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Abstract

A biomarker is a “characteristic that is measured as an indicator of normal biological processes, 

pathogenic processes, or responses to an exposure or intervention, including therapeutic 

interventions.” Recently, calls for a biomarker for ocular surface diseases have increased, and 

advancements in imaging technologies have aided in allowing imaging biomarkers to serve as a 

potential solution for this need. This review focuses on the state of imaging biomarkers for ocular 

surface diseases, specifically non-invasive tear break-up time (NIBUT), tear meniscus 

measurement and corneal epithelial thickness with anterior segment optical coherence tomography 

(OCT), Meibomian gland morphology with infrared meibography and in vivo confocal 

microscopy (IVCM), ocular redness with grading scales, as well as cellular corneal immune cells 

and nerve assessment by IVCM. Extensive literature review was performed for analytical and 

clinical validation that currently exists for potential imaging biomarkers. Our summary suggests 

that the reported analytical and clinical validation state for potential imaging biomarkers is broad, 

with some having good to excellent intra- and inter-grader agreement to date. Examples of these 

include NIBUT for dry eye disease (DED), ocular redness grading scales, and detection of corneal 

immune cells by IVCM for grading of inflammation and monitoring. Further examples are nerve 

assessment by IVCM for monitoring severity of diabetes mellitus and neurotrophic keratitis, and 

corneal epithelial thickness with anterior segment OCT for diagnosis of early keratoconus. 

However, additional analytical validation for these biomarkers is required prior to clinical 

application as a biomarker.
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A biomarker has been defined by the United States National Institutes of Health (NIH) as a 

“characteristic that is measured as an indicator of normal biological processes, pathogenic 

processes or responses to an exposure or intervention, including therapeutic interventions”, 

while a biomarker signature is a collection of measures that together serve as a biomarker.1 

Molecular-, epigenetic-, cellular-, and tear film protein-based biomarkers have previously 

been proposed.2-4 Further, quantification of medical images has also been proposed for 

potential biomarker application.5 The Quantitative Imaging Biomarkers Alliance (QIBA) has 

defined a quantitative imaging biomarker as “an objective characteristic derived from an in 

vivo image measured on a ratio or interval scale as indictors of normal biological processes, 

pathogenic processes, or a response to a therapeutic intervention”.5

Biomarkers provide an objective, measurable method of evaluating a disease process. Some 

biomarkers aim to diagnose disease, which has an obvious translation to clinical care, but 

can also help researchers to more precisely identify the disease and thereby also identify the 

risk factors and early signs of the disease. Identification of the early signs of disease could 

lead to earlier treatments and better health outcomes for patients. Other biomarkers will 

allow drug developers to measure the effectiveness or safety of treatments. The most 

desirable biomarkers will be easily and rapidly quantifiable and cost-effective.

For assessment of ocular surface disease, many of our current metrics do not provide the 

specificity necessary to differentiate these conditions from each other, or allow proper 

differentiation of severity grades. For example, superficial punctate keratitis can be 

associated with blepharitis, ocular allergies, dry eye disease (DED), demodex, or contact 

lens complications, Therefore, biomarkers that have better specificity may allow patients to 

receive more targeted therapies. In addition, many patients have more than one ocular 

surface condition or several different or concurrent underlying etiologies. Therefore, clinical 

trials treating one condition and using only subjective symptom questionnaires may 

underestimate the effectiveness of treatments because the trial drug is only targeting one of 

the conditions or one underlying factor that results in patient symptoms. Thus, objective 

biomarker are needed for ocular surface disease that could allow for better diagnosics, and 

for monitoring effectiveness of therapeutic interventions.

Any proposed biomarker should thus be evaluated for its analytical and clinical validation 

(Tables 1 and 2).1,6 Analytical validation can be thought of as an evaluation of the imaging 

device and/or classification scheme developed from image parameters and requires 

demonstration of accuracy, precision, and feasibility of the biomarker. Clinical validation 

can be thought of as the evaluation of the imaging parameter’s ability to work as a 

biomarker in the proposed population and/or its association with clinical endpoints. Types of 

biomarkers include susceptibility/risk biomarkers, diagnostic biomarkers, monitoring 

biomarkers, prognostic biomarkers, predictive biomarkers, pharmacodynamics/response 

biomarkers, and safety biomarkers.1 The statistics associated with the validation of 

biomarkers is discussed in more detail within the methods section. In each specific section 

below, the analytical and clinical validation status of potential biomarkers have been defined 

separately and their respective current states has been summarized.
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Methods

The potential imaging biomarkers selected for inclusion in this review were based on 

imaging parameters that could be obtained with devices currently available to clinicians and 

not experimental devices or prototypes. Electronic searches of PubMed were used to analyze 

the literature for each potential biomarker. Search terms included “tear break up time AND 

repeatability,” “tear break up time AND reliability,” “tear break up time AND sensitivity,” 

“tear break up time AND specificity,” “tear break up time AND treatment,” “tear break up 

time AND correlation,” “tear break up time AND dry eye disease,” “non-invasive tear break 

up time,” for NITBUT; “tear meniscus height,” “tear meniscus area,” for tear meniscus 

measurement; “meibography,” “meibomian gland drop out,” “anterior segment optic 

coherence tomography,” for meibomian gland morphology; “in vivo confocal microscopy,” 

and its different combinations with; “corneal nerve,” “corneal density,” “nerve morphology,” 

“nerve tortuosity,” “nerve beading,” “nerve reflectivity,” “nerve thickness,” “neuroma,” 

“neuropathic corneal pain,” “diabetes mellitus,” “systemic disease,” “sensitivity,” 

“specificity,” “keratitis,” “acanthamoeba,” “fungal keratitis,” “demodex,” for corneal nerve 

alterations and qualitative biomarkers; “epithelial corneal thickness,” “keratoconus AND 

anterior segment oct,” “limbal stem cell deficiency AND anterior segment oct,” “subclinical 

keratoconus AND anterior segment oct,” “dry eye disease AND anterior segment oct,” for 

corneal thickness and epithelial thickness; “ocular redness,” “ocular redness grading,” 

“ocular redness scale,” “conjunctival hyperemia,” “bulbar redness,” “bulbar hyperemia,” 

“dendritic cell,” “dendritiform cell, “palpebral inflammation,” “in vivo confocal 

microscopy” for ocular surface inflammation. The results of this search were supplemented 

by abstracts from the authors in order to provide the most updated data available for each 

potential biomarker. Manuscripts/abstracts were examined for the inclusion of one aspect of 

analytical or clinical validation discussed below. After completion of the manuscripts/

abstracts, the results were used to evaluate each potential biomarker’s analytical and clinical 

validation.

Analytical validation should include verification of the accuracy of the biomarker. For 

imaging biomarkers, this verification should prove that the structure within an image is 

being named the correct anatomical structure. Quantitatively, analytical validation includes 

repeatability and reproducibility. Repeatability and reproducibility address the variability 

that is possible between visits in the same subject due to differences in examiner, 

environment, etc. These are often quantified using intraclass correlation coefficients (ICC), 

kappa values (only for categorical data), coefficients of variability/variation (CoV), and the 

repeatability coefficient. If ICC is used, poor, moderate, good, and excellent agreement is 

defined by values of less than 0.50, 0.50 to 0.75. 0.76 to 0.90, and greater than 0.90, 

respectively. If Kappa is used, no, minimal, weak, moderate, strong, and almost perfect 

agreement is defined by values of less than 0.20, 0.21 to 0.39, 0.40 to 0.59, 0.60 to 0.79, 

0.80 to 0.90, and greater than 0.90, respectively. Weighted kappa can also be used, which is 

typically larger than unweighted kappa values, because it takes into consideration the 

amount of disagreement. For example, grades of 1 and 2 for the same image are not 

considered the same amount of disagreement as grades of 1 and 4. This extent of 

disagreement is taken into consideration in a weighted kappa value but not an unweighted 
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kappa. CoV is calculated by dividing the standard deviation by the mean. This ratio, which 

is often represented as a percentage, can be any positive number including zero. If necessary, 

CoV values reported in manuscripts were converted to percentage by the authors. The 

repeatability coefficient is derived from the within subject standard deviation. Ranges 

defining poor, moderate, good, and excellent repeatability do not exist for CoV and 

repeatability coefficient values; however, they can be compared to each other within the 

same biomarker provided the measures are absolute instead of relative.

Statistics required for clinical validation is dependent on the biomarker type being tested. It 

should be noted that a biomarker validated for one purpose does not necessarily mean that it 

can be used for another purpose. For example, a biomarker may be ideal for use as a 

diagnostic biomarker, but not as a monitoring biomarker. Diagnostic biomarkers typically 

are validated by measures of sensitivity, specificity, and/or receiver operating curves. 

Manuscripts reporting significant differences between groups are valuable in identifying 

imaging parameters that could be pursued as potential diagnostic biomarkers. However, the 

diagnostic validation step should consider if more than one disease/condition is capable of 

causing a reduction/increase in a potential biomarker compared to a control group. If this is 

true, the potential biomarker may not be useful in diagnosis due to low specificity. 

Monitoring biomarkers could be validated by correlating changes in the biomarker with 

changes in the status of the disease. Prognostic, predictive, safety, and susceptibility/risk 

biomarkers can be validated with survival analyses and/or odds ratios. Alternatively, these 

biomarker types may be able to be validated by comparing the response of those who were 

administered a therapy to those who were not when the two groups are further divided by 

presence/absence of the biomarker. Pharmacodynamic biomarkers may be validated by 

comparing the change in the biomarker in a group of patients who were given a control/

standard treatment to that of a test treatment/environmental agent.

This review aims to provide an overview of the state of validation of current and potential 

imaging biomarkers for ocular surface diseases. The text provides a descriptive and 

interpreted analysis for each potential biomarker. Supportive quantitative data is provided in 

Tables 3 and 4.

Tear Film Assessment

Non-Invasive Tear Break Up Time (NIBUT)

The tear film plays a key role in maintaining ocular surface health and quality vision. The 

tear break-up time (TBUT) reflects the quality and stability of the tear film and is reduced in 

patients with an evaporative component of DED, compared to normal subjects.7-9 Most 

commonly, reduction in TBUT is associated with a compromised tear lipid layer; however, 

mucin and tear dynamics have also been cited as contributors to TBUT changes.9,10 

Traditionally, assessment of TBUT is performed after instillation of fluorescein dye, which 

enables visualization of the tear film; however, the amount and concentration of fluorescein, 

as well as timing of assessment and humidity can cause variability and lack of adequate 

reproducibility.11-15
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The NIBUT attempts to eliminate the variability of TBUT caused by fluorescein dyes 

through imaging. It utilizes disruptions in a regularly patterned image (grid or concentric 

circles typically), projected onto the tear film to identify areas of tear film disruption (Fig. 

1). The measurement of NIBUT initially required a subjective measurement by an examiner 

and results show a longer break-up time for a subject when compared to their fluorescein 

TBUT.16 More recently, the development of new devices with automated softwares for 

NIBUT quantification through detection and mapping of tear film break-up location over 

time, has attempted to eliminate inter-grader variability observed with subjective examiner 

assessment.17,18 Initial studies with these softwares reported shorter break-up times 

compared to TBUT;17,19 however, longer break-up times were also reported afterwards.20 

Despite different comparative results with TBUT, NIBUT with a cut off value less than or 

equal to 10 seconds has now been identified by the Dry Eye Workshop II (DEWS II) as an 

indicator for DED diagnosis with 82-84% sensitivity and 76-94% specificity.21

Analytical Validation—Accuracy of NIBUT was determined by comparing NIBUT 

values to those obtained via the gold standard TBUT. Significant correlations between these 

values have been reported.18,22,23 However, while some studies have reported that TBUT is 

longer than the NIBUT,18,20,22 others have reported the opposite.23,24 The reason for the 

varying reports may be due to different subject cohorts (DED vs. control subjects, age, etc.).

The cut-off value for abnormal NIBUT can be assumed to be less than 10 seconds. There 

was less variability when the determination of NIBUT was made by software instead of the 

clinician.25 As such, the Reported ICC values suggest good to excellent repeatability for 

automated NIBUT; however, there was a large CoV range suggesting unknown amount of 

variability, which means NITBUT does not exhibit consistent repeatability, and a wide range 

of repeatability has been reported by different groups (Table 3).18,23,25-27 It was also noted 

that the variability of the NIBUT was greater at greater values of TBUT.24 Overall, ICC 

values suggest good reproducibility CoV ranged from 15.4% to 21.85% (Table 3).18,26 

However, low ICC values suggest there was little agreement between two devices that 

provide NIBUT,28 suggesting that measures from different devices should be compared with 

caution.

Clinical Validation—The sensitivity and specificity of NIBUT provides an assessment of 

its ability to act as a diagnostic biomarker. When the DEWS II cut-off of 10 seconds is used 

to differentiate DED from controls (Fig. 1), NIBUT provides a sensitivity of at least 80.0% 

and a specificity of at least 86.0.29-31 Other cut-off values have been proposed, but the 

evidence does not support a clinically significant improvement in sensitivity and specificity 

compared to the 10 second cut-off. 23,19,32.18 In addition, NIBUT has been used to show 

improvements (increase) with treatment, suggesting that it could be used as a monitoring 

biomarker,33,34 albeit inconsistently.35 Thus, additional data is needed to support the 

utilization of NIBUT as a monitoring biomarker, a process that can be accelerated by 

encouraging more studies to employ NIBUT methods, rather than the currently prevalent 

fluorescein TBUT approach.

In summary, the validation of the NIBUT as a diagnostic biomarker for DED has been 

investigated, and its’ good sensitivity and specificity values suggest that it is appropriate for 
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utilization. Further, NIBUT shows good repeatability and reproducibility as a diagnostic 

biomarker. However, the larger variability it suffers is derived from the larger variation at 

higher values. This is common in other measures as well and should be taken into account 

during biomarker validation and when applied in a clinical setting. Further, these variations 

could also be reflecting disease processes. Evidence also suggests that NIBUT has potential 

as a monitoring or predictive biomarker in DED; however, further work is necessary to 

support its utilization in this regard. Current literature to support the potential of NIBUT to 

be used as a prognostic, safety, susceptibility/risk, or pharmacodynamic biomarker does not 

currently exist.

Tear Meniscus Measurement by Anterior Segment Optical Coherence Tomography (OCT)

The lower eyelid tear meniscus can be measured for tear meniscus height (TMH) and/or tear 

meniscus area (TMA),36 which have been found to be reduced in aqueous-deficient DED.37 

As such the DEWS II report suggested that TMH be used for diagnosis of aqueous-deficient 

DED.36,38-40 The utilization of techniques with infrared light and anterior segment OCT, 

using low coherence light, allows TMH and TMA to be measured without reflex tearing, 

which has improved its accuracy.41-44 The main anterior segment OCTs used to date are 

time-domain (TD-OCT) and spectral-domain OCTs (SD-OCT),45 with the latter performing 

scans at a much faster rate. Spectral-domain OCTs have improved resolution and a 

significantly higher acquisition speed, resulting in improved image quality, and minimized 

motion artefacts compared to TD-OCTs.46 Moreover, a different OCT modality called 

swept-source (SS-OCT) has more recently become available.45 One of the advantages of SS-

OCT imaging over SD-OCT is the faster scanning speed, which allows for denser scan 

patterns and larger scan areas compared with SD-OCT scans for a given acquisition time. 

Additional advantages of SS-OCT technology are its use of a longer wavelength and its 

reduced sensitivity roll-off, resulting in better detection of signals from the deeper layers.47

Analytical Validation—Reported mean TMH values in samples of normal subjects are 

varied, but are less than 0.354 mm, regardless of type of anterior segment OCT (Table 3). 

The measures gained via anterior segment TD-OCT and SD-OCT are typically lower39 and 

SS-OCT is higher,48 compared to those obtained via slit-lamp. Therefore, normative 

database and cut-off values for each device are recommended and different measurements 

between OCTs and slit-lamp are explained by nature of imaging technique and image 

processing procedures.39 The range of inter-grader ICC values is smaller for anterior 

segment OCT and are considered good to excellent.15,39,48-50 When compared to time 

domain OCT, spectral domain OCT has shown better intra- and inter-grader agreement in 

most studies based on reported CoV values and narrower 95% confidence intervals. In 

addition, the ICC values suggest excellent repeatability.51 Further, swept-source OCT has 

shown excellent repeatability as well; however, the CoV values for intra- and inter-grader 

repeatability are comparable or better to spectral domain OCT (Table 3).39

The mean normal TMA range has been reported with high variability based on the anterior 

segment OCT methods used (Table 3).37,40,42,48,52,53 TMA measurements tend to be larger 

with time domain OCT as compared to spectral domain OCTs. Overall, based on the current 

literature, spectral domain OCTs provide superior intra- and inter-grader repeatability 
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compared to time domain and swept-source OCTs, even though the intra- and inter-grader 

ICCs with swept source OCTs were moderate-to-high (Table 3).

Clinical Validation—TMH as a diagnostic biomarker for DED using TD AS-OCT has 

shown a 67.0% sensitivity and 81.0% specificity (Table 3). In comparison, SD AS-OCT 

demonstrates 80.5% sensitivity and 89.3% specificity for TMH and 86.1% sensitivity and 

85.3% specificity for TMA. The diagnostic ability is best for Sjögren’s aqueous-deficient 

DED and is moderately acceptable (i.e., just greater than 65%) for non-Sjögren’s aqueous-

deficient DED. In comparison, the diagnostic ability for evaporative DED is less than 50%.
54

Like TMH, TMA has better sensitivity with spectral domain compared to swept-source 

anterior segment OCT, but worse specificity (Table 4). TMA has shown better diagnostic 

ability than TMH in evaporative DED, non-Sjögren’s aqueous-deficient DED, and Sjögren’s 

aqueous-deficient DED.54 However, the accuracy is above 70% only in non-Sjögren’s 

aqueous-deficiency and Sjögren’s aqueous-deficiency DED. Interestingly, El-Fayoumi et al. 

have shown a decreased TMH and TMA in rheumatoid arthritis patients, compared to 

healthy controls, despite the absence of clinical diagnosis of DED.55 Because TMH and 

TMA changes were present prior to a diagnosis of DED, they may be useful as 

suspectibility/risk biomarkers; however, extensive additional work would be needed to 

validate TMH and TMA for these purposes.

The TMH and TMA on all OCT devices have been used as a monitoring biomarker to assess 

changes in tear meniscus following DED treatment56-58 or to assess the effect of contact lens 

wear.59 Increased tear meniscus measurements after installation of artificial tears, diquafasol 

sodium and rebamipide were reported in DED.56,60 Furthermore, decreased tear meniscus 

height with contact lens wear and improvement after installation 3% diquafosol solution has 

also been reported.59

Standardization of TMH and TMA measurements and potentially automated methodologies 

would be helpful in ensuring additional analytical validation. Furthermore, when using TMH 

or TMA in a clinical trial setting, some limitations should be considered when interpreting 

the outcomes. These include the presence of conjunctivochalasis, time-from-blink, and the 

prevailing environmental conditions, all of which may cause additional variability of both 

TMH and TMA measures.21

In summary, TMH and TMA have acceptable diagnostic ability in DED, especially in 

aqueous deficiency DED. Additionally, these parameters can be helpful in early diagnosis of 

DED in systemic conditions. However, normative databases, cut-off values and standardized 

acquisition methods should be described for each device. Altogether, the use of TMH and 

TMA as diagnostic and monitoring biomarkers appears promising.

Assessment of Meibomian Gland Morphology

Meibomian glands (MG) are modified sebaceous glands situated in the tarsal plate of the 

upper and lower eyelids and produce meibum, which is essential to stabilize the tear film and 

decrease evaporation. MG dysfunction (MGD) was defined by The International Workshop 
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on Meibomian Gland Dysfunction (MGD Workshop) as “chronic, diffuse abnormality of 

meibomian glands that is commonly characterized by terminal duct obstruction or 

qualitative or quantitative changes in glandular secretion”.61 MGD can result in more rapid 

tear film evaporation and may lead to DED. Therefore, evaluation of MG function and/or 

morphology is required for the diagnosis of MGD.9 To date, MG morphology has been 

assessed anatomically by infrared meibography and at a cellular level by in vivo confocal 

microscopy (IVCM).

IVCM parameters that could be used as biomarkers, include MG orifice width (Fig. 2a), MG 

acinus descriptors, such as short diameter, long diameter, and density.62 However, the 

images provided in publications identified by authors as presumed MG acini vary widely in 

morphology.62-78 In fact, a recent study provided histological evidence that image 

appearance refined in some studies as presumed MG acini were actually rete ridges of the 

conjunctiva.79 This highlights the importance of accuracy in analytical validation and the 

lack of its current availability regarding MG acini and IVCM. Given the lack of consensus 

regarding MG acini morphology by IVCM, parameters related to the MG acini will not be 

discussed in this review.

Infrared Meibography

MG dropout is defined as areas showing a loss of acinar tissue as identified by meibography.
61 An example of MG dropout can be seen in Fig. 3. Even though evaluation of MGs by 

transillumination has been described decades ago, MG dropout has been more widely used 

since the introduction of non-contact infrared meibography, which has a shorter acquisition 

time, higher image quality, and less patient discomfort.80 Several devices have been 

developed that can acquire the images necessary for the assessment of MG dropout, and 

several grading scales for MG dropout have since been presented.80-82 Two grading scales, 

the Gestalt grading scale and Meiboscale, were recommended by the MGD Workshop and 

will be evaluated in this review. In the Gestalt grading scale, a partial gland was defined as 

“one that is incomplete and present in clumps or clusters.” Each lid is graded based on the 

percent of partial glands, such that Grade 1 is no partial glands, Grade 2 is less than 25% 

partial glands, Grade 3 is 25-75% partial glands, and Grade 4 is greater than 75% partial 

glands. In the Meiboscale, each lid is graded based on percent dropout as follows: Grade 0: 

no loss of meibomian glands, Grade 1: area loss less or equal to 25%, Grade 2: area loss less 

than or equal to 50%, Grade 3: area loss less than or equal to 75%, and Grade 4: area loss 

less than or equal to 100%.80 More recently, continuous grading scales based on a semi-

automated software have been developed. This semi-automated software is used to outline 

the total MG area and the part of the area that has MG dropout. The dropout area is then 

divided by the total area to give a percent of dropout that ranges between 0% and 100%.83 

One of the obvious advantages of the continuous scale is that small changes can be reflected 

with the continuous grading scale that may not be shown in the categorical grading scales. 

For example, a subject with 10% drop out who progresses to 20% drop out would be in the 

same meiboscore grading, but this change would be reflected in the continuous grading 

scale.
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Additional parameters associated with meibography include MG bend, MG thickness,84 MG 

distortion, tortuosity, hooking, shortening, thickening, thinning, overlapping, and ghosting. 

One study clearly defined these parameters and assessed the intra- and inter-grader 

agreement of these parameters and reported low values of agreement, suggesting that they 

may not be ideal biomarkers.85 This lack of agreement suggests little promise for MG bend, 

MG thickness, MG distortion, tortuosity, hooking, shortening, thickening, thinning, 

overlapping, and ghosting to become biomarkers. Given the lack of additional publications 

assessing these parameters, we will not further assess these parameters here.

Analytical Validation—The accuracy of infrared meibography is supported by a 

histological study that included analysis of light transmission through the MG.86 This report 

showed that the meibum within MG acini cells scattered infrared light and caused the MG to 

appear white in the infrared meibography images.86 The authors also noted that the extent of 

light scattering appears to be greatest in areas that contain small lipid droplets, which were 

identified using neutral lipid fluorescent staining, as opposed to areas with coalesced lipid 

droplets or areas without lipid droplets.86 Although it should be noted that other 

abnormalities, such as concretions, can also reflect light in a similar way to MGs and can 

therefore be confused with them.87 The extent of MG dropout is age dependent even in non-

DED patients.88 Therefore, normative values are different for various ages. The MGD 

Workshop proposed the following cut-off values: patients 20 years of age or less should have 

no dropout and patients over 20 years of age may have less than or equal to 25% dropout.83

Repeatability of MG dropout is dependent on the repeatability of 1) image acquisition and 2) 

the grading scale. Image acquisition can be affected by the positioning of the lid during 

eversion and the patient’s direction of gaze, both of which can change even within a single 

session.89 It can also be affected by the ability of the eyelid to evert, which is inconsistent 

across subjects.85 The intra-grader weighted kappa values for the Gestalt grading show a 

large range from no agreement to almost perfect agreement (Table 4). 81In addition, less 

agreement was present in patients with greater MG loss [weighted kappa = 0.79 (95% CI: 

0.69-0.88)] compared to those with less/no MG loss [weighted kappa = 0.82 (95% CI: 

0.73-0.91)].81 For the meiboscale, the reported intra-grader agreement ranged from weak to 

strong when weighted kappas were evaluated and minimal when unweighted kappas were 

considered.In one study that compared these subjective grading scales, the meiboscale 

showed better intra-grader agreement, compared to Gestalt grading.82 When a continuous 

grading scale was used, the intra-grader ICC values showed moderate agreement.85 The ICC 

was higher (although not statistically significant) when areas of indistinct MG appearance 

were classified as drop out, compared to when they were not, suggesting that such directives, 

training, or computer automation that reduces grader subjectivity, may assist in improving 

intra-grader agreement.85

Reproducibility studies have shown that meibography devices can provide varying images 

due to variability in amount of lid everted and image quality, causing differences in MG drop 

out gradings90 and quantitative image analysis.91 This suggests that if MG dropout is used as 

a biomarker to monitor disease progression, the same device should be used consistently 

throughout all visits. In addition, the upper and lower eyelids should be graded separately 

based on evidence that there is a significant difference in MG area/total analysis area 
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between upper and lower lids, especially in eyelids with lower level of dropout.84,92 The 

weighted and unweighted inter-grader kappa statistics for the Gestalt grading and the 

meiboscale showed large agreement ranges for upper and lower eyelids.81,82 In general, 

inter-grader agreement was better for the upper eyelids compared to the lower eyelids.93 

However, for the continuous grading scale, the inter-grader ICCs show moderate to good 

agreement85,93 and there was approximately equal amount of agreement for the upper and 

lower eyelids.93

While the accuracy for infrared meibography has been addressed, the repeatability and 

reproducibility is inconsistent. This inconsistency, especially with the categorical grading 

scales, suggests that a more standardized protocol should be used across multiple studies, in 

order to improve the consistency of image acquisition and grading, and thereby the 

analytical validation. In addition, the utilization of a continuous grading system appears to 

be better than a categorical system. Incorporation of the continuous grading scale into a 

clinical setting may necessitate the use of artificial intelligence in order to address problems 

of feasibility.61,82

In summary, MG dropout may be affected by image acquisition methods and grading scales. 

To minimize image acquisition related problems, same devices should be used during 

monitorization. Methods to standardize eyelid eversion should be developed and upper/lower 

eyelids should be graded and compared separately. To decrease grading scores related 

problems, continuous grading systems seems to be promising and may be implemented into 

clinical practice. MG dropout may be a good candidate as a diagnostic biomarker; however, 

its use as a biomarker for monitoring treatment response needs to be established further.

Clinical Validation—MG dropout was a significant discriminator between DED and 

control subjects when they were diagnosed based on OSDI score.84 This parameter has also 

proven to be useful in discriminating between aqueous-deficient and evaporative DED, 

suggesting that MG dropout may be a good diagnostic biomarker.94 A proposed meiboscore 

cut-off value of three for diagnosis of MGD provided 49.3% sensitivity and 64.5% 

specificity.95 However, in a recent study based on a different subjective grading scale,81 the 

sensitivity and specificity of a cut-off value of 0.75 were reported with 87.9% and 100%, 

respectively. Moreover, MG dropout did not predict effectiveness of liposomal spray, latent 

heat goggles, and warm compresses,96 suggesting that it is not a good predictive biomarker. 

In summary, both upper and lower eyelid drop out has been correlated with lipid layer 

thickness, NIBUT, OSDI, and age, suggesting it may be useful as a monitoring and/or 

pharmacodynamic biomarker. Currently, literature to suggest that MG drop out could be 

used as a prognostic, safety, or susceptibility/risk biomarker is not available.

Ocular Surface Inflammation

Conjunctival Redness

Bulbar conjunctival hyperemia is caused by vasodilation, increased blood flow and capillary 

permeability associated with ocular surface inflammation, and is one of the most common 

clinical signs perceived by the patient that can correlate to inflammation of the ocular 

surface and is often the main cause for seeking medical care.97-99 However, inflammation 
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can be subclinical, such as in DED, and may not be detected by slit-lamp examination or 

perceived in early disease.74 Previously, ocular redness assessment relied on ordinal scales 

to classify the severity ranging in a 4 or 5 category scale from normal or trace to severe (Fig. 

4).100,101 When these scales are applied to photographs, they become part of the potential 

biomarker, and thus, should be validated like other imaging biomarkers.

Analytical Validation—The analytical validation of the ocular redness as a biomarker is 

dependent on consistency of image capture (illumination, white balance, magnification or 

image color resolution) and validation of the grading scales. The most common ocular 

redness scales, such as Efron, CCLRU, Vistakon and Annunziato have shown no statistically 

significant bias between the test/retest grading within observers (i.e. intra-grader 

agreement)100,102.The inter-grader coefficient of repeatability ranges from 0.49 to 0.80 

grading units,102,104,105 which suggest that two graders should grade the same image within 

approximately 1.5 steps of another grader. Given that the scales are only typically 4 or 5 

steps, there is a significant inter-grader variability with these scales. However, such scales 

have a high subjectivity and are prone to: 1) variations of photographic devices, such as 

illumination, white balance, magnification or image color resolution, 2) inter-grader 

variability and bias, such as judgment influence bias based on previous grading, and 3) 

inherit limitations of the grading scales, which have low discriminatory degree of severity (4 

or 5 stages) to detect small incremental changes that occur in OR and show inconsistency 

with regards to the proportional severity between the representative image within the same 

scale or between different scales.102,105,106 As such, the same grade in one scale might be 

perceived differently in another scale, not allowing comparison between studies with 

different scales.

One attempt to address these issues was with the Validated Bulbar Redness (VBR) grading 

scales that are based on the psychophysical attributes of graders during the validation 

process, by choosing representative images from a continuous grading scale ranging from 

0-100 with equal steps of severity.107 This scale showed an excellent intra-grader 

repeatability and inter-grader reproducibility for clinical assessment of ocular redness and 

has been validated against previous scales (Table 4).107 Further, the Ocular Redness Index 

(ORI) performs a white-balance that corrects for lighting and color imbalance of slit-lamp 

photographs to provide an automated redness quantification of the selected region of 

interest.108 This method has not only shown a high interobserver agreement and a strong 

correlation with subjective ocular redness and VBR scales, but also no significant 

disagreement or bias between graders. Amparo et al. compared the automated ORI to 

validated bulbar redness grading scales. This study showed that although both systems were 

capable to identify significant changes in mean redness scores, there was a significant level 

of disagreement in validated bulbar redness scores among experienced clinicians.103

In summary, ocular redness grading scores have some limitations caused by image 

capturing, intergrader differences, and intragrader bias, based on previously assessed images 

(use of previous image as a reference), and low discriminatory degrees of severity. 

Automated systems may be useful to overcome these limitations.
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Clinical Validation—Ocular redness provides a metric to record and monitor the natural 

course of ocular surface diseases. The subjective ocular redness scales have been the most 

commonly used and in a wide range of diseases, specifically to compare the adverse effects 

of different contact lens materials and solutions on the ocular surface,102,109,110 as well as 

topical and surgical interventions for glaucoma,111,112suggesting that it could be used as a 

safety biomarker. These scales have also been used to assess the effects of topical anti-

allergic drops113-115 and anti-inflammatory drops in various ocular surface diseases,116-119 

suggesting that it could be used as a monitoring biomarker. Recently, the ORI has been used 

to report conjunctival hyperemia changes in patients undergoing pterygium surgery, showing 

a potential to discriminate statistically significant ocular redness changes (26%) that were 

imperceptible to clinicians,103 thus supporting the utilization of such a system.

Due to the numerous conditions that present with ocular redness, its utilization as a 

diagnostic biomarker seems improbable. In addition, evidence does not support the notion 

that ocular redness could be used as a predictive, susceptibility/risk, or pharmacodynamic 

biomarker. However, evidence does exist that ocular redness could be used as monitoring 

and safety biomarkers. Although the use of ocular redness grading systems is well 

established in ophthalmology and currently used for clinical trials, the more recent ORI 

measures have not reached the same level of evidence for clinical trials and require 

randomized and multi-center studies for further clinical validation. However, the ability of 

the ORI to detect smaller changes in ocular redness is promising and further work could 

elicit the utilization of ocular redness as a biomarker. Nevertheless, the main limitation that 

remains is the inability of this parameter to detect subclinical inflammation.

Cellular Quantification by In Vivo Confocal Microscopy

Although the normal cornea was thought to be immunologically privileged due to its lack of 

immune cells during homeostasis, the presence of resident immature dendritic cells and 

other resident corneal leukocytes has been clearly demonstrated by many independent 

groups.120-127 These resident leukocytes can be visualized at the basal epithelial layer by 

IVCM as dendritiform cells (DCs; Fig. 5a). During inflammation, DC density increases 

along with elongation of their dendrites, which is associated with DC maturation (Fig. 5b-c).
121,122,128 Therefore, not only DC density, but also DC size, and DC field are potential 

parameters to evaluate the inflammatory state of the cornea.

Analytical Validation—IVCM is a non-invasive tool capable of microscopically imaging 

DCs of the ocular surface with a direct correlation to immunohistochemical DC 

observations.123,129 This supports the accuracy of IVCM in imaging DCs. Further, it has 

been shown that the structural analyses of three representative central corneal images are 

comparable to wide-field composite images of the subbasal layer in chronic inflammatory 

conditions.130 In healthy individuals, DCs are located mostly in the subbasal epithelial layer 

with a reported average density 9-64 cells/mm2 in the central cornea and 0-208 cells/mm2 in 

the peripheral cornea.75,131-139 The assessment of the average DC density has shown intra-

grader repeatability with low CoV (4.4-11.9%) and excellent inter-grader reproducibility 

(Table 4).74,134,135,137-139 However, increased variability was reported with increased DC 

densities.140 A more recent study reported promising results for detection of DCs through 
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artificial intelligence. Initial sensitivity rates for DC detection and DC segmentation were 

reported as 85% and 60%, respectively.141

Clinical Validation—An increase in mean corneal DC density above normal values is 

considered an indicator for active immune response or inflammation in the cornea.137,142 

Increase in DC density has been reported in DED,64,136,144-147 allergic keratoconjunctivitis,
148 infectious keratitis,149,150 herpetic keratitis,138 contact lens wear,151 post-LASIK cases,
151 glaucoma medication use,152-155 thyroid ophthalmopathy,156 and systemic diseases.
157-161 It has been demonstrated that aqueous-deficient DED exhibits higher DC density 

compared to evaporative DED and that aqueous-deficient DED related to systemic immune 

diseases showed higher DC density compared to non-immune conditions.136 In addition to 

DC density, DC size, and DC field were significantly increased in Sjögren’s DED compared 

to non-Sjögren’s DED.136

It has been shown that there was a strong significant correlation of DC density with 

symptoms (OSDI) (r=0.37), Schirmer’s test (r= −0.47), TBUT (r= −0.61 to −0.25), corneal 

fluorescein staining (r= 0.48 to 0.53) and levels of various inflammatory tear cytokines (r= 

0.31 to 0.55), which demonstrates its strong correlation with inflammation in DED patients.
140,144,150,162-165 In a prospective, cross-sectional study it was further reported that at 

peripheral corneal quadrants DC density had different correlations with TBUT (r= −0.49 to 

−0.28), corneal fluorescein staining (r= 0.33 to 0.40), and conjunctival staining (r= 0.24 to 

0.35).166 Therefore, In addition to DC density, the morphology and distribution of DCs with 

their aforementioned correlations may further help establishing this parameter as a 

diagnostic biomarker for the DED subgroups.

From the perspective of a predictive biomarker, it has been shown that treatment response, 

based on change in OSDI and DC density, to topical steroids was correlated with baseline 

DC density and patients with increased DC density at baseline yielded a pronounced 

decrease in DC density with topical steroid treatment. Villani et al reported in a prospective, 

open label, masked study, that baseline DC density was correlated with OSDI and DC 

density changes in DED patients treated with topical steroid.144 Moreover, a recent, 

prospective, randomized, placebo controlled, clinical trial confirmed that a DED population 

enriched with increased DCs for inclusion, yielded a pronounced decrease in DC density and 

significant improvement in signs and symptoms with topical steroid treatment.163,167

Furthermore, DC density has also been shown a reliable tool in quantitative detection and 

monitoring of many ocular inflammatory diseases.149,150,168-173 In conditions such as DED, 

bacterial keratitis and post-LASIK ectasia correlation between proinflammatory cytokines 

(e.g. for bacterial keratitis IL-1β, IL-6, and IL-8, r= 0.40, r= 0.55, and r=0.31, respectively; 

p<0.002) and DC density was defined.150,174,175 In the context of recurrent herpetic 

keratitis, DC density by IVCM has been shown to be a powerful tool to detect early signs of 

intracorneal inflammatory activity, which allows early detection and treatment, leading to 

improved prognosis.170,176 Therefore, in inflammatory conditions, DC density may be 

helpful as a monitoring and pharmacodynamics biomarker.
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Assessment of DC density through IVCM has been reported with extensive analytical 

validation, showing excellent repeatability and reproducibility. Recent studies on DED 

report the presence of subclinical immune cells in the ocular surface as a possible 

explanation for the symptom-sign disparity in DED and symptom refractory despite 

improvement of current clinical tests.74,75,144 These results suggest that IVCM can detect 

early subclinical inflammation, allow treatment stratification, and measure therapeutic 

response according to baseline DC density as a predictive and/or response biomarker. Lastly, 

the DC density measurement has shown growing evidence as a diagnostic biomarker for the 

presence of inflammation in the ocular surface and is valuable both as a monitoring and 

pharmacodynamics biomarker to be used in clinical trials for various ocular surface diseases. 

Thus, it may serve as a useful monitoring biomarker for inflammatory conditions, such as in 

DED,143,177 ocular allergies,148 and contact lens wear, and pharmacodynamics biomarker 

for treatment response of those conditions.151

Palpebral Inflammation—Laser IVCM is a non-invasive technique that has been utilized 

to assess the immune cell density in IVCM images at epithelial and stromal levels (Fig. 2b).
178 Immune cell density is typically completed using semi-automated software that allows 

the cells to be marked and counted. That count is then typically standardized to cells per 

millimeter square.

Analytical Validation—Normative values for immune cell density have been reported as 

123.3-123.7 (standard error = 17.2-19.2) cells/mm2 for the epithelium and 36.7-38.8 

(standard error = 9.5-10.2) cells/mm2 for the stroma (Table 4).74,75 The intra-grader 

repeatability showed excellent agreement for the epithelial immune cell (EIC) density and 

for the stromal immune cell (SIC) density (Table 4).75 The reproducibility of the image 

analysis showed no statistically significant bias suggesting that the determination of the 

immune cell density does not vary considerably between graders.74,75 There was also no 

significant difference between eyes.75 This inter-grader consistency is supported by the ICCs 

for the epithelial density and for the stromal density,74 and concordance correlation 

coefficient (Table 4).75

Clinical Validation—The EIC density has been reported to be increased in MGD, with a 

cut-off of 195.8 cells/mm2 which shows 94% sensitivity and 92% specificity suggest that 

EIC density could be used as a diagnostic biomarker to differentiate MGD from normal 

patients (Table 4).75 In treatment studies there was a significant reduction in inflammatory 

cell density within the eyelid margin in groups treated with anti-inflammatory therapy 

compared to those without this treatment.72,169

In summary, EIC density and SIC density detected by IVCM exhibit excellent intra/

interobserver agreement with a high sensitivity and specificity, which makes it a good 

candidate as a diagnostic biomarker. Decreases in the inflammatory cell density by treatment 

suggest that they can be useful as a pharmacodynamics biomarker.
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Assessment of Corneal Nerve Alterations by IVCM

The cornea is the most densely innervated tissue in the human body, and this high density of 

nerves is crucial for the protection of the eye through reflex blinking, maintenance of corneal 

epithelial integrity and regulation of wound healing.179,180 Over the last years, IVCM has 

shown the capability of assessing the corneal subbasal nerve plexus (Fig. 6a) 179,181 and the 

following total, trunk and branch nerve density and length (Fig. 6 b,c), tortuosity (Fig. 6d), 

beading (Fig. 6e), nerve reflectivity and thickness (Fig. 6f), and microneuromas (Fig. 6f) 

have been used to evaluate corneal nerve alterations.182-185

Analytical Validation

Total, trunk and branch nerve density and length—The normal range for nerve fiber 

length has been reported between 17.1-31.7 mm/mm2 and 28.8-38.3 numbers/mm2 for nerve 

density (Table 4).143,162,179,182,183,185-189 The range of nerve branching density was 

reported between 37.2-120.0 numbers/mm2 in healthy individuals.182,189 Nerve fiber length 

has been most extensively reported in the literature with moderate to excellent intra- and 

inter-grader ICCs (Table 4).182,183,189-191 In diabetes mellitus, the intra-grader repeatability 

was good for nerve density and excellent for nerve fiber length.189 Also, they have shown no 

significant bias or trends with adequate CoV (<20%).182,183 Software with automated image 

analysis for nerve fiber length is currently being used and shows a good inter-grader 

reproducibility (ICC = 0.870-0.890), however performed consistently lower measurements 

(−6.7mm/mm2) when compared to manual assessment.182,183 However, it was reported that 

automated analysis might exclude nerve segments from slightly oblique images, images with 

mild pressure artifacts and short nerves with reduced contrast and might include some DCs 

as nerves,192 but still should provide compatible results with manual tracing.192 While data 

on nerve density are promising, additional validation for nerve density and branching are 

required.182,183,185,192 For instance, some research groups quantify nerve branches by the 

branching points, while other groups quantify according to the branch length.185

Tortuosity—Nerve tortuosity is a morphological parameter of the corneal subbasal nerves 

that have been assessed by IVCM (Fig. 6d,e). The average normal value for tortuosity is 

reported as 1.1 grade (grade range 0-4) and tortuosity coefficient, a unitless measure that 

reflects the degree of curvature of nerve fibres, was reported as 20.0-38.2 in healthy 

individuals.179,193,194 The intra-grader and inter-grader ICC values for tortuosity showed a 

wide difference between studies (Table 4).182,190,194

Beading—Subbasal nerve beading frequency varied from 90-198 beads/mm in healthy 

individuals.187,195,196 For beading (Fig. 6e), the intragrader ICCs were excellent- and inter-

grader ICCs were good (Table 4).182,190,194

Nerve Reflectivity and Thickness—The thickness of the subepithelial corneal nerves 

ranges between 0.52 and 4.68 μm187,196,197 and reflectivity grade was 1.1-2.6 (grade range 

0-4) in health.179,195,198,199
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Microneuromas—Microneuromas are currently described as stumps of severed nerves 

and abrupt, hyperreflective endings of nerve fibers on IVCM and they are evaluated for their 

presence or absence in different diseases, especially in neuropathic corneal pain.200-202

Clinical Validation

The most frequent ocular conditions investigated for nerve density and length via IVCM 

have been DED,64,143,147 herpes simplex keratitis (Fig. 6b),203-205 herpes zoster 

ophthalmicus,138,206 neurotrophic keratitis (Fig. 6c)207 neuropathic corneal pain and post-

refractive surgery;184,200,201 however, other anterior segment diseases, such as keratoconus,
208 corneal dystrophies,139 and vernal209 and atopic keratoconjunctivitis210 and limbal stem 

cell deficiency211,212 have also been studied. Furthermore, systemic diseases including 

endocrine disorders, such as diabetes213,214 and thyroid diseases,215 multiple sclerosis,
160,216,217 Parkinson disease,216,218 small fiber neuropathy219 graft versus host disease171 

and mucous membrane pemphigoid157 have also been investigated.

Total, trunk and branch nerve density and length—Most of the previous studies 

reported decreased corneal nerve density and length per frame in most ocular and systemic 

conditions.185 The cut off values of nerve density and nerve length to differentiate normal 

controls from DED were determined as 36.5 nerves/mm2 with 80.2% sensitivity and 85.0% 

specificity and 12.5 mm/mm2 with 81.9% sensitivity and 85.0% specificity, respectively.220 

In DED, nerve density and corneal sensation showed conflicting results where some 

reported negative and others positive correlations.147,221,222 However, nerve density was 

negatively correlated with symptom severity143,223 and fluorescein corneal staining and 

positively correlated with corneal sensation in DED.221,224 Furthermore, DED patients with 

high nerve density responded to treatment better than the patients with low nerve density 

suggesting it can be used as a predictive biomarker for treatment stratification and likelihood 

of treatment response.162 Moreover, increased nerve density was reported as a 

pharmacodynamic biomarker for topical treatment in DED, such as cord blood serum and 

cyclosporine.202,225,226

Similar to DED, in herpes simplex keratitis nerve density revealed positive correlation with 

corneal sensitivity.185,203,227 Furthermore, it was shown that unilateral herpes simplex and 

herpes zoster keratitis results in decreased nerve density compared to controls, even in the 

contralateral non-affected eye.206,228 Moreover, decreased corneal nerve length has been 

reported in patients who developed neurotrophic keratitis after neurosurgical trigeminal 

damage, where IVCM assessment was proposed for all patients with trigeminal impairment.
229 The reported correlations herein support the use as a monitoring biomarker in DED, 

infectious keratitis and neurotrophic keratitis.

IVCM also showed nerve regeneration in DED, neuropathic corneal pain, herpes simplex 

keratitis, and neurotrophic keratitis with treatment, showing its potential as a 

pharmacodynamic biomarker.162,202,225,230-232 In contrast, diabetes mellitus showed 

decreased corneal nerve density, and its negative correlation with the severity of peripheral 

neuropathy233-238 and retinopathy were established.239-242 For the diagnosis of neuropathy 

in diabetes the sensitivity and specificity of nerve density were 82% and 52%, respectively.
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237 In addition to correlation with diabetic peripheral complications, it was showed that 

reduced corneal nerve density might be present before development of those complications.
243,244 And, the negative correlation between mean nerve density and HbA1c and 

improvement of nerve density after good glycemic control were also reported.236,245-247 As 

a result of these reports, corneal nerve density in diabetes has shown to be an important 

predictive and monitoring biomarker.

Tortuosity—In DED, increased tortuosity is reported consistently in numerous studies;
195,196,223 Previous studies reported increased nerve tortuosity in different subtypes of DED, 

which was significantly different when compared to controls.195,196,223 Nerve tortuosity was 

reported positively correlated with corneal sensation and negatively correlated with 

fluorescein staining in dry eye.224 Negative correlation (r= −0.179) between Schirmer’s I 

test and nerve tortuosity is also reported. 196,198,220,248 However, some studies showed no 

significant correlation of nerve tortuosity with signs and symptoms.221,223,249 Therefore, it 

seems that nerve tortuosity does not seem promising as a diagnostic biomarker. However, 

decreased nerve tortuosity with treatment was also reported in dry eye, which suggests that 

tortuosity may be used as a pharmacodynamic biomarker.181,202,225,226

In diabetes mellitus, increased nerve tortuosity and its correlation with the severity of 

peripheral neuropathy and retinopathy was established.233-237,239,240 Different definitions of 

tortuosity have been used to develop some qualitative and quantitative grading scales; 

however, previously used grading scales still need improvement because of their subjectivity 

and unfeasibility for clinical use and insufficient assessment of its complex mathematical 

definition.179,233 Annunziata et al developed a promising, fully automated, hybrid 

segmentation system to assess tortuosity objectively and definition free, which might 

increase our knowledge about nerve tortuosity and its correlation with clinical symptoms 

and signs.250 This fully automated nerve tortuosity quantification showed a sensitivity of 

51.9 - 58.8% and specificity of 81.1 - 84.7%.250

Beading—In DED, increased beading is reported consistently in numerous studies;
195,196,223 Number of beading were reported as 332-387/mm in Sjogren related DED and 

186-323/mm and in non-Sjogren related dry eye.195,223,224 Decreased nerve beading with 

topical chord serum tears and cyclosporine treatment was also reported in DED.
181,202,225,226 Thus literature about nerve beading and its change with treatment is limited. 

For being a biomarker it still needs to be investigated.

Reflectivity and Thickness—Nerve reflectivity and thickness did not show consistent 

results.143,185 Correlation between nerve reflectivity and OSDI143 and decrease in nerve 

reflectivity with topical cyclosporine treatment was also reported.225

Microneuromas—Microneuromas have been proposed as a tool to assist in the diagnosis 

of neuropathic corneal pain patients.200,201,251,252 Microneuromas are known to be the 

source of ectopic spontaneous excitations in sensory fibers in patients with postsurgical pain.
253 In 2015, Aggarwal et al. first described microneuromas as stumps of severed nerves and 

abrupt endings of nerve fibers on IVCM and reported their presence in photoallodynia 

patients with, which decreased with treatment of autologous serum tears.200 In recent study, 
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Aggarwal et al, showed that in neuropathic corneal pain patients with different etiologies, 

such as post-refractive surgery, DED, autonomic neuropathy, herpes zoster ophthalmicus and 

UV light exposure showed presence of neuromas in 100% of the patients and decreased to 

6.25% with treatment.201 Additionally, a more recent study showed that microneuroma 

presence had a 100% sensitivity and 100% specificity in differentiating DED and NCP and 

warrants additional validation studies in larger cohorts.252 Due to the lack of validated 

biomarkers in this ill-defined disease, microneuromas detected by IVCM are currently being 

validated, since current studies suggest them as a diagnostic and/or monitoring biomarker in 

the near future.200,201,251,254

In summary, the nerve fiber density (total, trunk and branch) and length have been the most 

validated parameters to date. Other nerve parameters such as nerve tortuosity and beading 

require further validation and standardization of method due to their variability and 

subjectivity, whereas nerve reflectivity, nerve thickness require full analytical validation. In 

addition, the clinical value of these morphological findings is yet to be established, the 

exception are microneuromas that have shown to be highly prevalent and a potential 

biomarker in neuropathic corneal pain patients. In this context, nerve density and length are 

unlikely to be a diagnostic biomarker when used in isolation, but they can become a useful 

non-invasive biomarker to monitor the level of nerve damage and regeneration.186 To date, 

clinical use of these biomarkers, most importantly in diabetic neuropathy, is focused on 

demonstrating severity of disease, on endpoints for treatment response, on monitoring and 

on predicting disease progress.

Corneal Thickness and Epithelial Thickness

Anterior segment OCT provides high-quality cross-sectional images based on the reflectivity 

of ocular structures through low-coherence interferometry. By performing high resolution 

anterior segment OCT scans on 8 meridians of the cornea, an automated software can 

reconstruct the cornea 3-dimensionally, generating 10-mm radius pachymetry; the latter can 

be further segmented to generate epithelial thickness maps by identifying the hypereflective 

basement membrane and surface of the epithelium (Fig. 7).255

Analytical Validation

The reported mean normal epithelial thickness is 50.4-53.4 μm.256-260 When comparing 

ultra-high resolution ultrasound and anterior segment OCT for measuring epithelial 

thickness, they was close inter-grader agreement with an average measurement difference of 

4 microns and 95% limits of agreement between −4.6μm and +3.2μm.261 Epithelial 

thickness as measured by AS-OCT showed high repeatability for central and peripheral 

cornea and excellent reproducibility (Table 4).256,259,260,262,263

Clinical Validation

Anterior segment OCT epithelial thickness evaluation has been utilized as a diagnostic 

biomarker for ectasias, DED, and limbal stem cell deficiency. In cases of keratoconus, the 

epithelial thickness is thinner in areas overlying areas of corneal steepening256,257 and 

showed a high sensitivity of 88.9% and specificity of 59.5%, with an optimal cutoff of 52 
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μm at the thinnest area of the cornea, in early disease (form fruste) due to the potential 

epithelial changes that occur prior to topographical changes.258,264 More specifically, 

anterior segment OCT epithelial thickness showed high accuracy (AUC= 0.840 to 0.985) in 

detecting keratoconus even in form fruste cases.256,265,266

In keratoconus patients, the corneal epithelial thickness ranged from 40.0 μm to 51.9 μm and 

its parameters such as central, inferior, minimal-maximum and standard deviation showed 

various AUC values, however the pattern standard deviation showed 100% sensitivity and 

specificity in detecting keratoconus (Table 4).256,264-266 Furthermore, the pattern standard 

deviation of epithelial thickness maps increased the accuracy in diagnosing subclinical 

keratoconus (AUC= 0.985), higher than pachymetry map-based keratoconus risk score 

(AUC= 0.735);265 even in subclinical disease with normal pachymetry-based keratoconus 

percentage index (KISA%) values the diagnostic power was high (AUC= 0.961).

In DED267,268 and limbal stem cell deficiency269-271 patients have shown epithelial 

thickness thinning as measured by AS-OCT at the limbus and central cornea compared to 

controls. In limbal stem cell deficiency the corneal epithelial thickness correlated with 

visualization of palisades of Vogt (r= 0.82-0.89).269,271

The AS-OCT epithelial thickness has shown sufficient analytical validation with good 

repeatability and reproducibility even in diseases patients. In addition, its non-invasive and 

non-contact nature makes this a promising biomarker particularly for the diagnosis of 

keratoconus using the pattern standard deviation and should be considered for future clinical 

trials for early diagnosis and pre-operative screening for keratoconus. Therefore, anterior 

segment OCT epithelial thickness has the potential to be a good diagnostic and monitoring 

biomarker.

Qualitative Biomarkers

IVCM allows direct visualization of infectious pathogens and cellular changes of cornea in 

patients with keratitis, and provides comparable results with corneal cultures and PCR.272 

Therefore, they may be thought as diagnostic and pharmacodynamics biomarkers in 

demodex folliculorum blepharitis and infectious keratitis. These are different than 

quantitative measure described above, therefore outlined in a separate section:

Demodex Folliculorum Blepharitis

Demodex folliculorum and D. brevis are microscopic parasites that can infest the eyelashes 

and are a common cause of blepharitis. A pathognomonic finding on slit-lamp examination 

is collaret formation or crusts on the eyelashes, and diagnosis requires eyelash sampling with 

visualization of the parasites under the microscope.273 However, performing IVCM on the 

eye lids/eyelash can also provide diagnosis for Demodex blepharitis since these parasites are 

directly seen on the eyelash and confirmed by analyzing depilated eyelashes under light 

microscope.274,275 The mites are generally imaged with longitudinal section. D. brevis and 

D. follicularis are seen as structures with hyperreflective legs around 250 μm and 350 μm 

length, respectively in longitudinal sections (Fig. 8a-b).274,275 It is possible to show these 

parasites inside the follicle, inside the follicle next to MG, between two eyelashes and at the 
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bottom of a follicle with accompanying follicle distension, epithelium hyperreflectivity, MG 

obstruction and reactional epithelial proliferation.274 A prospective study has shown that 

sensitivity and specificity of IVCM to detect Demodex infestation based on the definition of 

light microscopy positive demodex were 100% and 98.8% when performed and analyzed by 

experienced observers.276 Therefore, IVCM can be used in the diagnosis of ocular Demodex 

infestation and related structural changes. Therefore, it can be thought as a diagnostic 

biomarker.

Acanthamoeba Keratitis

Both cysts and trophozoites of Acanthamoeba can be visualized by IVCM (Fig. 8c). Cysts 

are seen highly reflective double-walled round structures in 10-25 μm diameter. 

Trophozoites appear as hyperreflective ovoid or irregular structures with pseudopods 

measuring 25-40 μm.272,277,278 The accuracy to detect on IVCM with experienced observers 

on culture positive or light microscopy positive ulcers was 94.8%.279 The sensitivity and 

specificity of IVCM to diagnose Acanthamoeba are reported 69.7-100% and 84.0-100%, 

respectively.278,280 Thus, IVCM can provide fast and definite diagnosis for Acanthomoeba 
keratitis and may serve as a diagnostic biomarker for this disease.

Fungal Keratitis

Aspergillus sp and Fusarium sp are the most common pathogens of fungal keratitis. 

Aspergillus spp was described as 200-400 μm hyperreflective structures with 5-10 μm 

septate hyphae with 45° dichotomous branches (Fig. 8d); conversely, Fusarium spp was 

described with branching at 90° in most of the IVCM studies on infectious keratitis.281,282 

However, in a recent study, the mean branching angle was measured as 59.7° and 63.3° for 

Fusarium spp and Aspergillus spp, respectively and the same study reported that 

dichotomous branching can be rarely seen with IVCM.283 Moreover, previous studies 

reported that IVCM is not only a diagnostic tool for infectious keratitis (accuracy of 94.8%) 

but also useful and valuable to follow treatment response and early detection of relapse in 

severe cases.279,284,285 The reported sensitivity and specificity of IVCM for fungus 

filaments detection were 71.4-94% and 78-81.4%, respectively.278,279,281,282

In summary, IVCM can serve as a diagnostic biomarker for fungal keratitis. Moreover, when 

it is applied to assess treatment response, it may be helpful as a monitoring biomarker.

Summary

This review assessed the current state of NITBUT, TMH, TMA, MG dropout, ocular redness 

grading scores, inflammatory cell density, DC density, nerve density, and epithelial thickness 

to as potential optical biomarkers in the scope of analytical and clinical validation. To date, 

none of the parameters can be described as a certain biomarker based on biomarker 

development processes shown in Table 1 and 2. However, NITBUT, TMH and TMA may 

become diagnostic biomarkers for DED once analytical and clinical validation are 

completed. Furthermore, DC density and palpebral immune cell density reflect the state of 

ocular surface inflammation with a good sensitivity and specificity. Although they cannot 

differentiate a specific disease, ocular inflammation can be diagnosed by these parameters 
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and treatment response to anti-inflammatory theraies can be evaluated, highlighting their 

potential to additionally become monitoring and pharmacodynamics biomarkers. Like 

inflammatory cell density, nerve density may not address a specific disease but can be a 

promising candidate for being a monitoring or pharmacodynamic biomarker in ocular (DED, 

neurotrophic keratitis, neuropathic corneal pain etc.) and systemic conditions, such as in 

diabetes. Lastly, epithelial thickness measured by AS-OCT has a high potential to be a 

diagnostic and monitoring biomarker for keratoconus patients.

Future Directions

The imaging parameters discussed herein have been summarized in Table 3 and are new or 

emerging tools that may provide potential biomarkers for ocular surface diseases. There is a 

strong need for analytical or further clinical validation to provide the necessary evidence (or 

fit of purpose) to qualify these imaging parameters for clinical use. The NIBUT has had 

extensive analytical validation supported by many groups. This has provided clinicians with 

an understanding of its limitations, which are lack of reproducibility across devices and 

larger variation at higher values. In addition, NIBUT has shown diagnostic potential via 

clinical validation. More extensive clinical validation is necessary if NIBUT is to be used as 

any other biomarker type. These additional clinical validations are likely to be pursued if 

NIBUT is used more widely within the clinic. To date, most studies appear to favor the 

traditional fluorescein TBUT.

The ocular redness grading scales have been extensively validated and implemented in 

clinical practice. However, most of the recent, automated, more reliable and continuous 

grading methods presented herein have not reached the same level of evidence for clinical 

trials as previous illustrative scales; in part due to the high costs of these high-resolution/

specialized devices or computer software development.108 New methods to quantify ocular 

redness or the use of automated analysis, such as ORI, are warranted with the latter showing 

promising results that require further clinical validation. Future clinical studies to address 

this issue ideally should present a practical approach with an objective continuous scale, low 

cost, high repeatability and reliability, high sensitivity to detect small incremental changes 

and should be comparable to previous studies.

Moreover, IVCM has emerged as an important non-invasive tool for ocular surface diseases. 

More specifically, the microscopic visualization of DCs and subbasal nerve plexus of the 

cornea has provided a novel approach to detect inflammation and nerve abnormalities of the 

ocular surface that could be secondary to systemic diseases such as in diabetes mellitus. 

Therefore, as highlighted in this review, the biomarkers with the highest level of evidence to 

date are DC density to diagnose and monitor inflammation of the ocular surface, particularly 

in DED, and total nerve density to monitor severity or progression for diabetes and 

neurotrophic keratitis

The use of artificial intelligence in ophthalmology is rapidly growing and might greatly 

impact imaging analysis in the near future.286 Most recently, its use on IVCM image 

analysis has been shown to be capable of detecting DCs and micro-neuromas in a fast and 

automated process with high sensitivity (66.0% and 91.3%, respectively) and specificity 

(99.0% and 90.0%, respectively), further facilitating its implementation as a complimentary 

Binotti et al. Page 21

Eye Contact Lens. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tool for ophthalmologists in research and clinical settings.141,287 There is growing evidence 

of the neuro-immune crosstalk that occurs in the cornea, highlighting the importance of 

these non-invasive biomarkers for monitoring in ocular surface disease.140137

Overall, the epithelial thickness maps as measured by anterior segment OCT is a novel 

reliable parameter to differentiate diseased corneas from healthy corneas.263 Since many 

ocular surface diseases affect the corneal epithelium, either directly or indirectly, assessing 

changes to this layer can be a promising monitoring or predictive biomarker for conditions 

such as keratoconus. Nevertheless, studies confirming how the degree of inflammation 

interferes with the epithelial thickness are warranted, as the former can be a confounding 

factor when establishing diagnostic thickness cut-off values. Furthermore, advances in OCT 

technology with novel applications for anterior segment are emerging. In particular, en face 
anterior segment OCT and anterior segment OCT angiography have been explored in ocular 

surface diseases and are capable of imaging corneal neovascularization and conjunctival-

limbal vessels.5,288,289 For example, in limbal stem cell deficiency anterior segment OCT 

angiography has shown an increase in corneal vessel extension and depth in disease 

correlating to disease severity.290 In conjunctival tumors, the anterior segment OCT lesion 

features as well as its vascularization on anterior segment OCT angiography were used to 

differentiate benign from malignant tumors.291 The advantage of non-invasively providing 

quantitative parameters of the ocular surface blood flow makes anterior segment OCT 

angiography a promising tool for diagnosis and monitoring.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Non-invasive tear film break-up time measurement by Oculus Keratograph 5M (Oculus, 

Arlington, WA, USA). a) Normal tear film break-up time with regular pattern. b) First and 

average break-up times were lower than normal values based on color scale in a patient with 

evaporative dry eye disease (movie of the same patient can be seen as supplementary data).
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Figure 2. 
a) In vivo confocal microscopy of the orifice of meibomian glands (red arrow) of the eyelid 

and b) presence of immune cells (yellow arrows) surrounding acinar unit.
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Figure 3. 
Meibography images (Infrared 840 nm) recorded by Oculus Keratograph 5M (Oculus, 

Arlington, WA, USA) a) Meibomian glands with moderate dropout and increased tortuosity 

of the glands are seen on the upper eyelid. b) Lower eyelid: severe dropout and dilatation of 

meibomian glands can be seen. Meibography images (nearinfrared 735 nm) of c) upper and 

d) lower eyelid recorded by Optovue RTVue-XR Avanti OCT System (Optovue, Fremont, 

CA, USA)
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Figure 4. 
Example of ocular redness grading scales and classification according to severity.
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Figure 5. 
In vivo confocal microscopy images in dry eye disease: a) Healthy individual. b) Increased 

number of dendritiform cells in patients with dry eye disease (red arrows show 

representative cells). c) Increased number of presumed mature dendritiform cells in patient 

with dry eye disease (yellow arrows show representative cells).
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Figure 6. 
Subbasal nerves detected by IVCM. a) Subbasal nerves in a normal indiviual; b) Decreased 

main nerve density (pink traces) and decreased nerve branching (blue tracing) in herpes 

simplex keratitis; c) Absence of subbasal nerve plexus in neurotrophic keratitis secondary to 

herpes simplex keratitis; d) Increased nerve tortuosity in dry eye disease (two semicircles on 

the same nerve branch shows most representative areas); e) Increased beading in a patient 

with neuropathic corneal pain (most representative beading areas are bordered by blue stars); 

e, f) Hyperreflective abnormal bulging of corneal nerve ending, microneuromas in patient 

with neuropathic corneal pain (green arrow heads).
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Figure 7. 
Anterior segment Optical Coherence Tomography (AS-OCT) corneal thickness and corneal 

epithelial thickness maps in a healthy eye. a) Reference infrared image and direction of 

selected scan (arrow). b) AS-OCT line of the cornea. c) Pachymetry and epithelial thickness 

color-coded maps.
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Figure 8. 
In vivo confocal microscopy images in infectious keratitis. a) Ovoid hyperreflective 

structure at the base of eyelash follicle of Demodex follicularis (red arrows) and b) 
Demodex brevis (yellow arrows). c) Double walled cysts (blue arrow heads) with 

hyperreflective center and hyporeflective surrounding halo and hyperreflective ovoid 

trophozoites in Acanthomoeba keratitis; d) Hyperreflective septated thin filamentous 

structures at anterior stroma in filamentous fungal keratitis (orange arrow heads).
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Table 1-

Validation Characteristics 1,6

Analytical validation Demonstration of the accuracy, precision, and feasibility of biomarker measurement.

    • Accuracy Closeness of agreement between the image acquired and the actual anatomical appearance

    • Reference normal value Normal distribution of values in a healthy population

    • Precision Closeness of agreement between a series of images obtained from multiple sampling of the 
same homogeneous sample under the prescribed conditions:

      ∘ Repeatability/Intra-grader reliability The agreement between successive measurements made under the same conditions.

      ∘ Reproducibility/Inter-grader reliability The agreement between successive measurements made with varying conditions, such as 
location or operator.
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Table 2-

Biomarker Definitions1,6

Clinical validation A process to establish that the test, tool, or instrument acceptably identifies, measures, or predicts 
the concept, which is the aspect of an individual’s clinical, biological, physical, or functional state, 
or experience that the assessment is intended to capture or reflect, of interest (the aspects 
necessary for clinical validation are dependent on the type of biomarker being developed)

    •  Diagnostic biomarker A biomarker used to detect or confirm presence of a disease or condition of interest or to identify 
individuals with a subtype of the disease

       ∘ Sensitivity Measures the ability of a diagnostic biomarker to correctly classify the presence of a particular 
condition/disease in patients that have the condition/disease.

       ∘ Specificity Measures the ability of a diagnostic biomarker to correctly classify the absence of a particular condition/
disease in patients that do not have the condition/disease.

    •  Monitoring biomarker A biomarker measured serially for assessing status of a disease or medical condition or for evidence of 
exposure to (or effect of) a medical product or an environmental agent

    •  Prognostic biomarker A biomarker used to identify likelihood of a clinical event, disease recurrence or progression in patients 
who have the disease or medical condition of interest

    •  Predictive biomarker A biomarker used to identify individuals who are more likely than similar individuals without the 
biomarker to experience a favorable or unfavorable effect from exposure to a medical product or an 
environmental agent

    •  Pharmacodynamic/ 
response biomarker

A biomarker used to show that a biological response has occurred in an individual who has been 
exposed to a medical product or an environmental agent

    •  Safety biomarker A biomarker measured before or after an exposure to a medical product or an environmental agent to 
indicate the likelihood, presence, or extent of toxicity as an adverse effect

    •  Susceptibility/risk 
biomarker

A biomarker that indicates the potential for developing a disease or medical condition in an individual 
who does not currently have clinically apparent disease or the medical condition

Eye Contact Lens. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Binotti et al. Page 48

Ta
b

le
 3

.

Su
m

m
ar

y 
of

 th
e 

B
io

m
ar

ke
rs

’ 
A

na
ly

tic
al

 a
nd

 C
lin

ic
al

 V
al

id
at

io
n.

A
na

ly
ti

ca
l V

al
id

at
io

n
C

lin
ic

al
 V

al
id

at
io

n

B
io

m
ar

ke
rs

N
or

m
al

 R
an

ge
R

ep
ea

ta
bi

lit
y/

 I
nt

ra
-o

bs
er

ve
r 

re
lia

bi
lit

y
R

ep
ro

du
ci

bi
lit

y/
 I

nt
er

-o
bs

er
ve

r 
re

lia
bi

lit
y

D
ia

gn
os

tic
M

on
ito

ri
ng

Pr
ed

ic
tiv

e
Se

ns
iti

vi
ty

Sp
ec

if
ic

ity

N
IB

U
T

≥1
0 

se
co

nd
s

C
oV

=
 7

.3
-3

6.
6%

18
,2

6,
27

IC
C

=
 0

.7
50

-0
.9

30
18

,2
3,

25
-2

7
C

oV
=

 1
5.

4-
21

.8
5%

18
,27

IC
C

=
 0

.8
80

27
80

.0
-8

7.
0%

 29
-3

1
86

.0
-1

00
%

 29
-3

1
✔

✔

T
M

H

 
 

• 
 T

im
e 

D
om

ai
n

23
0-

33
2 

μm
42

,4
5,

51
C

oV
=

 2
1.

3-
49

.6
%

42
,5

1,
29

2,
29

3
S p

=
 ±

29
μm

36
,5

1
67

.0
%

42
81

.0
%

42
✔

 
 

• 
 S

pe
ct

ra
l D

om
ai

n
31

9-
35

4 
μm

36
,5

1
C

oV
=

 9
.0

-2
8.

4%
39

,4
0,

51
,5

3

IC
C

=
 0

.9
00

-0
.9

81
39

,4
0,

51
,5

3

S p
=

 ±
15

μm
36

,5
1

C
oV

=
 7

.0
-1

7.
1%

39
,4

0,
51

,5
3

IC
C

=
 0

.9
20

-0
.9

30
39

,4
0,

51
,5

3
80

.5
%

89
.3

%
✔

 
 

• 
 S

w
ep

t-
So

ur
ce

18
3-

33
9 

μm
39

,4
0,

51
,5

3
C

oV
=

 2
3.

9-
28

.0
%

48
,2

94

IC
C

=
 0

.9
09

-0
.9

81
48

,2
94

C
oV

=
 1

4.
5-

28
.0

%
48

,2
94

IC
C

=
 0

.9
32

-0
.9

48
48

,2
94

67
.0

%
88

.0
%

✔

T
M

A

 
 

• 
 T

im
e 

D
om

ai
n

3,
41

4-
35

,2
83

 
μm

2 
15

,3
9,

48
-5

0
✔

 
 

• 
 S

pe
ct

ra
l D

om
ai

n
25

,3
83

-6
2,

10
0 

μm
2 

15
,3

9,
48

-5
0

C
oV

 =
 1

7.
0-

44
.0

%
53

,5
4,

29
2

C
oV

 =
 1

9.
5-

35
.4

%
53

,5
4,

29
2

86
.1

%
85

.3
%

✔

 
 

• 
 S

w
ep

t-
So

ur
ce

12
,4

59
-2

7,
90

0 
μm

2 
15

,3
9,

48
-5

0
C

oV
=

 4
5.

5-
52

.0
%

48
,2

94

IC
C

=
 0

.8
73

-0
.9

90
48

,2
94

C
oV

=
 2

7.
7-

29
.4

%
48

,2
94

IC
C

=
0.

81
3-

0.
98

248
,2

94
62

.0
%

92
.0

%
✔

N
IB

U
T

: n
on

-i
nv

as
iv

e 
te

ar
 b

re
ak

-u
p 

tim
e,

 T
M

H
: t

ea
r 

m
en

is
cu

s 
he

ig
ht

, T
M

A
: t

ea
r 

m
ea

ni
sc

us
 a

re
a,

 S
p=

 p
oo

le
d 

st
an

da
rd

 d
ev

ia
tio

n,
 C

oV
: c

oe
ff

ic
ie

nt
 o

f 
va

ri
ab

ili
ty

, I
C

C
: i

nt
ra

- 
or

 in
te

r-
cl

as
s 

co
rr

el
at

io
n 

co
ef

fi
ci

en
t.

Eye Contact Lens. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Binotti et al. Page 49

Ta
b

le
 4

.

Su
m

m
ar

y 
of

 th
e 

B
io

m
ar

ke
rs

’ 
A

na
ly

tic
al

 a
nd

 C
lin

ic
al

 V
al

id
at

io
n.

A
na

ly
tic

al
 V

al
id

at
io

n
C

lin
ic

al
 V

al
id

at
io

n

B
io

m
ar

ke
rs

N
or

m
al

 R
an

ge
R

ep
ea

ta
bi

lit
y/

 I
nt

ra
-o

bs
er

ve
r 

re
lia

bi
lit

y
R

ep
ro

du
ci

bi
lit

y/
 I

nt
er

-
ob

se
rv

er
 r

el
ia

bi
lit

y

D
ia

gn
os

tic
M

on
ito

ri
ng

Pr
ed

ic
tiv

e
Se

ns
iti

vi
ty

Sp
ec

if
ic

ity

IR
 M

ei
bo

gr
ap

hy
49

-8
8%

48
,2

92
65

-1
00

%
48

,2
92

 
 •

 
 %

 p
ar

ci
al

 g
la

nd
k w

=
 0

.1
5 

to
 0

.9
181

K
w

=
 0

.3
6-

0.
77

81
,8

2

 
 •

 
 %

 g
la

nd
 d

ro
p 

ou
t

k w
=

 0
.4

0-
0.

81
82

K
w

=
 0

.2
1-

0.
90

82
,8

5
✔

 
 •

 
 s

of
tw

ar
e 

an
al

ys
is

IC
C

=
 0

.5
70

-0
.7

40
82

IC
C

=
 0

.5
20

-0
.8

70
85

,9
3

✔

O
R

 
 •

 
 S

ca
le

s
0 

gr
ad

e 
[0

-3
/4

]
C

oV
=

 1
7-

20
%

10
0-

10
2,

10
4

C
oR

=
 0

.3
1-

0.
59

10
0-

10
2,

10
4

IC
C

=
 0

.9
80

10
0-

10
2,

10
4

C
oR

=
 0

.4
9-

0.
80

10
0-

10
2,

10
4

✔
✔

 
 •

 
 V

B
R

-
C

oV
=

 3
.9

-9
.1

%
10

7,
29

5-
29

7
C

oR
=

 5
.0

-5
.9

IC
C

=
 0

.9
92

-0
.9

99
10

7,
29

5-
29

7
✔

✔

 
 •

 
 O

R
I

-
-

IC
C

=
 0

.9
95

-0
.9

98
10

8
✔

✔

D
en

dr
iti

fo
rm

 C
el

ls
C

en
tr

al
: 9

-6
4 

ce
lls

/m
m

2 
13

0,
15

8,
15

9,
29

8

Pe
ri

ph
er

al
: 0

-2
08

 
ce

lls
/m

m
2 

13
0,

15
8,

15
9,

29
8

C
oV

=
 4

.4
-1

1.
9%

75
,1

31
-1

39
IC

C
=

 0
.9

91
-0

.9
97

75
,1

31
-1

39
✔

✔

Pa
lp

eb
ra

l I
nf

la
m

m
at

io
n

✔

 
 •

 
 I

m
m

un
e 

ce
lls

 o
n 

IV
C

M
E

pi
th

el
ia

l: 
12

3.
3-

12
3.

7 
ce

lls
/m

m
2 

74
,1

78

St
ro

m
al

: 3
6.

7-
38

.8
 

ce
lls

/m
m

2 
74

,1
78

IC
C

=
 0

.9
60

-0
.9

70
74

,7
5

IC
C

=
 0

.9
20

-0
.9

97
74

,7
5

94
.0

%
75

92
.0

%
75

✔

N
er

ve
 L

en
gt

h
17

.1
-3

1.
7 

m
m

/m
m

2 
17

9,
18

4,
18

5,
18

7-
18

9
IC

C
=

 0
.7

00
-0

.9
80

18
2,

18
9

D
M

 I
C

C
=

0.
98

018
9

IC
C

=
 0

.6
10

-0
.9

40
18

2,
18

9
D

E
D

: 8
1.

9%
18

5
D

E
D

: 8
5.

0%
18

5
✔

✔

N
er

ve
 D

en
si

ty
8.

4-
31

.9
 m

m
/

m
m

21
79

,1
84

,1
85

,1
87

-1
89

IC
C

=
 0

.6
70

-0
.9

20
18

2,
18

9

D
M

 I
C

C
=

0.
84

018
9,

18
9

IC
C

=
 0

.5
20

-0
.9

60
18

2,
18

9
D

M
: 

82
.0

%
23

9-
24

2

D
E

D
: 8

0.
2%

18
5

D
M

: 5
2.

0%
23

9-
24

2

D
E

D
: 8

5.
0%

18
5

✔
✔

N
er

ve
 B

ea
di

ng
90

-1
98

 b
ea

ds
/m

m
18

2,
19

0,
19

4
IC

C
=

 0
.9

30
18

7,
19

5,
19

6
IC

C
=

 0
.8

70
18

7,
19

5,
19

6
✔

N
er

ve
 T

or
tu

os
ity

1.
1 

gr
ad

e 
[0

-4
] 

19
2

IC
C

=
 0

.2
00

-0
.6

90
 17

9,
19

3,
19

4
IC

C
=

 0
.6

00
-0

.9
30

 17
9,

19
3,

19
4

51
.9

 -
 5

8.
8%

25
0

81
.1

 -
 8

4.
7%

25
0

✔

N
er

ve
 R

ef
le

ct
iv

ity
1.

1-
2.

6 
gr

ad
e18

7,
19

6,
19

7
✔

N
er

ve
 T

hi
ck

ne
ss

0.
52

-4
.6

8 
μm

18
2,

19
0,

19
4

✔

Eye Contact Lens. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Binotti et al. Page 50

E
pi

th
el

ia
l C

or
ne

al
 

T
hi

ck
ne

ss
50

.4
-5

3.
4 

μm
18

2
C

en
tr

al
 C

oV
=

 1
.7

-2
.4

%
25

6-
26

0

Pe
ri

ph
er

al
 C

oV
=

1.
8-

3.
2%

25
6-

26
0

IC
C

=
 0

.9
57

-0
.9

90

C
en

tr
al

 C
oV

=
 0

.4
-3

.6
%

25
6-

26
0

Pe
ri

ph
er

al
 

C
oV

=
2.

4-
3.

8%
25

6-
26

0

IC
C

=
 0

.8
91

-0
.9

70

A
U

C
=

 0
.6

40
-0

.8
80

A
U

C
PS

D
=

 0
.9

85
-1

.0
00

✔
✔

Eye Contact Lens. Author manuscript; available in PMC 2021 March 01.


	Abstract
	Methods
	Tear Film Assessment
	Non-Invasive Tear Break Up Time (NIBUT)
	Analytical Validation
	Clinical Validation

	Tear Meniscus Measurement by Anterior Segment Optical Coherence Tomography (OCT)
	Analytical Validation
	Clinical Validation


	Assessment of Meibomian Gland Morphology
	Infrared Meibography
	Analytical Validation
	Clinical Validation


	Ocular Surface Inflammation
	Conjunctival Redness
	Analytical Validation
	Clinical Validation

	Cellular Quantification by In Vivo Confocal Microscopy
	Analytical Validation
	Clinical Validation
	Palpebral Inflammation
	Analytical Validation
	Clinical Validation


	Assessment of Corneal Nerve Alterations by IVCM
	Analytical Validation
	Total, trunk and branch nerve density and length
	Tortuosity
	Beading
	Nerve Reflectivity and Thickness
	Microneuromas

	Clinical Validation
	Total, trunk and branch nerve density and length
	Tortuosity
	Beading
	Reflectivity and Thickness
	Microneuromas


	Corneal Thickness and Epithelial Thickness
	Analytical Validation
	Clinical Validation

	Qualitative Biomarkers
	Demodex Folliculorum Blepharitis
	Acanthamoeba Keratitis
	Fungal Keratitis

	Summary
	Future Directions

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1-
	Table 2-
	Table 3.
	Table 4.

