALAT1 GGAAAGCGAGTGGTTGGTAA ATCCCTTTACACCTCAGTACGA

MANTIS CTGCTTACTCCTGTCAACCAA TTTCTATTACCGATGCCTTTCTGT

MEG3 GTCTTCCTTCCTCACCTCCAA TGCTTCCATCCGCAGTTCTT (A)

MTMR9LP GTGACAGGAAGGGAGAAGACAG CAAGGAGCCAGTGCTTAGAATAG

R-471B22 ACAGAGACAGAGAACCAACCA GAGGCAATCAGAACACCGAAT

RP1-286D6 TGAGCTGAGCAGTGTCCTTA CCTCCTGTTCGTGAGTCTCT

RP1-43E13 AAGCAGGTGGTAGCGACTTG TTGGCTCTGGAGACGGAAT

RP11-553L6.5 GCAGTTTCCATTTCCCAGTG TGCCTCTCCCTCTTTCCAAA

TP73-AS1 T1 CGGGATCTCACAGGCTTTAAA ATCCCCGGCTCCCATCTA
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Figure 1: Continued.
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action of microRNAs that modulate the expression of proos-
teogenic proteins, including the Wnt/β-catenin pathway and
its target genes.

Our data revealed an increase in H19 expression levels
compared with both the controls and MM patients, and this,
in turn, could negatively influence osteogenesis.

Among the potential mechanisms capable of inducing
BONJ, an essential role is attributed to the possibility that
bisphosphonates may have an antiangiogenetic action capa-
ble of delaying wound healing and/or affecting microinfarc-
tion in bone and/or soft tissues [52].

In this context, a different production pattern of lncRNAs
could also play an essential role, and the overexpression of
lncRNAs such as MEG3 (Maternally Expressed 3) or Jumonji
could result in an important suppression of vascularization in
patients with BONJ.

The MEG3 lncRNA gene can modify the expression
of angiogenesis-promoting genes [53] while, in MEG3-
knockout mice, augmented expression of VEGF pathway
genes and microvessel density were reported [54, 55]. Our
results show that MEG3 is upregulated in MM patients with
BONJ compared to controls and MM. It is conceivable that
its action on angiogenesis could play a role in the onset of
avascular necrosis typical of BONJ.

The overexpression of Jumonji C could have an analo-
gous meaning. It can reduce angiogenesis [56], and its
increase could contribute to the onset of microinfarcts typical
of BONJ.

Regarding the particular meaning that the overexpres-
sion of lncRNA HOTTIP (HOXA transcript at the distal

tip) could assume, some findings suggest that systemic bis-
phosphonate treatment influences the activity of chondro-
cytes [57]. HOTTIP has been reported to interact with
WDR5, forming a complex with TWIST1 [58]. In cranial
bones, Twist1 induces a reduction of chondrogenesis via
β-catenin [59]. Moreover, this lncRNA is an enhancer that
controls the activity of 5′ HOXA genes to regulate the elonga-
tion of skeletal components via epigenetic mechanisms.

Data obtained from the present study revealed that HOT-
TIP was significantly overexpressed in MM patients with
BONJ compared to either the controls or MM, indicating a
possible inhibiting effect on chondrogenesis and osteogenesis.

Finally, it is worth noting that a change in the expression
of some lncRNAs may have a protective action against the
onset of BONJ.

TP73 antisense 1 (alias PDAM/TP73-AS1) may control
apoptosis-modulating p53-dependent antiapoptotic genes.
In bone metabolism, HMGB1 is correlated with angiogenesis
and bone remodelling by osteoclast and osteoblast activation.
It stimulates bone healing in the tooth extraction socket [60].
In our study, TP73-AS1 was upregulated in MM patients
with ONJ compared to both controls and MM. High TP73-
AS1 levels may contribute to bone healing. Therefore, an
increase in lncRNA could have a protective meaning for the
onset of BONJ.

Similarly, the overexpression of other lncRNAs could
positively modify both angiogenesis and osteogenesis.

MANTIS is expressed in endothelial cells, and a reduc-
tion of MANTIS expression causes altered endothelial
sprouting and decreases endothelial migration [61, 62].
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Figure 1: RT-qPCR analysis of DANCR (a), MALAT1 (b), HOTAIR (c), MEG3 (d), H19 (e), TP73-AS1 (f), HOTTIP (g), HIF1A-AS2 (h),
MANTIS (i), JHDMD1 (j), MTMR9LP (k), CTD-2201E18 (l), CTD1-2003C8 (m), R-471B22 (n), RP1-43E13 (o), RP11-553L6.5 (p), and RP1-
286D6 (q) lncRNA expression levels in multiple myeloma patients (MM) without and with bisphosphonate-induced osteonecrosis of the jaw
(BONJ). Values are expressed in a log2 scale as the fold change with respect to the healthy controls. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs.
controls; °p < 0:05, °°p < 0:01, and °°°p < 0:001 vs. multiple myeloma patients (MM).
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Current literature has demonstrated that bisphosphonates
have a strong negative influence on angiogenesis, revascular-
ization, and microvessel sprouting. MANTIS is upregulated
in MM patients with BONJ compared to either controls or
MM. It is conceivable that this increment is due to a tissue
effort to allow bone regeneration.

HIF1A-AS2 lncRNA eases the increase in HIF-1α by
sponging to miR-153-3p, also promoting angiogenesis. Fur-
thermore, HIF1A-AS2 increases osteogenic differentiation
of adipose-derived stem cells via miR-665/IL-6 through the
PI-3K/Akt signalling pathway, augments concentrations of
osteoblast markers osteocalcin, Runx2, and osterix, and
increases ALP activity [63]. Since our results showed an
increase in HIF1A-AS2 in MM patients with ONJ compared
with both healthy controls and MM patients, it may have a
protective action against the progression of osteonecrosis.

Finally, in different studies, MTMR9LP, RP1-286D6
(GenBank: AL365330.16), RP1-43E13.2 (GenBank: AL357564.
17), RP11-553L6.5 (GenBank: AC093010.7), CTD-2201E18
(GenBank: AC008875.9), CTD1-2003C8 (GenBank: AC0693
60.7), and R-471B22 (GenBank: AL512791.3) were identified
as prognostic markers, since they positively correlated with the
survival ofMMpatients [16, 64]. Our data showed that all these
lncRNAs (except MTMR9LP) were significantly overexpressed
in MM patients with BONJ compared to either MM patients
or controls.

These lncRNAs are implicated in several pathways con-
nected to MM progression. However, the real action of these
lncRNAs on the onset of BONJ is not well known [65] and
needs further investigation to unravel its molecular mecha-
nisms. Moreover, their different expression in MM patients
with or without BONJ compared to controls could also be
due to the bidirectional influence of the tumour microenvi-
ronment (i.e., osteoblasts, osteoclasts, endothelial cells, and
bone marrow stromal cells) on MM cells and vice versa,
which is crucial for malignant plasma cell proliferation and
the development of drug resistance [66]. In fact, recent
research has identified molecular interactions between mye-
loma cells and the bone marrow microenvironment, which
can also be disruptive to the environment that supports
them, thus leading to myeloma development and associated
complications, such as bone lesions due to osteolysis [67].
Also, at the same time, a better understanding of the signal-
ling pathways involved in myeloma has led to the develop-
ment of new targeted therapies, which are improving the
quality of life for patients and significantly extending median
patient survival [68].

5. Conclusions

An increasing body of evidence shows that lncRNAs can be
targeted to treat cancers. Moreover, many studies have also
demonstrated that regulatory components controlling
lncRNA modification can also be targeted for tumour treat-
ment [69].

Due to their specificity, lncRNAs may be better therapeu-
tic targets than current protein-coding genes for several
tumours. However, at present, little is known about the activ-
ity of the majority of lncRNAs in the onset, progression, and

diffusion of cancer. Therefore, their employment as thera-
peutic targets requires a great quantity of investigation. Nev-
ertheless, lncRNAs represent an incalculable prospective as
powerful controlling molecules, and they could be used not
only as a biomarker but also as therapeutic targets [70]. The
expression of lncRNAs can be blocked using RNAi tools,
which have been created to knockdown lncRNAs. A different
approach could be represented by antisense oligonucleotides
or small-molecule inhibitors. Finally, gene therapy can be
tried for the release of favourable cancer-suppressive
lncRNAs [71, 72].

The introduction of the modulation of lncRNA activity
into clinical practice to treat BONJ is certainly still a prema-
ture hypothesis. Albeit our study is preliminary and has some
limitations regarding the number of subjects studied (too
small to draw definitive conclusions), future interesting stud-
ies are needed to analyze lncRNA expression levels in the
osteoclasts affected by bisphosphonates, thus leading to
BONJ. Finally, it could be also appropriate to evaluate the
targets of the analyzed lncRNAs and check the involved path-
ways (PI3K/Akt, mTOR signalling, and p38/MAPK) to fur-
ther highlight the importance of the lncRNA expression
profile in BONJ.

In the end, studying the effects of lncRNAs on different
aspects of MM and BONJ pathophysiology could help us to
better understand the intimate mechanisms that regulate
the onset and progression of these diseases and make their
treatment easier.
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