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Patients infected with influenza are at high risk of secondary
bacterial infection, which is a major proximate cause of morbidity
and mortality. We have shown that in mice, prior infection with
influenza results in increased inflammation and mortality upon
Staphylococcus aureus infection, recapitulating the human dis-
ease. Lipidomic profiling of the lungs of superinfected mice
revealed an increase in CYP450 metabolites during lethal superin-
fection. These lipids are endogenous ligands for the nuclear re-
ceptor PPARα, and we demonstrate that Ppara−/− mice are less
susceptible to superinfection than wild-type mice. PPARα is an in-
hibitor of NFκB activation, and transcriptional profiling of cells
isolated by bronchoalveolar lavage confirmed that influenza in-
fection inhibits NFκB, thereby dampening proinflammatory and
prosurvival signals. Furthermore, network analysis indicated an
increase in necrotic cell death in the lungs of superinfected mice
compared to mice infected with S. aureus alone. Consistent with
this, we observed reduced NFκB-mediated inflammation and cell
survival signaling in cells isolated from the lungs of superinfected
mice. The kinase RIPK3 is required to induce necrotic cell death and
is strongly induced in cells isolated from the lungs of superinfected
mice compared to mice infected with S. aureus alone. Genetic and
pharmacological perturbations demonstrated that PPARα medi-
ates RIPK3-dependent necroptosis and that this pathway plays a
central role in mortality following superinfection. Thus, we have
identified a molecular circuit in which infection with influenza
induces CYP450 metabolites that activate PPARα, leading to in-
creased necrotic cell death in the lung which correlates with the
excess mortality observed in superinfection.

PPARα | influenza | superinfection | necroptosis | systems biology

It has long been appreciated that superinfection with bacteria
such as Streptococcus pneumoniae and Staphylococcus aureus

following influenza infection leads to significantly increased
mortality and morbidity compared to infection with either the
bacterium or the virus alone (1–3). For example, the notorious
and highly pathogenic 1918 H1N1 strain resulted in ∼50 million
deaths (4), and secondary bacterial infections contributed sig-
nificantly to mortality during this pandemic (3, 5–7). The altered
pulmonary environment following influenza infection results in
suppression of the innate immune system, primarily by modifying
the phenotype of macrophages (8), neutrophils (9, 10), and NK
cells (11), and this suppression leads to increased bacterial rep-
lication (12, 13). Superinfection with S. aureus following influenza
infection often leads to severe disease with ∼41%mortality and has
emerged as a significant clinical problem (14). The increasing
prevalence of antibiotic-resistant strains, including MRSA (methicillin-
resistant S. aureus) and, more recently, VRSA (vancomycin-
resistant S. aureus), has exacerbated the threat posed by these
bacteria, particularly in the context of superinfections (15).

Influenza infection leads to multiple changes in the pulmonary
environment that contribute to the pathogenesis of superinfec-
tion. In addition to transcripts and proteins, bioactive lipid me-
diators play critical roles in influenza pathogenesis, and the
lipidomic profile provides a dynamic and comprehensive descrip-
tion of the processes involved in the induction and resolution of
inflammation induced by prior influenza infection (16). Eicosanoids
are a family of bioactive lipid mediators derived from arachidonic
acid by three major enzymatic pathways: 1) the cyclooxygenase
pathway, which produces prostaglandins and thromboxanes; 2) the
lipoxygenase pathway (LOX), which produces leukotrienes and
lipoxins; and 3) the cytochrome P450 pathway, which produces
epoxy and dihydroxy derivatives of arachidonic acid (17–20).
The CYP450 metabolites have diverse biological functions,

including the regulation of cellular proliferation and inflammation
(16), and some members of this family have been shown to bind
and activate PPARα (21). PPARα is a ligand-activated transcrip-
tion factor long studied for its role in fatty acid metabolism that has
also been demonstrated to play a role in inflammatory responses
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and in the control of the cell cycle. PPARα inhibits the inflam-
matory response by repressing NFκB signaling, and both PPARα
and NFκB have been shown to influence cell survival and cell death
(22–24).
There are three major mammalian programmed cell death

pathways: apoptosis, pyroptosis, and necroptosis. While apoptotic
cells trigger an anti-inflammatory response, pyroptotic and ne-
crotic cells drive a proinflammatory response due to the release of
cellular contents. Necroptosis is programmed lytic cell death
caused by RIPK3 activation of MLKL, and recent work has sug-
gested that necroptosis defends against viral infections (25). There
is substantial cross talk between the different cell death pathways,
and modulating the balance between these pathways has impor-
tant effects on the outcome of a variety of inflammatory diseases
(24, 26).
Superinfection is a complex process involving the interaction

of multiple pathogens with the host over a prolonged period. We
have used a global multiomics approach coupled with systems
analysis to generate testable hypotheses for the mechanisms
which might underlie this complex pathologic process. Using this
approach, we identified an anti-inflammatory eicosanoid re-
sponse activated by CYP450 lipid metabolites and mediated by
PPARα that, while not induced by influenza or S. aureus infection
alone, is highly induced during superinfection. This signaling
cascade suppresses the initial immune response to S. aureus and
inhibits efficient pathogen clearance, resulting in increased im-
mune pathology. While PPARα has previously been shown to play
a role in apoptotic cell death (22, 23), we now demonstrate that
activated PPARα drives enhanced RIPK3-dependent necroptosis
during superinfection and that this correlates with increased
mortality.

Results
Establishing a Murine Superinfection Model. We investigated the
host response in mice that were infected with influenza for 7 d,
followed by infection with S. aureus. At this time point, only a
small amount of viral RNA was detectable by PCR (SI Appendix,
Fig. S1). No mice died when infected with S. aureus alone, and 2
out of 14 mice died when infected with PR8/H1N1 influenza
alone, respectively. By contrast, all 17 mice succumbed when
infected with influenza followed by S. aureus (Fig. 1A). Hema-
toxylin and eosin (H&E) staining of lung sections demonstrated
that lesions were more extensive and severe in mice coinfected
with influenza and S. aureus, resulting in widespread inflamma-
tion with necrosis 1 d after infection with S. aureus (Fig. 1 B–D).
While the early bacterial burden, measured at 4 h after infection,
was unchanged in superinfected mice, there were significantly
more bacteria in lungs of superinfected mice compared to mice
infected with S. aureus alone on both day 1 and day 5 following
infection (Fig. 1E).

Lipidomic Analyses of BAL during Superinfection. We previously
defined a role for ∼50 eicosanoid species in regulating pro- and
anti-inflammatory pathways in the lungs of mice challenged with
high- and low-pathogenicity strains of influenza (16). We took a
similar approach to determine the role of eicosanoids in the
outcome of superinfection. We analyzed bronchoalveolar lavage
(BAL) fluid by liquid chromatography–mass spectrometry (LC/
MS), profiling 143 lipid species, of which 91 were detected and
quantified. Several species of lipids generated by the enzymatic
activity of cyclooxygenases (COX) and lipoxygenases (LOX)
were up-regulated by S. aureus alone and in superinfection
(Fig. 2A), while multiple linoleic acid and docosahexaenoic acid
(DHA) derivatives were up-regulated by S. aureus alone, in-
fluenza alone, and superinfection (Fig. 2A). The only group of
eicosanoids significantly and uniquely up-regulated in superin-
fection was the Cytochrome P450 metabolites (CYP450) (Fig.
2A). In addition to the greater absolute abundance of CYP450

metabolites (Fig. 2B), their percentage of total lipid mediators
was also significantly elevated (Fig. 2C). Because elevated levels
of CYP450 metabolites was the only lipid signature unique to
superinfection, we focused on the mechanistic role of these lipids
in mediating disease.

The Role of PPARα in Superinfection. CYP450 metabolites bind to
the nuclear receptor PPARα (21, 27), leading to its association
with and inhibition of the p65 subunit of NFκB, a proinflammatory
transcription factor (28). PPARα is a short-lived protein that is
stabilized by ligand binding which both activates the enzyme and
inhibits its proteolysis (29). Prior infection with influenza led to
increased levels of PPARα in the lungs of mice infected with S.
aureus (Fig. 3 A and B). In addition, 14,15-diHETrE, which is the
most potent PPARα agonist of the CYP450 metabolites (21), was
produced at a significantly higher level during superinfection
compared to infection with S. aureus alone (Fig. 2A and SI Ap-
pendix, Fig. S2), and we demonstrated that treatment of Hox-
derived macrophages (30) with 14,15-diHETrE sharply inhibited
NFκB activity following Toll-like receptor stimulation (Fig. 3C).
We therefore examined whether deletion of Ppara would alter the
sensitivity of mice to superinfection. We found that Ppara−/− mice
were partially protected from sequential challenge with influenza
and S. aureus (Fig. 3D), suggesting that PPARα exacerbates the
increased morbidity and mortality during superinfection.

Analysis of Transcriptional Networks during Superinfection. In order
to integrate the observed changes in lipid species with other
immune events occurring in the lung following superinfection we
examined the cellularity in BAL fluid 4 h following S. aureus
infection in naïve mice or mice that had been previously infected
with influenza for 7 d. At this early time point, there was no
difference in bacterial burden in the lungs (Fig. 1E). Prior in-
fection with influenza led to an increased fraction of T cells (SI
Appendix, Fig. S3), and S. aureus infection resulted in significant
recruitment of neutrophils independent of prior influenza in-
fection (SI Appendix, Fig. S3). Next, we conducted a global
transcriptional analysis by microarray of the cellular contents of
BAL fluid at an early time point (4 h) following S. aureus infection
(31). In order to identify pathways and potential transcriptional
regulators involved in the pathogenesis of superinfection, we de-
fined a set of 1,010 “S. aureus–responsive” genes that were dif-
ferentially expressed (false discovery rate [FDR] < 0.01; |log2[fold
change]| > 2) following infection with S. aureus alone and
then extracted a subset of 667 “influenza-modified/S. aureus–
responsive” genes whose response to S. aureus was altered by prior
influenza infection (FDR < 0.01). Applying ingenuity pathway
analysis (IPA), we found that the influenza-modified/S. aureus–
responsive genes strongly overlapped gene sets associated with
inflammatory response, including gene sets with functional anno-
tations corresponding to “activation of leukocytes,” “cell move-
ment of phagocytes,” and “chemotaxis of phagocytes,” all of which
were down-regulated in superinfection (Fig. 4A). This dampening
of the inflammatory response was exemplified by decreased ex-
pression of Il6, Il1b, Mmp9, Lcn2, Cxcl5, and Marco (Fig. 4B).
Many of the inflammatory genes whose expression is sup-

pressed in superinfected mice compared to mice infected with S.
aureus alone are known to be regulated by the transcription
factor NFκB. Of the 498 genes whose expression was up-
regulated by S. aureus infection alone and whose response to
S. aureus was suppressed by prior influenza infection (FDR <
0.01), 45 (9%) are known NFκB targets (32). In comparison, only
1.7% of all expressed genes in the BAL are annotated as NFκB
targets. PPARα is known to suppress NFκB signaling, and we
hypothesized that the suppression of these inflammatory genes
could be, in part, explained by up-regulation of CYP450 me-
tabolites and activation of PPARα. We therefore examined the
expression of NFκB-regulated inflammatory genes in superinfected
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Ppara−/− mice and found that they are significantly less repressed
(Fig. 4C), suggesting that Ppara deficiency partially reversed the
suppression of inflammatory function during superinfection. In-
terestingly, suppression of the scavenger receptor Marco inhibits
the phagocytosis of bacteria during influenza/S. pneumoniae
superinfection (8).
In addition to inflammatory pathways, IPA also indicated that

the set of influenza-modified/S. aureus–responsive was enriched
for genes involved in pathways related to cell survival and cyto-
toxicity: Cells isolated from superinfected mice expressed ele-
vated levels of cytotoxicity- and necrosis-related genes and lower
levels of cell survival-related genes than cells isolated from mice
infected with S. aureus alone (Fig. 4D). To determine which of
the three major mammalian programmed cell death pathways
(apoptosis, pyroptosis, or necroptosis) predominated in super-
infection we examined the expression of genes that are known to
regulate these pathways. The pyroptosis activator Nlrp3, an in-
tracellular sensor that triggers inflammasome activation (33, 34),
is strongly suppressed by prior influenza infection compared to
infection with S. aureus alone (Fig. 4E). In contrast, Ripk3, a
kinase required for necroptosis, is only up-regulated during viral
infections (with or without S. aureus) (Fig. 4E). Furthermore,
prior influenza infection sharply attenuates the induction by S.
aureus of Cflar, a negative regulator of necroptosis (35), and
amplifies S. aureus–induced expression of Cyld (Fig. 4E), a
protein that deubiquitinates RIPK1 to promote necroptosis (36).
Finally, Birc3 and Sod2, both of which have been shown to inhibit
necroptosis (37, 38), are induced to significantly lower levels by

superinfection than by S. aureus alone (Fig. 4E). These tran-
scriptional profiling data suggest that the balance between cell
survival and cell death in S. aureus infection, mediated in part by
survival signals (Birc3, Sod2) and pyroptosis (Nlrp3) or necroptosis
(Ripk3, Cflar, Cyld), is altered by prior influenza infection. Based
on these data, we hypothesized that prior infection with influenza
biases the programmed cell death response to S. aureus toward the
necroptotic pathway and that this is associated with an increase in
morbidity and mortality.

Role of Necroptosis in Contributing to Increased Mortality and
Morbidity during Lethal Superinfection. To assess whether lytic
cell death, such as necroptosis, is occurring during lethal super-
infection, we measured total cell death within the BAL using an
lactate dehydrogenase (LDH) release assay. Prior influenza in-
fection significantly enhanced LDH release in response to S.
aureus (Fig. 5A). Based on the transcriptional profiling, we hy-
pothesized that the elevated level of LDH observed during su-
perinfection results from increased necroptosis. Consistent with
a role for necroptosis, LDH levels in BAL from superinfected
Ripk3−/− mice were lower compared to wild-type controls (Fig.
5A). In order to determine the specific role of Ripk3 in the
pathogenesis of superinfection, we repeated the infection ex-
periments described above using Ripk3−/− mice and found that
they are protected (Fig. 5B), suggesting that Ripk3 exacerbates
the increased morbidity and mortality during superinfection.
Notably, the degree of protection from mortality observed in the
Ripk3−/− mice was nearly equivalent to that observed in the
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Fig. 1. Influenza/S. aureus superinfection model. (A) Survival curve of mice infected with only influenza at day 0 (blue), only S. aureus at day 7 (green), or
influenza at day 0 followed by S. aureus at day 7 (black). Mantel–Cox tests were performed to determine statistical significance. The plot depicts the combined
results of five experiments with a total across all experiments of 12 to 17 mice per condition. (B) Representative H&E sections and quantitative pathology
assessment of (C) total pathology score and (D) levels of perivascular cuffing by neutrophils (PC-N) from infected lungs 1 d following S. aureus infection, 8 d
following influenza infection, or 1 d following secondary S. aureus infection of mice infected with influenza for 7 d. (E) Bacterial burden measured by CFU
counting in whole-lung homogenates of mice following S. aureus infection (green) or following influenza infection (at day 0; blue) and secondary S. aureus
infection (at day 7; black). The dashed line indicates the detection limit. Significance was determined by an unpaired Student’s t test (**P < 0.01; ***P < 0.001;
****P < 0.0001).
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Ppara−/− mice (Figs. 5B and 3D). We observed no difference in
survival between wild-type and Ripk3−/− mice when challenged
with sublethal or lethal doses of influenza (SI Appendix, Fig. S4).
To test the role of necroptosis in a complementary manner and
to determine if inhibiting necroptosis pharmacologically could
improve the outcome of disease, we repeated the superinfection
experiments, treating the mice with daily injections of Nec-1, a
RIPK1 inhibitor that prevents RIPK3 oligomerization and nec-
roptosis (39), starting at day 7 (the day on which the mice were

infected with S. aureus). Treatment with Nec-1 reduced mortality
following superinfection in a dose-dependent manner (Fig. 5C).
To examine the role of PPARα in mediating necroptosis, we

generated Hox-derived (30) macrophage cell lines from C57BL/6
and Ppara−/− mice as well as from mice lacking Ripk3 and mice
homozygous for a deleterious ENU-induced mutation in Mlkl, a
gene that is essential for necroptosis. For each of these geno-
types, we examined the degree of cell death under necroptotic
conditions using a propidium iodide and lysotracker assay as
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described previously (40) (SI Appendix, Fig. S5). The dead to live
cell ratio of wild-type macrophages increased dramatically on
treating the cells with TNF in combination with the caspase in-
hibitor zvad-FMK (zvad) (Fig. 5D). As expected, the induced cell
death phenotype was completely abrogated in Ripk3−/− or
MlklENU cells as these genes have been shown to be essential for
necroptosis (41, 42) (Fig. 5D). This RIPK3- and MLKL-dependent
cell death was also completely abrogated under the TNF/zvad-
stimulating condition in Ppara−/− cells, demonstrating a role for
PPARα in necroptosis. We also confirmed a role of PPARα in
mediating necroptosis using pharmacologic agonists and antagonists
(Fig. 5E). Consistent with a role for CYP450 metabolites in medi-
ating elevated necroptosis, treatment of macrophages with 14,15-
DiHETrE induced significantly more cell death under necroptotic
conditions in a PPARα-dependent manner (Fig. 5F).

Discussion
Bacterial superinfection following influenza is a serious compli-
cation leading to pneumonia and death. There are undoubtedly
multiple feedback and feed-forward loops controlling a response
as complex as superinfection, and we have used the tools of
systems biology to begin to unravel this complexity. In this study,
we have identified an anti-inflammatory eicosanoid (CYP450)
response that activates PPARα, resulting in the inhibition of
NFκB. This signaling cascade not only suppresses the initial im-
mune response but also enhances programmed necroptosis during
lethal superinfection (Fig. 6). We demonstrate that this failure to
activate the initial inflammatory response to S. aureus (within 4 h)
leads to failure to control bacterial growth at later time points (24 h)

and that this correlates with increased pulmonary pathology. We
validated this model by demonstrating that mortality following su-
perinfection is reduced in mice lacking either Ppara or Ripk3.
The inflammatory response must be tightly regulated to sup-

port pathogen clearance while avoiding excessive tissue damage.
Eicosanoid-derived bioactive lipids are critical mediators in both
promoting and resolving inflammation (44). We previously de-
fined a role for ∼50 eicosanoid species in regulating pro- and
anti-inflammatory pathways in the lungs of mice challenged with
high- and low-pathogenicity strains of influenza virus (16). In this
study we extended these results by investigating how superinfection
affects the production of bioactive lipids within the lung. In-
triguingly, unlike infection with either influenza alone or S. aureus
alone, during superinfection a group of anti-inflammatory CYP450
metabolites is significantly up-regulated. These metabolites are
known to bind and activate the nuclear receptor PPARα (27, 45).
PPARα is a ligand-activated transcription factor that has long

been known to play important roles in fatty acid metabolism and
energy homeostasis (46, 47). In fact, the class of drugs known as
fibrates are PPARα agonists that are widely used to treat dysli-
pidemia. Additional studies have shown that PPARα also inhibits
inflammation and regulates apoptotic cell death. PPARα regu-
lates inflammation through cross talk with other transcription
factors, including NFκB (48); through regulation of eicosanoids
(49); and through regulation of cytokine production (50). Our
work extends these prior studies and demonstrates that CYP450
metabolites generated in the context of superinfection activate
PPARα, which results in the inhibition of NFκB. While multiple
studies have demonstrated that PPARα regulates apoptosis in a
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variety of cell types (22, 23, 51–54), to our knowledge it has never
been shown to control necroptosis. The mode of programmed
cell death (e.g., apoptosis vs. necroptosis) can dramatically affect
the outcome of an infection (55–58). In this work we have shown
that CYP450 metabolites generated during superinfection can
activate PPARα and that activated PPARα in turn enhances
necroptotic cell death. PPARα induces fatty acid elongases that
are necessary for the formation of ceramides and long-chain fatty
acids (59–61) that have been shown to promote necroptosis (62).
Therefore, alterations in lipid metabolism induced by CYP450-
mediated activation of PPARα may potentiate the necroptotic
cell death we observed during superinfection.

At the doses used in this study, wild-type and Ripk3−/− mice
are equally susceptible to influenza infection, suggesting that in
our model, increased morbidity due to necroptosis in superin-
fection arises from the interaction between the bacteria and the
altered pulmonary environment rather than directly from the
viral infection. Our data show that Birc3 expression in response
to S. aureus is decreased in mice with prior influenza compared
to naïve mice. This in turn leads to increased activation of
RIPK3 and to increased necroptosis (Fig. 6). These findings are
concordant with those of Rodrigue-Gervais et al. (63) which
showed that in Birc3−/− mice influenza infection led to airway
cells being “primed” for necrosis by preformed ripoptosomes,
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which recruit RIPK3 and initiate necroptosis downstream of Fas
signaling, resulting in widespread tissue destruction and host
mortality.
RIPK3 was recently shown to play a role in inflammation-

related transcription, NFκB activation, and cytokine production
independent of necroptosis (64, 65). Interestingly, during su-
perinfection, the transcription of several proinflammatory genes
was induced to higher levels in Ripk3−/− mice compared to wild-
type controls (Fig. 2C). The necroptosis-independent roles of
RIPK3 in inflammation during superinfection will be investigated
in future studies.
During microbial infection, eicosanoids and related bioactive

lipids play a major role in the induction and resolution of in-
flammation. Since there are many currently available drugs tar-
geting the eicosanoid pathways, it is possible that the knowledge
gained in this study will lead to therapeutic interventions for the
treatment of bacterial superinfections.

Materials and Methods
Mouse Influenza and Staphylococcus aureus Infection.
Mice and husbandry. C57BL/6J (Stock No. 000664) and Ppara−/− (Stock No.
008154) mice were obtained from the Jackson Laboratory. Ripk3−/− mice

were generously provided by Vishva Dixit (Genentech, South San Francisco,
CA). Animals were housed in individually ventilated cages (Innovive) con-
taining corncob bedding (Andersons) and Innorichment (Innovive). Mice
were fed irradiated Picolab Rodent Diet 20 #5053 (Lab Diet). Study animals
were placed on sterilized, acidified (pH 2.5 to 3.0) water in water bottles
prefilled by the manufacturer (Innovive). Animals were maintained in a
specific pathogen-free facility. Sentinel mice (Hsd:ND4 from Envigo) were
tested every 3 to 4 mo and were free from antibodies to Mycoplasma pul-
monis, ectromelia, Mouse Rotavirus (Epizootic Diarrhea of Infant Mice,
EDIM), Lymphocytic Choriomeningitis Virus (LCMV), Mouse Hepatitis Virus
(MHV), Murine Norovirus (MNV), Mouse Parvovirus (MPV), Minute Virus of
Mice (MVM), Pneumonia Virus of Mice (PVM), Reovirus (REO-3), Sendai,
Theiler’s Murine Encephalomyelitis Virus (TMEV) (IDEXX RADIL), pinworms
(Syphacia spp., Aspiculuris tetraptera) and fur mites. Experiments were ap-
proved by the Seattle Children’s Research Institute and Temple University
Institutional Animal Care and Use Committee.
Infections. Animals were anesthetized with a ketamine–xylazine mixture and
infected intranasally with 150 plaque-forming units of influenza virus strain
PR8 in 30 μL sterile phosphate-buffered saline (PBS). Mock-infected animals
were inoculated with 30 μL sterile PBS. Animals were weighed daily and
were also monitored for other disease symptoms, including hunched pos-
ture, ruffled fur, ambulatory impairment or lethargy, alertness, dehydration,
isolation, and decreased body condition. Animals were monitored daily
during the peak of disease. Animals were killed when they developed signs

RIPK1

RIPK1

RIPK1
RIPK3

Fig. 6. Model for the role of CYP450 metabolites in the pathophysiology of influenza/S. aureus superinfection. Levels of CYP450 lipid metabolites during
influenza/S. aureus infection (black) compared to infection with S. aureus alone (green). These mediators activate the nuclear receptor PPARα, which inhibits
NFκB. This inhibition is reflected in the dampened expression of numerous proinflammatory genes (Mmp9, Lcn2, Il6, Cxcl1, Cxcl5). In addition, expression of
the cell survival genes Birc3 and Sod2 is also repressed in superinfected mice. Birc3 inhibits necroptosis by driving ubiquitination of RIPK1 and thereby
inhibiting its phosphorylation, which is required for it to form a complex with RIPK3 and thereby drive necroptosis (37, 43). Sod2, a superoxide dismutase,
clears reactive oxygen species, helping to protect against cell death under necroptotic conditions. Dampened inflammatory responses and elevated nec-
roptosis are associated with hindered bacterial clearance and increased morbidity and mortality.
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of severe disease (impaired ability to get to food and/or water, recumbency
and unresponsiveness, severe dyspnea, severe pain, loss of body condition),
and tissue samples were collected. S. aureus (Newman strain) was provided
by Ferric Fang (University of Washington, Seattle, WA). S. aureus (2 × 107 or
2 × 108 colony-forming units [CFU]) was instilled into mock-infected or
influenza-infected animals by noninvasive intratracheal infection (66).

Histological Analysis. Animals were killed by CO2 asphyxiation. Dissected
mouse lungs (left lobe) were fixed in 10% neutral-buffered formalin, pro-
cessed routinely into paraffin, and stained with H&E. H&E slides were digi-
tized with the Olympus Nanozoomer, and images were captured with Nikon
Digital Pathology viewing software. A board-certified pathologist, who was
blinded to the experimental conditions, scored samples on a 0 to 4 severity
scale (0 = normal or none, 1 = minimal, 2 = mild, 3 = moderate, 4 = severe)
for the levels of interstitial pneumonia/alveolitis, bronchial epithelium ne-
crosis and hyperplasia, alveolar hyperplasia, lymphoid aggregates, peri-
vascular cuffing by mononuclear cells and neutrophils, perivascular or
alveolar edema, hemorrhage, and vasculitis. Extent scores were applied for
the percent of lung section lesioned to any degree (E1) and percent of lung
affected in the most severe manner (E2), where 0 = no lesions, 1 < 5%, 2 = 6
to 30%, 3 = 31 to 60%, and 4 > 60%. The scores for all individual lesions and
two extent scores were summed and averaged for each group (n = 4/group).

Transcriptional Profiling by Microarray Analysis and Fluidigm RT-PCR. Total
RNA was extracted with TRIzol (Invitrogen) and analyzed for overall quality
using the Agilent 2100 Bioanalyzer. RNA was processed for hybridization to
Agilent array SurePrint G3 Mouse GE 8 × 60 K Microarrays. Data were de-
posited in the Gene Expression Omnibus (GEO) database (accession no.
GSE83359). Genes were defined as NFκB target genes using an annotated list
maintained by the laboratory of Dr. Thomas Gilmore (32). For RT-PCR
analysis, each RNA sample was treated with TURBO DNase (Ambion) before
reverse transcription with SuperScript II Reverse Transcriptase (Invitrogen).
TaqMan Fast Advance Master Mix and TaqMan Primer/Probe sets were used
for qRT-PCR in ABI StepOne System (Applied Biosystems).

Ingenuity Pathway Analysis. To identify pathways and potential transcrip-
tional regulators involved in the pathogenesis of superinfection, we defined a
set of 1,010 S. aureus–responsive genes that were differentially expressed
(FDR < 0.01; |log2[fold change]| > 2) following infection with S. aureus alone
and then extracted a subset of 667 influenza-modified/S. aureus–responsive
genes whose response to S. aureus was altered by prior influenza infection
(FDR < 0.01). The fold changes and Benjamini–Hochberg corrected P values
(FDRs) for a difference in expression between infection with S. aureus alone
and superinfection were used as input to a pathway enrichment analysis
using the Ingenuity Knowledge Base as the reference set and constraining
the analysis to “direct and indirect relationships.” The top 500 gene sets
(ranked by P value) were grouped by biological function and examined
manually to identify categories of gene sets relevant to pulmonary infection

that showed coherent expression differences between infection with S.
aureus alone and superinfection.

Lipidomic Profiling by LC Mass Spectrometry. Lipid mediators were analyzed
by LC/MS essentially as described previously (17, 67, 68). Briefly, 0.9 mL of BAL
was supplemented with deuterated internal standards (Cayman Chemical)
and lipid metabolites isolated by solid-phase extraction on a C18 column.
The extracted samples were evaporated and reconstituted in a small volume,
and the eicosanoids were separated by reverse phase LC using a Synergy C18
column (Phenomenex). The eicosanoids were analyzed by tandem quadru-
pole MS (MDS SCIEX 4000 QTRAP, Applied Biosystems) operated in the
negative-ionization mode via multiple-reaction monitoring. Authentic stan-
dards were analyzed under identical conditions, and eicosanoid quantitation
was achieved by the stable isotope dilution method. Data analysis was per-
formed using the MultiQuant 2.1 software (Applied Biosystems).

LDH Release Assay. Assay was conducted according to the manufacturer’s
protocol (Roche Molecular Systems).

Antibodies. Anti-PPARα antibody (MA1-822) was obtained from Thermo
Fisher Scientific. Anti-actin antibody (mAbcam 8226) was obtained from
Abcam. Secondary antibody against mouse IgG was purchased from Sigma.

In Vitro Stimulation Assay. The C57BL/6J mice with nonsynonymous mutation
of Mlkl were obtained from the Australian Phenomics Facility (Chr: 8 Coord:
111319428). Hox progenitors and macrophages were isolated, propagated,
and differentiated as described (30). For the necroptosis assay, dimethyl
sulfoxide (DMSO), TNF (10 ng/mL), and zvad (20 μM) (Fisher Scientific) were
used to stimulate Hox-derived macrophages for 16 h. Cells were harvested,
stained with lysotracker (Thermo Fisher) and propidium iodide (Thermo
Fisher), and analyzed using BD LSRII. For the NFκB activity assay, Hox-derived
macrophages were transduced with lentivirus carrying pHAGE NFκB-TA-LU-
C-UBC-GFP-W (a gift from Darrell Kotton (Boston University, Boston, MA);
Addgene plasmid #49343) (69). Lipopolysaccharide (LPS) (Salmonella min-
nesota R595, List Biological Laboratories) (10 μg/mL) and 14,15-diHETrE
(Cayman Chemical) (10 μM) were used to stimulate transfected macrophages
for 6 h. Luciferase activity was measured using Nano-Glo luciferase assay as
described by the manufacturer (Promega).

Materials and Data Availability. All microarray data were deposited in the
Gene Expression Omnibus (GEO) database (accession no. GSE83359).
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