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Abstract

The CAGI-5 PCM1 challenge aimed to predict the effect of 38 transgenic human missense 

mutations in the Pericentriolar Material 1 (PCM1) protein implicated in schizophrenia. 

Participants were provided with 16 benign variants (negative controls), 10 hypomorphic, and 12 

loss of function variants. Six groups participated and were asked to predict the probability of effect 

and standard deviation associated to each mutation. Here, we present the challenge assessment. 

Prediction performance were evaluated using different measures to conclude in a final ranking 

which highlights the strengths and weaknesses of each group. The results show a great variety of 

predictions where some methods performed significantly better than others. Benign variants 

played an important role as negative controls, highlighting predictors biased to identify disease 

phenotypes. The best predictor, Bromberg lab used a neural-network based method able to 

discriminate between neutral and non-neutral single nucleotide polymorphisms. The CAGI-5 

PCM1 challenge allowed us to evaluate the state of the art techniques for interpreting the effect of 

novel variants for a difficult target protein.
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INTRODUCTION

Next generation sequence techniques produce new gene and genome sequences every day, 

providing lots of genetic information that is still unanalyzed (Niroula & Vihinen, 2016). 

Furthermore, genetic analysis is performed more frequently to study human diseases and 

consequently thousands of variants of unknown significance (VUS) appear. The scientific 

community has been making a big effort in developing computational tools that allow a 

better interpretation of VUS and genomic information. However, there is still plenty of work 

which has to be done to improve the current state of art. Critical Assessment of Genome 

Interpretation (CAGI) experiment has been running since 2010 with the aim to assess the 

state of art of computational methods which try to predict the phenotypic impact of genomic 

variations.

Here, we present the assessment of the CAGI-5 Pericentriolar Material 1 (PCM1) challenge. 

Predictors were asked to predict the pathogenicity of 38 transgenic human missense 

mutations in the PCM1 gene. The PCM1 gene maps to the human chromosome 8p22. The 

protein encoded by this gene is localized on centriolar satellites and has an important role in 

the radial organization of microtubules and the recruitment of proteins to the centrosome 

(Dammermann & Merdes, 2002; Villumsen et al., 2013). PCM1 is recruited to the 

centrosome to form a complex with the Bardet-Biedl syndrome 4 (BBS4) and Disrupted in 

Schizophrenia-1 (DISC1) proteins (Ansley et al., 2003; Guo et al., 2006). Suppression of 

one of these proteins could lead to neuronal migration defects (Kamiya et al., 2008). PCM1 

is a large protein of 2,024 amino acids without known crystal structures. Database 

annotations in UniProt (The UniProt Consortium, 2017) show several coiled coil regions, 

while MobiDB (Piovesan et al., 2018) predicts regions of intrinsic disorder accounting for 
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about 40% of the sequence. Linkage analysis has shown that the PCM1 gene has a role in 

susceptibility to schizophrenia in humans and is associated with orbitofrontal gray matter 

volumetric deficits (Gurling et al., 2006). Indeed, a candidate pathogenic mutation on this 

gene has been reported in an affected family (Kamiya et al., 2008). The effects of PCM1 

haploinsufficiency have been studied on model animals, whereas affected mice show a 

significant reduction in brain volume and behavioral alterations (Zoubovsky et al., 2015). In 

addition to being risk factors for schizophrenia, several studies have also implicated some 

PCM1 component in genetic susceptibility to cancers and other mental diseases (Kamiya et 

al., 2008; Zoubovsky et al., 2015).

Ventricular enlargement is one of the most consistent abnormal structural brain findings in 

schizophrenia. A set of 38 transgenic human PCM1 missense mutations implicated in 

schizophrenia were assayed in a zebrafish model to determine their impact on the posterior 

ventricle area. The CAGI challenge aims to predict whether variants implicated in 

schizophrenia impact zebrafish brain development determining a reduction in the ventricular 

area of the brain. In particular, in addition to classifying benign variants, predictors have to 

distinguish between loss of function and hypomorphic variants. This challenge presents new 

difficulties for current state of the art predictors using different strategies to predict variant 

effects, while the variability of results suggests that we are far from a general pathogenicity 

predictor, some groups have promising results in this challenge.

MATERIALS AND METHODS

Experimental data

The Katsanis lab assessed 38 PCM1 missense mutations in a zebrafish model. The native 

zebrafish embryo PCM1 protein was suppressed by injecting morpholino (MO) antisense 

oligonucleotides to inhibit translation of mRNA of the PCM1 gene. MOs are stable 

molecules consisting of a large, non ribose morpholine backbone with four DNA bases 

pairing stably with mRNA at either the translation start site (to disrupt protein synthesis) or 

at intron-exon boundaries (to disrupt mRNA splicing) (Summerton & Weller, 1997). 

Morpholinos have been shown to bind and block translation of mRNA in vitro, in tissue 

culture cells, and, in vivo (Davis, Frangakis, & Katsanis, 2014). Embryos deficient in PCM1 

function show an absence of brain ventricle formation.

For each mutation, the Katsanis lab injected a group of embryos with MO and the mRNA of 

the human gene carrying the mutation (MO+VAR). Brain ventricle formation of the group of 

(MO+VAR) animals was compared to brain ventricle formation measured in a group of 

animals with MO alone and a group with MO+WT. The ventricle space is filled with a 

fluorescent dye and imaged by brightfield and fluorescence microscopy to access the effect 

on mutations on ventricle size (Gutzman & Sive, 2009; Niederriter et al., 2013). Each image 

was processed with an automated image processing tool to quantify the ventricle structure 

volume (Mikut et al., 2013; Näslund & Johnsson, 2016). P-values for statistically 

significantly different brain ventricle volumes between pairs of conditions (Lowery, De 

Rienzo, Gutzman, & Sive, 2009) were obtained using Student’s t-test with a confidence level 

of 95%. The functional effect of each variant was then assigned as follows. When the p-

value for (MO+VAR) is not significantly different from MO (p-value > 0.05), but 
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significantly different from MO+WT (p-value < 0.05), the variant is pathogenic or loss of 

function. If the p-value (MO+VAR) is significantly different from MO, but not from MO

+WT, the variant is benign. When the p-value for (MO+VAR) is significantly different from 

MO, and also significantly different from MO+WT, the variant is hypomorphic or partial 

loss of function.

The experiment was performed in duplicate, blind to injection and the experimental data 

provided by the Katsanis lab is shown in Table 1. The dataset is composed of 16 benign 

variants (negative controls), 10 hypomorphic, and 12 loss of function variants. In 

percentages, 42% of the variants are benign and 58% have some functional effect (~32% 

loss of function and ~26% hypomorphic).

Dataset and classifications

The challenge presents 38 transgenic human PCM1 missense mutations implicated in 

schizophrenia (Experimental data URL: https://genomeinterpretation.org/content/PCM1). 

These variants were assayed in a zebrafish model to determine their impact on the posterior 

ventricle area as previously explained. Each variant codes for a single amino acid 

substitution, showing no insertions or deletions. The variant number used in this work refers 

to PCM1 mRNA (GenBank identifier: NM_001315507). Participants were asked to predict 

the probability (p-value) of the effect of the variants on zebrafish brain development. These 

p-values were predicted considering the two different case scenarios: the probability that the 

variant (MO+VAR) is significantly different from MO and the probability that the variant is 

significantly different from MO+WT. In addition, predictors were also allowed to specify the 

standard deviation (SD) which defines the confidence of each prediction. Large SD means 

low confidence, while small SD means that the predictor is confident about the submitted 

prediction. According to the predicted probabilities and their interpretation, the participants 

had to inform the functional effect of the variant which could be: pathogenic, hypomorphic 

or benign. Six out of seven submissions reported for all the variants the p-values, SD and 

functional effect.

Performance assessment

The performance evaluation of bioinformatics tools aiming to predict VUS is a non-trivial 

problem, as the assessment should be more than a discrimination between good and bad 

predictions. In this challenge participants were requested to predict the p-values associated 

to each variant under two different conditions. According to the data provider results, the 

functional effects of each variant could be: benign, pathogenic (loss of function) and 

hypomorphic (partial loss of function). Even though one of the challenge was to predict the 

p-values relative to the changes from MO and MO+WT, it was a very difficult task to begin 

with. After analyzing the correlation between experimental and predicted p-values in the two 

experimental conditions, we found that Pearson correlation coefficients range between −0.29 

and 0.23 for different submissions, showing that there is no relationship between 

experimental and predicted p-values. Predicted p-values were therefore not taken into 

account to perform the assessment and consequently the use of global evaluation metrics as 

ROC or precision-recall curves was not possible. This is why we only used the predicted 

variant effect informed by the authors to address the final ranking.
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To assess further the prediction reliability in a medical setting, a binary classification was 

used based on the variant predicted effects. The three variant effects mentioned above were 

reorganized as a binary classification, benign and pathogenic (loss of function and 

hypomorphic were considered together). A set of measures were implemented in order to 

perform a thorough assessment and to obtain a better description about predictor 

performance (Vihinen, 2012). The aim was to produce a global overview of the strengths and 

weaknesses of each method. For each submission we calculate five different scores to assess 

the quality of the binary prediction: Balanced Accuracy (BACC), Matthews Correlation 

Coefficient (MCC), F1 score (F1), True Positive Rate (TPR) and True Negative Rate (TNR). 

All measures are defined in more detail in the Suppl. Material. The final ranking of predictor 

performances was the average of the individual rankings produced by each measure. To 

assess the statistical significance of each performance index, we generated 10,000 random 

predictions and used these data to estimate an empirical continuous score probability 

distribution (s). The p-value is then calculated by defining the proportion of random 

predictions scoring > s.

The R scripts used to perform the assessment are publicly available from the GitHub 

repository at URL: https://github.com/BioComputingUP/CAGI-PCM1-assessment.

Groups description

This challenge received 7 submissions from 6 different groups which were assessed blindly. 

Only one group (Bromberg lab) contributed with two submissions. Group 3 submitted an 

empty template and method description and consequently was not considered in the 

assessment. After completing the assessment, all groups provided their name and 

affiliations. Table 2 lists the participating groups, ID, name, and method used. Group 1 

(Casadio lab) based their predictions on the Disease Index matrix (Casadio, Vassura, Tiwari, 

Fariselli, & Luigi Martelli, 2011), which measures how protein stability is affected by 

mutations. Group 2 (Lichtarge lab) uses their Evolutionary Action approach (Katsonis & 

Lichtarge, 2014) to relate the variant effect with the evolutionary fitness effect. Group 4 

(Bromberg lab) performed the predictions for their first submission using SNAP (Bromberg 

& Rost, 2007; Bromberg, Yachdav, & Rost, 2008), a neural network-based method for the 

prediction of the functional effects of non-synonymous SNPs. In their second submission, 

predictions were depending on fuNTRp (Miller et al., submitted), a Random Forest-based 

method to classify protein positions based on the expected range of possible mutational 

impacts per position (Neutral positions = no or weak effects; Rheostat positions = range of 

effects, i.e. functional tuning; Toggle positions = mostly strong effects). Group 5 (Carter lab) 

analyzed each variant with VEST (Carter, Douville, Stenson, Cooper, & Karchin, 2013), 

assigning to each mutation a score indicating confidence in a functional mutation. Group 6 

(BioFolD unit) used the SNPs&GO (Emidio Capriotti et al., 2013) and PhD-SNP (E. 

Capriotti, Calabrese, & Casadio, 2006) methods. A more detailed description of the methods 

used by each group can be found in the Suppl. Material.
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RESULTS

Participation and similarity between predictions

In the PCM1 CAGI-5 challenge, participants were requested to predict the probability of the 

effect caused by 38 variants on zebrafish brain development. Essentially, the predicted 

probability allowed to infer three kinds of functional effects associated to each variant: 

benign, hypomorphic (partial loss of function), and loss of function. We performed a 

correlation analysis between submissions to address the similarity. Then we divided the 

predictions in two subsets: variants predicted as loss of function and predicted as 

hypomorphic. Figure 1 shows the two predictions submitted by Bromberg lab obtained the 

same probability values for each variant. Both predictions used SNAP (Bromberg & Rost, 

2007; Bromberg et al., 2008) to predict the p-values but differed in the way the variant is 

classified. Their submission 2 used fuNTRp (Miller et al., submitted), a tool based on 

random forest that predicts position types (i.e. expected range of variant effects per 

position). Another observation from this analysis is that most groups predicted very different 

p-values, highlighting difficult of this challenge. We can also observe some weak positive 

and negative correlations between groups. On one hand we have a weak positive correlation 

between groups 4 and 6, possibly because predicted p-values are quite similar in some 

variants. Groups 2 and 5 also show a positive weak correlation possibly because predicted p-

values in both groups are close to zero. On the other hand, we have some weak negative 

correlations between groups which have predicted opposite probability values for some 

variants, such as groups 2 and 5 versus groups 4 and 6.

Assessment criteria and performance evaluation

The evaluation criteria used to assess a CAGI challenge directly influence perceptions 

gained from the test. In order to highlight predictor performance and their practical 

relevance, we performed the evaluation only considering the predicted functional effect of 

each variant provided by the participants. As most submissions reported the predicted p-

values, we tried first to perform the assessment as an inherently continuous prediction 

challenge. After some exploratory analysis, we concluded that predicted p-values among all 

submissions did not agree at all with the experimental p-values and also with the 

interpretation of the p-values to infer the functional classes (Figure 2 and Figure 3). For this 

reason, we decided to perform the assessment using only the predicted functional class of 

each mutation.

The performance was evaluated using five standard measures as described above. Our 

assessment shows that the six submissions achieved in general a poor performance. This is 

highlighted by the MCC values (Figure 4), where most of the submissions have values close 

or below zero. As the average among all submissions is −0.06, this means that the 

correlation between the experimental and predicted variant functional effect is no better than 

random predictions in most of the cases. The highest MCC value is 0.35 and was reached by 

submission 4.1 (Bromberg lab). This submission correctly predicted 10 out of 22 pathogenic 

variants and 14 out of 16 benign variants (Table 3). Then, submission 5.1 (Carter lab) 

obtained the lowest MCC value (−0.35), correctly predicting 12 disease mutations but only 2 

benigns (Table 3).
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For BACC, we can observe that submissions 4.1 (Bromberg lab) and 6.1 (BioFolD), 

performed better than other methods, also considering their MCC values (Figure 4). Since a 

method could be biased to predict the more frequent class, BACC is a good way to calculate 

the accuracy evaluating if the predictor takes advantage or not of an imbalanced test set. 

Consequently, F1 shows values higher than 0.50 for three out seven submissions. F1 

measure considers the precision and recall of the test, submission 1.1 (Casadio lab) obtained 

the highest F1 value of 0.67, followed by submissions 4.1 and 6.1 with 0.59 and 0.53 

respectively. However, if we observe the TNR and confusion matrix of submission 1.1 (see 

Table 3), this predictor presents a biased confusion matrix and was not able to identify any 

benign variants.

To perform a global assessment of each predictor performance we need to take into account 

all performance measures together instead of just comparing them separately. We decided to 

observe the ranking achieved for each submission on each considered measure. Moreover, 

this allows non-expert users to better understand the results of the assessment. The 

Bromberg lab (Submission 4.1) achieved the best overall performance comparing with all 

other predictors, ranking first in BACC and MCC measures, second in F1 and TNR and 

sharing the third place in TNR (see Table 4). BioFolD (submission 6.1) ranked second in 

overall performance, second in BACC and MCC, and third in the other measures. The 

Casadio lab achieved the best rank in F1 and TNR measures and ranking third in overall 

performance. However, their prediction was biased toward diseases phenotypes, with no 

benign variant correctly predicted (Table 3). Something similar but opposite happened with 

the Bromberg lab (Submission 4.2), where the prediction was biased towards benign variants 

and only one disease variant predicted correctly (Table 3). In addition, we can observe that 

MCC values for the two submissions mentioned above are negative (i.e. negatively 

correlated) and almost zero (i.e. close to random). Observing the confusion matrices, we can 

conclude that most submissions produced unbalanced predictions biased towards the 

prediction of disease phenotypes.

Considering the poor performance of most predictors, we only calculated the statistical 

significance of submission 4.1 (Bromberg lab) for the BACC, MCC and F1 measures. A 

bootstrap with 10,000 replicas was used to test whether the performance of submission 4.1 

could be achieved by chance. We can conclude that it performs better than random (p-value 

< 0.05) for MCC and BACC measures (see Suppl. Figure S1). The only exception is F1, 

denoting unbalanced predicted classes from the real data.

Another interesting aspect of this challenge is to see how each group correctly predicted the 

real disease effect, loss of function and hypomorph. In Suppl. Table S1 we can see the 

contingency matrices split into three categories. Most of the groups had difficulties 

identifying the correct disease class. Submission 4.1 correctly predicted 4 hypomorph 

variants and no loss of function one. Submission 6.1 correctly identified one loss of function 

and one hypomorph variant. On the other hand, submission 1.1, which was biased to predict 

disease variants, correctly predicted 6 hypomorph and 4 loss of function.

Monzon et al. Page 7

Hum Mutat. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Difficult variants

Looking at the predicted functional effects for each variant, we can see that some were 

particularly complex to be predicted (Figure 5). The functional effect (benign and 

pathogenic) was well predicted for 41% of the proposed variants by more than half of the 

predictors. Due to the limited structural characterization of PCM1 is difficult to analyze the 

structural properties of each residue. We tried to explore further some properties of PCM1 

using FELLS (Piovesan, Walsh, Minervini, & Tosatto, 2017). Disease variant p.G892W was 

correctly predicted by all submissions and that position presents high propensity to be coil 

and disordered. On the other hand, disease variant p.E23D was not identified by any 

predictor and shows high propensity to be disordered.

There are 15 variants where most groups failed to correctly predict their effect (<50% 

correctly predicted): 4 benign, 5 hypomorphs (disease) and 6 loss-of-function (disease). 

Interestingly, submission 1.1 (Casadio lab) predicted correctly five of these 15 disease 

mutations. However, this predictor was biased towards pathogenic variants and not able to 

identify any benign. The PCM1 challenge highlights how some variants are really hard 

targets for most of the methods.

DISCUSSION

The determination of novel variant effects is a key challenge of great value for clinicians. 

Due to the diversity and complexity of the biological systems, a variant could impact at 

different levels such as protein function, subcellular localization, metabolic pathways, 

among others (Hamp & Rost, 2012). The best predictor should be able to discriminate 

between pathogenic and benign variants. Here, we presented the assessment of the CAGI-5 

PCM1 challenge. This challenge is based on the prediction of the probability of missense 

variant effects, in analogy to the CAGI-3 p16 challenge (Carraro et al., 2017). While the p16 

challenge was testing the ability to predict cell proliferation rate, the PCM1 challenge is 

focused on predicting the probable variant effect on zebrafish brain development. PCM1 is a 

component of centriolar satellites occurring around centrosomes in vertebrate cells 

(Dammermann & Merdes, 2002; Kubo & Tsukita, 2003). It also interacts with BBS4 and 

DISC1 (Kamiya et al., 2008; Miyoshi et al., 2004) and has an important role in centrosome 

formation, which is needed for proper neurodevelopment (Ayala, Shu, & Tsai, 2007; Gupta, 

Tsai, & Wynshaw-Boris, 2002; Mochida & Walsh, 2004; Solecki, Govek, Tomoda, & 

Hatten, 2006; Tsai & Gleeson, 2005). The Katsanis lab provided experimental data for 38 

missense mutations in PCM1 in a zebrafish model. The experimental effect determined by 

the data providers is unambiguous and resulted of brain brain ventricle volumes between 

MO and MO+WT. This kind of comparison studies have been performed in the past and the 

specificity/sensitivity metrics have been reported to be high (Zaghloul et al., 2010).

Submissions were compared with experimental data to evaluate their prediction 

performance. Using a set of performance measures highlighting strengths and weaknesses of 

each predictor similar to previous CAGI assessments (Carraro et al., 2017).

From a technical point of view, the groups used different approaches to predict p-values and 

variant effect, ranging from machine learning to position-specific scoring matrices. The 
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assessment suggests that most state-of-art predictors participating in this challenge were not 

sufficient to perform reliable variant effect predictions. The absence of structural 

information and high disorder content make this protein challenging, especially for 

predictors based on structural information. The MCC values reached by different 

submissions are subpar, close to random prediction. MCC is one of the best measures to 

handle unbalanced data, since some predictions were biased to identify disease or benign 

phenotypes (Boughorbel, Jarray, & El-Anbari, 2017). The best MCC and BACC values were 

reached by submission 4.1 (Bromberg lab), showing also the best overall ranking. They 

correctly predicted 10 out of 22 disease variants and 14 out of 16 benign variants (Table 3). 

However, if we look at the disease class considering loss of function and hyphomorph, 

submission 4.1 correctly predicted only 4 hypomorph variants. Showing again the difficulty 

in p-values interpretation (Suppl. Table S1). Anyway, these results suggest that SNAP 

(Bromberg & Rost, 2007; Bromberg et al., 2008), a neural network-based method, may be a 

useful method to screen big datasets for pathogenic variants in a similar context.

Interestingly, group 1 (Casadio Lab) obtained a promising TPR of 0.86 and predicted 19 out 

22 disease variants but they could not identify any benign variants. Nevertheless, they 

identified the highest number of loss of function variants (Suppl. Table S1). Conversely, 

group 4 submission 2 reached a high TNR score and predicted 15 out 16 benign variants but 

identified only one disease variant. Group 6 (BioFolD unit) well predicted 10 out 16 benign 

variants and 10 out 22 disease, scoring second considering the overall rank and MCC value. 

We should emphasise here that data imbalance frequently occurs in biomedical applications 

and the use of inadequate performance metrics could lead to misinterpretation of predictors 

performance (Boughorbel et al., 2017).

This CAGI-5 PCM1 challenge evidences that there is still plenty of work to improve the 

pathogenicity prediction of VUS. Despite the generally low performance of predictors, some 

identified a good number of disease and benign variants. However, we still have to improve 

our prediction methods if we want a generic pathogenicity predictor. We expect that the 

CAGI challenges which help motivate research, improving the current methods and 

generating new ideas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Similarity between predicted p-values. A-B) Each cell shows the Pearson correlation 

coefficient between two submissions, with a color scale ranging from green (+1, perfect 

correlation) to red (0, no correlation) and black (−1, perfect anti-correlation).
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Figure 2: 
Predicted p-values with their corresponding standard deviation for each experimental 

condition by group. The x-axis is from 1 to 38 and represents the predicted p-values for a 

particular position (sequentially ordered by the position on the sequence). The y-axis is the 

value of the predicted p-value.

Dot shapes represent the variant effect, with triangles for pathogenic and circles for benign. 

The color indicates the experimental p-value, red for p-value < 0.05 and black for p-value ≥ 

0.05.
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Figure 3: 
Predicted vs. experimental p-values for all submissions. The predicted value (y-axis) is 

plotted against the experimental value (x-axis) for all variants (in the two experimental 

conditions) in each of the 6 submissions.
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Figure 4: 
Submissions performance evaluation. Each cell represents the value of a measure for a 

specific submission. The color scale ranges from dark green (+1, perfect performance) to red 

(−1, perfect anticorrelation just for MCC). White means zero in terms of performance.
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Figure 5: 
Percentage of groups which correctly predicted the effect of each variant. Hypomorph and 

loss of function variants were considered as disease in group predictions. The variants are 

colored by their experimental effect.
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Table 1:

PCM1 experimental data. Variant nomenclature refers to PCM1 mRNA (Refseq transcripts: 

NM_001315507.1, NM_006197.3). Each variant is associated with the corresponding p-values in the two 

evaluated experimental conditions (MO and MO+WT) and the resulting functional effect. Loss of function and 

hypermorphic variantes were evaluated together as a single category.

Nucleotide variant Protein variant p-value from 
MO

p-value from 
MO+WT

Functional effect 
(class)

Functional effect 
(description)

NM_001315507.1:c.17G>A p.(Gly6Asp) 0.067 0.0001 2 loss of function

NM_001315507.1:c.69G>C p.(Glu23Asp) 0.0004 0.0007 1 hypomorph

NM_001315507.1:c.229A>G p.(Thr77Ala) 0.57 0.0001 2 loss of function

NM_001315507.1:c.436A>G p.(Met146Val) 0.0001 0.13 0 benign

NM_001315507.1:c.467C>T p.(Ala156Val) 0.0001 0.0099 1 hypomorph

NM_001315507.1:c.599T>C p.(Met200Thr) 0.28 0.0001 2 loss of function

NM_001315507.1:c.600G>A p.(Met200Ile) 0.0022 0.0049 1 hypomorph

NM_001315507.1:c.641A>G p.(Asp214Gly) 0.0005 0.0013 1 hypomorph

NM_001315507.1:c.742G>C p.(Glu248Gln) 0.53 0.0001 2 loss of function

NM_001315507.1:c.931G>C p.(Glu311Gln) 0.0012 0.0036 1 hypomorph

NM_001315507.1:c.1106A>G p.(Glu369Gly) 0.059 0.0001 2 loss of function

NM_001315507.1:c.1168C>T p.(Pro390Ser) 0.38 0.0001 2 loss of function

NM_001315507.1:c.1414C>G p.(Leu472Val) 0.039 0.0003 1 hypomorph

NM_001315507.1:c.1445G>T p.(Gly482Val) 0.0002 0.0012 1 hypomorph

NM_001315507.1:c.1627G>A p.(Glu543Lys) 0.0001 0.64 0 benign

NM_001315507.1:c.1721A>G p.(Asp574Gly) 0.0044 0.0021 1 hypomorph

NM_001315507.1:c.1811G>T p.(Arg604Leu) 0.0001 0.55 0 benign

NM_001315507.1:c.1870G>A p.(Glu624Lys) 0.0001 0.58 0 benign

NM_001315507.1:c.1977C>G p.(Ile659Met) 0.0001 0.62 0 benign

NM_001315507.1:c.2410A>C p.(Ser804Arg) 0.0001 0.69 0 benign

NM_001315507.1:c.2498G>C p.(Arg833Thr) 0.0001 0.71 0 benign

NM_001315507.1:c.2626T>C p.(Cys876Arg) 0.0033 0.59 0 benign

NM_006197.3:c.2674G>A p.(Gly892Arg) 0.16 0.0007 2 loss of function

NM_001315507.1:c.2750A>G p.(Glu917Gly) 0.19 0.0001 2 loss of function

NM_001315507.1:c.2862G>C p.(Lys954Asn) 0.0001 0.92 0 benign

NM_001315507.1:c.3374A>G p.(Asn1125Ser) 0.0001 0.11 0 benign

NM_001315507.1:c.3823A>G p.(Lys1275Glu) 0.0001 0.32 0 benign

NM_001315507.1:c.4055A>T p.(His1352Leu) 0.012 0.0045 1 hypomorph

NM_001315507.1:c.4082G>A p.(Cys1361Tyr) 0.0003 0.61 0 benign

NM_001315507.1:c.4469C>G p.(Ala1490Gly) 0.0001 0.55 0 benign

NM_001315507.1:c.4603G>A p.(Glu1535Lys) 0.0001 0.59 0 benign

NM_001315507.1:c.4658C>G p.(Ala1553Gly) 0.0015 0.0034 1 hypomorph

NM_006197.3:c.4667G>A p.(Gly1556Asp) 0.36 0.0001 2 loss of function
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Nucleotide variant Protein variant p-value from 
MO

p-value from 
MO+WT

Functional effect 
(class)

Functional effect 
(description)

NM_006197.3:c.5583A>C p.(Lys1861Asn) 0.0001 0.13 0 benign

NM_006197.3:c.5625T>G p.(Asn1875Lys) 0.087 0.0001 2 loss of function

NM_006197.3:c.5720G>A p.(Arg1907His) 0.0001 0.12 0 benign

NM_006197.3:c.5738C>T p.(Pro1913Leu) 0.75 0.0027 2 loss of function

NM_006197.3:c.5935G>T p.(Ala1979Ser) 0.72 0.0027 2 loss of function
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Table 2:

Predictions overview. Each submission is associated to the predictor group and a summary of the features used 

for the prediction.

Submission ID Group ID Prediction features

Submission 1.1 Group 1 (Casadio lab) Protein stability

Submission 2.1 Group 2 (Lichtarge lab) Evolutionary action

Submission 3.1 Group 3 No predictions made

Submission 4.1 Group 4 (Bromberg lab) Conservation, annotation

Submission 4.2 Group 4 (Bromberg lab) Conservation, annotation

Submission 5.1 Group 5 (Carter lab) Annotation

Submission 6.1 Group 6 (BioFolD unit) Metaprediction
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Table 3:

Confusion matrices for all submissions. Disease category contains hypomorph and loss of function variants.

Submission 1.1 Submission 2.1 Submission 4.1

Obs. 
Disease

Obs. 
Benign

Obs. 
Disease

Obs. 
Benign

Obs. 
Disease

Obs. 
Benign

Pred. 
Disease

19 16 Pred. 
Disease

8 6 Pred. 
Disease

10 2

Pred. 
Benign

3 0 Pred. 
Benign

14 10 Pred. 
Benign

12 14

Submission 4.2 Submission 5.1 Submission 6.1

Obs. 
Disease

Obs. 
Benign

Obs. 
Disease

Obs. 
Benign

Obs. 
Disease

Obs. 
Benign

Pred. 
Disease

1 1 Pred. 
Disease

12 14 Pred. 
Disease

10 6

Pred. 
Benign

21 15 Pred. 
Benign

10 2 Pred. 
Benign

12 10
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Table 4:

Submissions ranking. Individual and overall rankings among all submissions based on the performance 

measures considered. Each cell contains the ranking of a submission for a specific performance measure and 

in brackets the performance value. The overall final ranking is obtained by the average rank achieved for each 

submission considering all the performance measures.

Submission ID BACC MCC F1 TPR TNR Avg. Ranking Final rank

Submission 4.1 1 (0.67) 1 (0.35) 2 (0.59) 3.5 (0.46) 2 (0.88) 1.9 1

Submission 6.1 2 (0.54) 2 (0.08) 3 (0.53) 3.5 (0.46) 3.5 (0.63) 2.8 2

Submission 1.1 5 (0.43) 5 (−0.25) 1 (0.67) 1 (0.86) 6 (0) 3.6 3

Submission 2.1 3 (0.49) 3 (−0.01) 5 (0.44) 5 (0.36) 3.5 (0.63) 3.9 4

Submission 4.2 4 (0.49) 4 (−0.04) 6 (0.08) 6 (0.05) 1 (0.94) 4.2 5

Submission 5.1 6 (0.34) 6 (−0.35) 4 (0.5) 2 (0.55) 5 (0.13) 4.6 6
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