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Abstract

Motivation: Understanding the underlying mutational processes of cancer patients has been a long-standing goal in
the community and promises to provide new insights that could improve cancer diagnoses and treatments.
Mutational signatures are summaries of the mutational processes, and improving the derivation of mutational sig-
natures can yield new discoveries previously obscured by technical and biological confounders. Results from exist-
ing mutational signature extraction methods depend on the size of available patient cohort and solely focus on the
analysis of mutation count data without considering the exploitation of metadata.

Results: Here we present a supervised method that utilizes cancer type as metadata to extract more distinctive sig-
natures. More specifically, we use a negative binomial non-negative matrix factorization and add a support vector
machine loss. We show that mutational signatures extracted by our proposed method have a lower reconstruction
error and are designed to be more predictive of cancer type than those generated by unsupervised methods. This
design reduces the need for elaborate post-processing strategies in order to recover most of the known signatures
unlike the existing unsupervised signature extraction methods. Signatures extracted by a supervised model used in
conjunction with cancer-type labels are also more robust, especially when using small and potentially cancer-type
limited patient cohorts. Finally, we adapted our model such that molecular features can be utilized to derive an
according mutational signature. We used APOBEC expression and MUTYH mutation status to demonstrate the pos-
sibilities that arise from this ability. We conclude that our method, which exploits available metadata, improves the
quality of mutational signatures as well as helps derive more interpretable representations.

Availability and implementation: https://github.com/ratschlab/SNBNMF-mutsig-public.

Contact: gunnar.ratsch@ratschlab.org or kjong.lehmann@inf.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutational signatures are recurring patterns of sequence-context-
dependent single-nucleotide variants (mutation types) observed in
patients with similar etiologies. For example, lung cancer patients
with an extensive smoking history share similar patterns of mutation
types caused by the mutagenic effects of smoking. Recent work sug-
gests that mutational signatures could serve as a useful biomarker
that can be indicative of the underlying etiology and thus potentially
contribute toward treatment decisions (Ma et al., 2018; Wang et al.,
2018). A robust reference catalog set is crucial to further investigate
the clinical significance of mutational signatures. To the best of our
knowledge, most of the published mutational signature extraction
approaches rely on non-negative matrix factorization (NMF) solu-
tions (Alexandrov et al., 2013a, 2020; Helleday et al., 2014). NMF
decomposes a mutational profile matrix, where each column is the
mutational profile of a patient, into a signature matrix and an ex-
posure matrix; the columns of the signature matrix represent the

mutational signatures while each column of the exposure matrix
consists of weights quantifying the presence of the mutational signa-
tures in each patient (see Fig. 1a). SigProfiler (Alexandrov et al.,
2020), one of the most commonly used approaches, assumes that
the count of the trinucleotide mutational contexts are sampled from
a Poisson distribution, hence used the Poisson-NMF method by Lee
and Seung (2001). However, the variance in the mutation count
data grows much stronger with the mean, hence violating the
Poisson assumption that the mean and variance are the same. In this
case, negative binomial distribution is typically a better fit in model-
ing count data. NMF based on negative binomial distribution has al-
ready been applied in recommendation systems (Gouvert et al.,
2018) and cell-type detection in single-cell RNAseq data (Sun et al.,
2019), but not yet to mutation count data for mutational signature
extraction.

Another reason to rethink the current approaches is that they are
all unsupervised. This means that the best decomposition of the mu-
tational counts into a mutational signature and exposure matrix
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depends solely on the mutational counts and the pre-defined number
of mutational signatures provided as input. Therefore, the range
of variation in the input cohort can affect the general representative-
ness of the mutational signatures derived from an unsupervised
method. Essentially mutational signatures extracted from small
patient and cancer-type limited cohorts are less robust than those
from more comprehensive cancer patient cohorts when using the un-
supervised approaches. Current available methods also often require
complex post-processing and a potentially laborious, iterative strat-
egy to prune out the least significant signatures so that only explana-
tory ones remain in the resulting signature set (Alexandrov et al.,
2020).

In most cancer genomics datasets, there is usually abundant
cancer metadata accompanying the mutation count data of the
samples, and this metadata is not utilized by the unsupervised sig-
nature extraction method so far. Here, we extend the currently un-
supervised negative binomial NMF (dubbed as NBNMF) model to
supervised model for mutational signature extraction by incorpo-
rating some cancer metadata information, such as cancer type, into
the framework. The integration of cancer type (metadata) is carried
out in the form of adding a metadata classification loss to the ob-
jective function of the optimization problem of NBNMF. This loss
acts on the exposure coefficients of the patients. Our proposed
model, dubbed supervised NBNMF (SNBNMF), can exploit the
available metadata of the cancer patient cohort to a greater extent
compared to the unsupervised models. One benefit of supplying the
signature extraction model with more information is that the
derived signatures can be directed to be more representative of the
mutational processes. Associating the provided information with
corresponding exposures allows for direct interpretation of individ-
ual signatures. The additional information supplied, enables muta-
tional signature extraction from smaller cohorts. The need for post-
processing reduces since the according task is directly encoded in
the matrix factorization loss. Finally, we also adapt SNBNMF to
utilize molecular information to specifically create signatures that
are predictive of the aforementioned molecular status. In other
words, we can create a signature that follows a known given under-
lying etiology. We demonstrate this function on two examples,
APOBEC activity and defective MUTYH activity highlighting this
ability.

2 Materials and methods

2.1 Data
The mutational count data used in this work is based on the somatic
variant calls from 2521 samples from the Pan-Cancer Analysis of
Whole Genomes International Cancer Genome Consortium
(PCAWG-ICGC) (The et al., 2020). The ICGC mutational signa-
tures and exposures (Alexandrov et al., 2020) have been used to pro-
vide a comparison between mutational signatures generated by the
SNBNMF and NBNMF approach and the PCAWG-ICGC effort.
Here we only consider extracting signatures for single-base-
substitution (SBS) mutations. The mutation type we use is a trinu-
cleotide sequence consisting of the mutated base and its immediate
30 and 50 sequence context, and the total number of mutation types
is 96. Metadata information available in the PCAWG-ICGC
includes project code, histology type, APOBEC expression and
OxoG score among others. For this paper, we incorporate the pro-
ject code information into the signature extraction process using our
SNBNMF model because the project code labels encode both the
cancer type and the country information of the patients. Examples
of the project code label in the ICGC consortium data are BRCA-
EU, BRCA-CN and PACA-AU. Supplementary Figure S1 provides
an example of the mutational profile and also shows the distribution
of the multi-class label we used.

2.2 Negative binomial NMF
We denote the mutational profile of the nth cancer patient as
mn ¼ m1n;m2n; . . . ;mJnð ÞT 2 ZJ

þ, where mjn is the non-negative in-
teger count of mutation type j and J is the total number of mutation
types. NMF decomposes the mutational profile matrix M 2 ZJ�N

þ ,
formed by all N patients in the cohort, into a signature matrix S 2
RJ�K
þ and an exposure matrix E 2 RK�N

þ :

m1 � � � mN

� �
¼M � SE ¼ s1 � � � sK

� �
e1 � � � eN

� �
: (1)

sk in Equation (1) is the kth signature derived by NMF, and K is
total number of signatures that we want NMF to extract from the mu-
tational profile matrix. The kth element of en ¼ e1n; e2n; . . . ; eKnð Þ, the
nth column of the exposure matrix, encodes the exposure of patient n
to signature k. The higher the exposure value is, the more influence

Fig. 1. Schema of the SNBNMF model. (a) Mutational profile decomposition process and (b) the classification process in the SNBNMF model. In the decomposition step, the

trinucleotide mutational profile of each sample is decomposed into the weighted sum of the mutational signatures, where the weights are referred as signature exposures. Each

mutational profile results in a signature exposure vector given the mutational signature set. In the classification step, exposure vectors of all samples are used to classify the L-

class labels of the sample (types of labels can be cancer types, histology types and etc.). wl is the weight vector of linear classifier for class l (l ¼ 1; . . . ;L). The probability of

sample N in class l is computed by applying the softmax function to the output of sample N from classifiers oN
l ; l ¼ 1; . . . ;L
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from the mutational process associated with the corresponding signa-
ture have in the patient.

The negative binomial distribution allows to account for over-
dispersion (Love et al., 2014) that we observe in mutational count
data Supplementary Figure S2. The over-dispersion in the NB distri-
bution is modeled by the parameter a:

Var mjnð Þ ¼ E mjn½ � 1þ
E mjn½ �

a

� �
> E mjn½ �:

The maximum likelihood estimator of S and E is equivalent to
minimizing the negative log-likelihood function:

�log P S;Eð Þ ¼ �
XJ

j¼1

XN
n¼1

log
C mjn þ að Þ
mjn!C að Þ

a= �mjn

� �a
1þ a= �mjn

� �mjnþa

 !

¼
XJ

j¼1

XN
n¼1

mjn þ að Þ log �mjn þ að Þ �mjn log �mjn

� �
þC0;

where �mjn ¼ SE½ �jn is the constructed mutation count of mutational
context j in sample n. C0 is an invariant with respect to S and E since

C0 ¼ �JNa log a�
XJ

j¼1

XN
n¼1

log
C mjn þ að Þ
mjn!C að Þ :

Therefore, minimizing �log P S;Eð Þ is equivalent to minimizing

Lr ¼
XJ

j¼1

XN
n¼1

mjn þ að Þ log �mjn þ að Þ �mjn log �mjn

� �
(2)

We use the majorization-minimization (MM) algorithm (Févotte
and Idier, 2011), an iterative algorithm, to solve the optimization
problem in Equation (2). The MM algorithm constructs an auxiliary
function G x; ~xð Þ to the objective function F(x), where the auxiliary
function must satisfy G x; ~xð Þ � F xð Þ and G x;xð Þ ¼ F xð Þ.
Minimizing the auxiliary function G x; ~xð Þ guarantees that F(x) is
non-increasing with the update xtþ1 ¼ arg minxG x;xtð Þ (Févotte
and Idier, 2011; Lee and Seung, 2001). Therefore, we first construct

GðE; ~EÞ ¼
XJ

j¼1

XN
n¼1

ð �mjn

XK

k¼1

sjk~ekn

½S~E�jn
log

½S~E�jn
~ekn

ekn

 !

þ mjn þ a

½S~E�jn þ a

XK

k¼1

sjkðekn � ~eknÞ þ ðmjn þ aÞlogð½S~E�jn þ aÞ Þ

and

GðS; ~SÞ ¼
XJ

j¼1

XN
n¼1

ð �mjn

XK

k¼1

sjk~ekn

½~SE�jn
log

½~SE�jn
~sjk

sjk

 !

þ mjn þ a

½~SE�jn þ a

XK

k¼1

ðsjk � ~sjkÞekn þ ðmjn þ aÞlogð½~SE�jn þ aÞ Þ;

where G E; ~E
� �

is the auxiliary function to Lr in Equation (2) for E
and G S; ~S

� �
is the auxiliary function for S. By setting the partial de-

rivative of G E; ~E
� �

and G S; ~S
� �

to zero, we derived the multiplica-
tive updates for E and S, the details of which is shown in Equations
(3) and (4) respectively.

ekn  ekn

PJ
j¼1

mjn

�mjn
sjkPJ

j¼1
mjnþa
�mjnþa sjk

; (3)

sjk  sjk

PN
n¼1

mjn

�mjn
eknPN

n¼1
mjnþa
�mjnþa ekn

: (4)

Normalization on sk is performed after the objective function in
Equation (2) has converged so that each entry of the signature repre-
sents the frequency of the corresponding mutational context, and

the exposures are multiplied by the corresponding normalization
factors such that the multiplication of S and E remains unchanged.
The normalization steps are shown as the following

ekn  ekn �
XJ

j¼1

sjk

0
@

1
A; (5)

sjk  
sjkPJ
j¼1 sjk

: (6)

2.3 Signature extraction with supervised NBNMF
Formally, we use the exposures en a posteriori in support vector
machines (SVMs) to classify the labels. The output of the SVM for
class l where the input is the exposure vector of sample n is denoted
as

zln ¼ w>l en þ bl:

The optimal SVM classifiers are learned by minimizing the clas-
sification loss

Lc ¼
XL

l¼1

XN
n¼1

blnmax 0;1� ylnzlnf g þ kw

2
jjWjj2F ; (7)

where L is the number of label classes, wl and bl are the weight vec-
tor of the SVM classifier for the lth class, bln is the loss weight of
sample n for the lth class and kw is the hyperparameter that controls
for overfitting. Our model has two modes: one takes into account
the imbalance in class distribution,

bln ¼
P

n2 m:ylm < 0f gjylnjP
n2 m:ylm>0f gjylnj

;

when yln ¼ 1, otherwise bln ¼ 1; the other mode ignores the class
imbalance, where bln is always set to 1.

Figure 1 shows a diagram of the supervised NBNMF model.
Here we choose to use SVMs as the classifiers because the hinge loss
function of SVMs is locally linear with respect to the exposures,
making the optimization problem easier by using the MM method.
The objective of the supervised dictionary learning model is the
weighted sum of Equations (2) and (7):

min
S;E;W;b

Lr þ kcLc; (8)

where kc is the hyperparameters which controls the trade-off be-
tween the reconstruction loss and the classification performance. To
minimize Equation (8), we update its auxiliary loss function for E
and compute a new auxiliary loss function for W

G0 E; ~E
� �

¼ kc

X
l

X
n

X
k

bln

wkl~ekn

w>l ~en
�Hln bl þ

w>l ~en

~eknjjmnjj1
ekn

 !

þ kckw

2

X
l

jjwjj2l þG E; ~E
� �

;

G W; ~W
� �

¼ kc

X
l

X
k

X
n

bln

~wklekn

~w>l en

�Hln bl þ
~w>l en

~wkljjmnjj1
wkl

 !

þ kckw

2

X
l

X
k

w2
kl þ C;

where Hln zð Þ ¼ max 0; 1� ylnzf g is the hinge loss function.
Subsequently, the update steps for solving Equation (8) are

ekn  ekn

PJ
j¼1

mjn

�mjn
sjkPJ

j¼1
mjnþa
�mjnþa sjk � kc

P
l2‘n bln

wklyln

jjmn jj1

;
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where Ln ¼ l : yln w>l en þ bl

� �
< 1

� 	
;

wl  wl � gt kwwl �
P

n2N l
bln

ylnen

jjmnjj1

� �
;

bl  bl þ gt

X
n2N l

blnyln;

where

N l ¼ n : yln w>l en þ bl

� �
< 1

� 	
:

gt is the learning rate for updating the classification parameters
wl and bl.

2.4 Signature attribution
Like any supervised approach, SNBNMF requires a training step.
The result of the decomposition described above [Equation (8)]
results in an exposure matrix for the training samples and a set of
mutational signatures. To reduce the variance and increase robust-
ness, we used the cluster centers of the clustering results on all the
signatures learned from 10 runs as the final set of signatures, but the
final set of exposures cannot be simply by taking the average of the
exposures because

1

10

X10

p¼1

S pð ÞE pð Þ 6¼ 1

10

X10

p¼1

S pð Þ

0
@

1
A 1

10

X10

p¼1

E pð Þ

0
@

1
A;

where S pð Þ and E pð Þ are the signature matrix and exposure matrix
learned at the pth run. Therefore, we re-attribute exposures to the
entire dataset by fixing the S to the final set of signatures and only
update E in the model shown in Equation (1). The attributed signa-
tures have non-zero exposure values, and the exposure values correl-
ate with the importance of the signatures in the samples.

The major difference between signature attribution and signature
extraction is that during the signature attribution step the count ma-
trix used includes the counts of the full patient cohort. Also, the mu-
tational signature matrix S is fixed in the signature attribution
process whereas the signature extraction process is used to learn the
parameter S. The exposure matrix E is updated according to (3). In
addition, no metadata information is required by the signature attri-
bution process, so it can be applied to any newly collected mutation-
al profile even without any additional metadata information.

We add a common post-processing step also used by other tools
(Alexandrov et al., 2020). After the signature attribution process
converges, we trim the computed exposures. It is a fine-tuning pro-
cedure to increase the overall sparsity of the exposure matrix by
removing exposures that do not increase the cosine similarity be-
tween the original mutational profile and the reconstructed muta-
tional profile by more than 0.01. In those cases, the exposure weight
is simply set to 0. The trimming step results in a smaller but more
relevant attributed signature set by removing the likely irrelevant
signatures from it.

2.5 Signature matching
To analyze the quality of the signature sets extracted by our pro-
posed method, we need to match signatures in the learned signature
set (NBNMF or SNBNMF) with the ICGC reference set
(Alexandrov et al., 2020). The distance between two signatures is
quantified using a cosine correlation similarity, which ranges be-
tween 0 and 1. The cosine similarity between signature s and s0 is
computed using the following equation

sim s; s0ð Þ ¼ hs; s0i
jjsjjjjs0jj :

When the cosine similarity between two signatures equals to 1,
the pair of signatures are exactly the same; and when the cosine
similarity equals to 0, these signatures share no similarity. When
matching two signature sets A and B, for every signature in A, its

cosine similarity with every signature in B is computed, we consider
the pair with the highest cosine similarity a match.

2.6 Evaluation
The quality of the mutational signature set is evaluated using two
criteria: (i) the reconstruction error using the signatures and expo-
sures and (ii) the classification accuracy on the sample exposures to
the dictionary.

Reconstruction error: The reconstruction error evaluates how
well the mutational profiles can be reconstructed with the mutation-
al signatures that we learned. A good set of mutational signatures
should be able to reconstruct the mutational profiles, otherwise
the mutational signatures are not representative of the mutational
process at all. Here, we use the Frobenius reconstruction error
jjM� SEjj2F=N to measure the error between the original and recon-
structed mutational profiles (Alexandrov et al., 2013a).

Classification accuracy: We also required mutational signatures
to not only be reconstructive but also discriminative. This means
that the exposure values learned should be informative to classify
the cancer type (metadata) of the samples. To evaluate the discrim-
inative power of the mutational signature set, we applied SVMs to
the exposures computed from the signature attribution process and
report the classification accuracy.

2.7 Experimental setup
We learn the dictionary by training the model on the entire dataset,
and use random search for hyperparameter optimization. The hyper-
parameters of the models are the regularization parameters and the
number of signatures. The hyperparameters of the training processes
include learning rates, decaying rate and decaying step of the learn-
ing rate for different variables. For a given number of signatures K,
we repeat the training process 10 times with different initialization
values for S and E, and then use agglomerative hierarchical cluster-
ing to group the signatures from these 10 runs into K clusters. The
hierarchical clustering technique we use is complete-linkage cluster-
ing and the distance metric used in clustering is cosine similarity.
The final set of signatures corresponding to each signature size value
K are the centers of the K clusters. To select the optimal signature
size, we choose the signature set with high classification accuracy, as
well as high average silhouette width (Rousseeuw, 1987) which
measures the reproducibility of the signatures. Given a data point i,
denoting the mean distance from data point n to all other data
points in the same cluster as n as a(n), and the minimal average
distance from data point n to all points in any other cluster as
b(n), the silhouette of data point i is defined as b nð Þ � a nð Þ

� �
=

max a nð Þ; b nð Þ
� 	

if the cluster that data point n consists of more
than one data point. During evaluation on the classification per-
formance, we partition the data into training and test sets with ratio
5:1, and the training set is further partitioned into five folds for
cross-validation on the classification model hyperparameter selec-
tion (shown in Fig. 2). The frequency distribution of the labels is
preserved during partitioning.

2.8 Robustness testing
To test the effect of the supervised regularization term in SNBNMF
against NBNMF, we took six cancer types with the highest number
of patients in the PCAWG-ICGC cohort (Project Code: LIRI, PACA,
BRCA, PRAD, PBCA and OV) resulting in a total of 1059 patients.
The patients were binned into six equal-sized bins and we used the
experimental set-up described above repeatedly using random bins

Validation

TestTestTT

1 2 3 4 5

Training
Data

Fig. 2. Data-splitting schema
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to derive mutational signatures with SNBNMF. Cosine distances
were used to evaluate the variation across deriving mutational signa-
tures with different subsets as well as the distance to the current ref-
erence signature.

2.9 SNBNMF with molecular labels
The supervision loss can be used for more than just generating robust
mutational signatures. Adding a second supervision loss with a mo-
lecular label allows us to create specific mutational signatures that are
shaped by the individual feature. In order to do this we constrained
one signature (Signature 1) to follow the supervision term with mo-
lecular features. The resulting signature 1 should then be driven by the
molecular feature used. We performed three experiments.

FPKM-UQ values from the PCAWG-ICGC project (Calabrese
et al., 2020) have been used to assess over and under expression of
APOBEC (we used the sum of APOBEC3A and APOBEC3B expres-
sion). Patients were binned into 10 bins using a uniform split be-
tween 0 and 100. For each bin, we added a classification loss.

We used clinvar (Landrum et al., 2018) to retrieve a list of var-
iants in the MUTYH gene that are considered pathogenic and con-
firmed by clinical testing. In total, we found 64 patients that
harbored at least one of these variants in the ICGC cohort.

We also utilized the OxoG scores from the PCAWG-ICGC project
to try to recapitulate the technical artifacts observed from oxidized
guanine. This experiment was done to only assess the principle capa-
bilities of using additional factors to derive mutational signatures. For
this we binarized the OxoG score into high (>80) and low.

3 Results

In order to demonstrate the performance and abilities of SNBNMF
we set up experiments to test the following features:

1. SNBNMF yields signatures of which the corresponding expo-

sures are more consistent with cancer types, shown in Table 1.

2. SNBNMF requires less post-processing and is able to recover

known mutational signatures with clear etiologies. This is dem-

onstrated by comparing SNBNMF signatures with ICGC derived

signatures using SigProfiler (Alexandrov et al., 2020), shown in

Fig. 4.

3. SNBNMF is able to recover mutational signatures using cohorts

with smaller sample sizes, shown in Figure 5b.

4. SNBNMF is more flexible allowing arbitrary cofactors to guide

the signature extraction process. Given a factor that is known to

drive a mutational signature, this factor can be used to derive the

according mutational signature specifically. We demonstrate this

on two examples (MUTYH status and APOBEC expression).

3.1 SNBNMF signatures have higher overall quality
Using the mutational signature data from the ICGC cohort allows
us to compare signatures generated by the current state-of-the-art
approach annotated as ICGC signature set (Alexandrov et al.,
2020) which is identical to COSMIC SBS signature set in version 3,
the NBNMF method (Gouvert et al., 2018) (representative of a

baseline NMF approach without post-processing) and the proposed
SNBNMF approach. Here we compare these different mutational sig-
nature learning methods based on the evaluation criteria discussed in
Section 2.6. Table 1 shows the average reconstruction error and aver-
age classification accuracy of the 45 cancer types (shown in
Supplementary Fig. S1b) on different mutational signature sets; and
Figure 3 shows the cosine similarity between the ICGC signature set
and signature set derived by NBNMF/SNBNMF.

SNBNMF signatures and corresponding exposures achieve a
lower reconstruction error and higher classification accuracy dem-
onstrating that the utilization of annotation information during the
signature learning stage can improve the signature quality.

The average cosine similarity of matches between the reference
set and the signature set learned NBNMF is 0.6184, while the aver-
age cosine similarity of matches between the reference set and the
signature set learned by SNBNMF is 0.7224.

3.2 SNBNMF requires less post-processing
Here we compare signature 4 known to be associated with smok-
ing (Alexandrov et al., 2013b), using ICGC, NBNMF and
SNBNMF signature sets (shown in Supplementary Fig. S4). This
comparison qualitatively illustrates the difference between using
an unsupervised versus a supervised approach. The signature gen-
erated from our proposed approach has a closer resemblance to
ICGC signature 4, compared to the unsupervised approach.
NBNMF signature 4 can be considered the intermediary output of
the approach that leads to the generation of ICGC signature 4
without the post-processing steps mentioned previously. Our inte-
grated solution that penalizes dispersed exposure coefficients can
generate the desired mutational signature directly. Supplementary
Figure S10 gives an overview of the remaining mutational signa-
tures learned by SNBNMF.

In order to quantitatively evaluate how well the unsupervised
method (i.e. NBNMF) and the proposed supervised method (i.e.
SNBNMF) resemble the state-of-art ICGC signature set, we examine
the cosine similarities of the generated signatures to the reference set
(ICGC). We observe that the cosine similarities are shifted upwards
(Supplementary Fig. S3B). An in-depth look shows that both signa-
tures seem to perform similarly in reconstructing the ICGC reference
signatures but that the SNBNMF approach seems to be more robust in
cases of signatures with unknown etiology (see Fig. 4; Supplementary
Fig. S3A).

3.3 SNBNMF generates more robust mutational

signatures
The typical approach of a matrix factorization on the mutation
count matrix of a cohort of patient samples makes the resulting sig-
natures dependent on the overall composition of the cohort.
Depending on the size of the cohort, the result can be significantly
skewed. An example using a subset of 1059 patients (the training set
size is 707) of the six most common cancer types (liver, pancreatic,
breast, prostate, pediatric brain and ovarian cancers) in the
PCAWG-ICGC cohort illustrates the problem. Figure 5a shows the
signature that has the highest cosine similarity with the reference
ICGC signature 3 out of all five random subsets using NBNMF and
SNBNMF using project codes as label (see Supplementary Fig. S5
for all signatures that have been matched to ICGC signature 3). The
SNBNMF approach yields signatures that show significantly more
robustness on different subpopulations and the best matching with
ICGC signature 3 also looks qualitatively and quantitatively (the co-
sine similarity is 0.78 as shown in Fig. 5b) more similar. In total, we
observe a higher overall cosine similarity (0.52 versus 0.46) with
known mutational signatures using a subset of the ICGC cohort
than using the NBNMF approach. Using the individual random sub-
sets, we observe that SNBNMF outperforms NBNMF consistently
in terms of similarity to the reference dataset (see Supplementary
Fig. S6). We believe that these results imply that SNBNMF addresses
the influence of different subpopulations in the mutational signature
generation which can be particularly useful in cases where only
small patient cohorts are available.

Table 1. Average Frobenius reconstruction error and average clas-

sification error of all samples using different approaches to derive

mutational signatures

Method Reconstruction

error

Classification

accuracy

ICGC (Alexandrov et al., 2020) 80, 720, 711 0.536 60.009

NBNMF 26, 678, 521 0.506 60.008

SNBNMF 15, 725, 795 0.554 60.019

Note: The accuracy from a random classifier is 0.037 6 0.008.
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3.4 SNBNMF can be used to generate signatures with

given labels
A disadvantage of the standard matrix factorization approach is
that the resulting signatures may not necessarily reflect biology.
Increasing the number of signatures in the decomposition step, can
lead to diluting the signal and potentially decomposing different
sources of noise. The current approach is to post-match the derived
mutational signatures to the known reference signatures limiting the
ability to derive mutational signatures with interesting unknown eti-
ologies. The advantage of SNBNMF is that it can be adapted to dir-
ect mutational signature generation by integrating biological signals.
To demonstrate this we examined two cases more closely (APOBEC
gene expression and MUTYH mutation status).

3.4.1 APOBEC gene expression

APOBEC3a and APOBEC3b genes are known to be involved in
cytidine deaminase functions (Burns et al., 2013; Refsland and
Harris, 2013; Roberts et al., 2013; Wang et al., 2018). Thus, up-
regulation of APOBEC gene expression is typically observed in con-
junction with signature 2. SNBNMF can be adapted to use the pre-
diction of APOBEC expression (sum of APOBEC3a and
APOBEC3b) in a supervised learning task. This allows us to illus-
trate the usage of SNBNMF to generate mutational signatures from
molecular signals and therefore enable the identification of inter-
pretable mutational signatures. We constrained the first signature to
be predictive of APOBEC expression status and compare the

resulting signature with the ICGC reference signature 2 and 13
(known to be related to APOBEC expression). Supplementary
Figure S7 shows that we can create an APOBEC expression derived
signature that resembles a combination of signature 2 and 13 with
the C to T transitions having a partially different context.

3.4.2 MUTYH status

Mutations in the gene MUTYH are associated with 8-oxoguanine
presence that create a distinct OxoG signature reported previously
(Viel et al., 2017). Here, we utilize the MUTYH mutation status to
define a patient class membership. We have again constrained the
first signature to be predictive of the mutation status. SNBNMF is
able to recover a signature, similar to the previously reported OxoG
signature expected to be observed in patients with MUTYH status
(see Supplementary Fig. S8). We do observe differences which we
believe is due to the small case numbers available to us. Only 65
patients in our cohort have a MUTYH mutation that is considered
functional and validated and thus the signatures generated do not re-
semble exactly the signature shown previously. We have also ran the
same experiment using the OxoG Score from the ICGC effort. Here
a similar but not identical OxoG signature is observed due to tech-
nical artifacts (Costello et al., 2013). As a proof of concept, we util-
ize this score to show the performance of SNBNMF trying to derive
this OxoG signature (see Supplementary Fig. S9) showing some
similarity but also differences between these signatures.

4 Discussion

We designed and implemented a novel supervised negative binomial
matrix factorization approach. An SVM loss was used to extend the
NBNMF framework to allow for integration of additional meta-
data. This tool was applied on the PCAWG-ICGC dataset
(Alexandrov et al., 2020; The et al., 2020) allowing for an extensive
comparison of signatures between different approaches.

Our results show that mutational signature generation from a super-
vised matrix factorization solution is preferable over an unsupervised
set-up. We achieve significantly higher cancer-type prediction accuracy
using the SNBNMF exposures and a smaller reconstruction error while
we can still reproduce the reference mutational signatures generated
previously (Alexandrov et al., 2020). SNBNMF allows us to forego
most of the post-processing that is typically done on mutational signa-
tures, making our method more approachable and easier to apply than
other available options. Also, SNBNMF is particularly well suited for
mutational signature generation on small cohorts since the supervised
term allows for the integration of metadata that will guide the decom-
position. We also showed how SNBNMF can be used to adapt the
regularization term to specifically generate mutational signatures based
on molecular features by using APOBEC expression or MUTYH muta-
tion status as a label. It would even be possible to adapt the same model

Fig. 3. Cosine similarity between the matching pairs of ICGC signature and signature learned by NBNMF/SNBNMF. ICGC signatures that are better matched in the signature

set learned by NBNMF are on the left side of the black dashed line, and signatures that are better matched in the signature set learned by SNBNMF are on the right. The signa-

tures are sorted in the order that the difference between the cosine similarities of the ICGC-SNBNMF signature pair and the ICGC-NBNMF signature pair increases. The gray-

dotted line indicates 0.65 cosine similarity, which we use as a threshold for good matching pairs. Most of the signatures that are much better matched using NBNMF, such as

signature 37, 34 and 16 has no proposed etiology by COSMIC; while most of the signatures that are much better matched by SNBNMF, such as 9, 4, 3, 6, 35, 33, 11 and 36

have certain proposed etiology

Fig. 4. Left set of boxplots depicts the cosine similarities of those signatures where

the NBNMF approach has a higher cosine similarity to the reference signature than

the SNBNMF approach. Right set of boxplots shows the cosine similarities where

SNBNMF has higher cosine similarities to the reference set. The number of signa-

tures is a hyperparameter, and after hyperparameter optimization, the best number

of signatures found for SNBNMF and NBNMF is 20 and 16, respectively. The plot

summarizes Supplementary Figure S3A with the orange boxplots representing signa-

tures with unknown etiology and blue boxplots representing signatures with known

etiology
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to account for confounding factors by using this factor as a label in the
classification loss.

Penalizing non-predictive exposure coefficients enforces our no-
tion that the mutational pattern is specific to different cancer types
due to their vast differences in etiology. It is important to note that
this does not penalize or prevent signatures being shared across can-
cer types. No post-processing or iterative refinement strategies are
needed to derive mutational signatures. We only apply a trimming
step on the exposure matrix also used by others.

We noticed that NBNMF and SNBNMF comparison against
ICGC signatures show higher cosine similarities particularly for sig-
natures of known etiology. There are two possible explanations for
this. Either, the signatures of unknown etiology capture a lot of the
overall noise that is then redistributed under a different NMF model,
or these signatures are reflecting more complex patterns that are
partially shared across cancer types. The exposure coefficients
derived from this approach allow us to relate individual signatures
to activation in specific cancer types. Similarly, other metadata in-
formation (e.g. smoking history) can be used to investigate the acti-
vation of signatures in the according categories. An open challenge
is how to compare quantitatively, reliably and systematically two
given mutational signatures. Given that the frequency profile is often
sparse, the cosine distance is sometimes driven by the differences in
the overall noise and thus preventing or creating misleading
matches. A bootstrapped cosine similarity (Huang et al., 2018)
could potentially address the problem and is worth considering in
future work. Evaluation has been further complicated by the fact
that SNBNMF is expected to generate slightly different signatures
that are intended to have overall better properties. We did opt for a
comparison to the ICGC signatures as a reference set with the rea-
soning that mutational signatures with known underlying biology
should also be found using our approach.

We hope that the integration of a supervision signal based on the
exposure matrix opens up a new strategy to incorporate clinical or
molecular knowledge into the mutational signature direction poten-
tially making these signatures more interpretable in the future.
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Fig. 5. (a) Signatures best matched with ICGC signature 3 learned by NBNMF and SNBNMF methods from sub-population with only six cancer types (top: ICGC signature 3;

middle: NBNMF signature matched with ICGC signature 3; bottom: SNBNMF signature matched with ICGC signature 3). (b) Boxplots of cosine similarity between ICGC sig-

nature 3 and NBNMF/SNBNMF signatures that are learned from subpopulation with only six cancer types and are matched with ICGC signature 3
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