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Abstract

Motivation: Single-cell multi-omics data provide a comprehensive molecular view of cells. However, single-cell
multi-omics datasets consist of unpaired cells measured with distinct unmatched features across modalities, making
data integration challenging.

Results: In this study, we present a novel algorithm, termed UnionCom, for the unsupervised topological alignment
of single-cell multi-omics integration. UnionCom does not require any correspondence information, either among
cells or among features. It first embeds the intrinsic low-dimensional structure of each single-cell dataset into a dis-
tance matrix of cells within the same dataset and then aligns the cells across single-cell multi-omics datasets by
matching the distance matrices via a matrix optimization method. Finally, it projects the distinct unmatched features
across single-cell datasets into a common embedding space for feature comparability of the aligned cells. To match
the complex non-linear geometrical distorted low-dimensional structures across datasets, UnionCom proposes and
adjusts a global scaling parameter on distance matrices for aligning similar topological structures. It does not re-
quire one-to-one correspondence among cells across datasets, and it can accommodate samples with dataset-
specific cell types. UnionCom outperforms state-of-the-art methods on both simulated and real single-cell multi-
omics datasets. UnionCom is robust to parameter choices, as well as subsampling of features.

Availability and implementation: UnionCom software is available at https://github.com/caokai1073/UnionCom.

Contact: lwan@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of single-cell sequencing provides high-resolution omics
profiles at cellular level [e.g. single-cell DNA-sequencing of genom-
ics, single-cell RNA-sequencing (scRNA-seq) of transcriptomes,
single-cell sequencing of chromatin accessibility (ATAC)], offering
the opportunity to unveil molecular mechanisms related to funda-
mental biological questions, such as cell fate decisions (Tanay and
Regev, 2017). Although extensive studies have been conducted on
the computational analysis of single-cell genomic, transcriptomic
and epigenetic data, most methods are limited to handling single-cell
data in one modality, yielding a series of separated and patched
views of the intrinsic biological processes. Recently, single-cell
multi-omics data across modalities profiled from cells sampled from
the same sample or tissue are emerging. Integration of single-cell
multi-omics data will build connections across modalities, providing
a much more comprehensive molecular multi-view of intrinsic bio-
logical processes (Efremova and Teichmann, 2020; Stuart and
Satija, 2019).

The integration of single-cell omics datasets is drawing heavy at-
tention on advances in machine-learning and data science (Efremova
and Teichmann, 2020; Stuart and Satija, 2019). Many single-cell data
integration methods have been developed for the batch-effect correc-
tion of single-cell datasets in one modality (Stuart and Satija, 2019).

However, compared with the single-cell batch-effect correction prob-
lem, the integration of single-cell multi-omics datasets across modal-
ities poses fresh challenges in two ways. First, single-cell multi-omics
datasets consist of unpaired cells measured with distinct unmatched
features across modalities (Stuart and Satija, 2019). As most single-
cell sequencing assays are still destructive for cells, single-cell datasets
of either the same modality or different modalities generally have un-
paired cells. Moreover, single-cell multi-omics datasets do not share
common features across modalities, since each modality is aimed at
acquisition of cellular molecular identity from a particular aspect. The
distinct features across modalities reside in different mathematical
spaces. Generally, therefore, single-cell multi-omics data do not have
any correspondences, either among samples (cells) or among features.
In practice, empirical pre-matching of distinct features across modal-
ities into a common space based on prior knowledge is generally taken
prior to applying state-of-the-art single-cell data integration methods.
Second, single-cell multi-omics data are generated by different assays,
with distinct underlying data generative models and mechanisms.
Therefore, complex non-linear geometrical distortions on datasets
across modalities can be introduced to the biological intrinsic low-
dimensional structures. Such complex distortions make the integration
of single-cell multi-omics data much more difficult than batch-effect
correction for single-cell datasets in one modality. Therefore, linear
operations, such as translation and scaling, which generally work well
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for batch-effect correction of single-cell datasets in one modality, are
now inadequate for the alignment of single-cell multi-omics datasets
with complex non-linear geometrical distortions across modalities.

Computational methods have been developed for single-cell data
integration. However, many existing methods were designed for
batch-effect correction (Stuart and Satija, 2019). The challenges of
single-cell multi-omics integration arise as a result of distinct un-
matched features, as well as complex non-linear geometrical distor-
tions across modalities, and these problems remain unresolved. The
pioneering single-cell data integration method, mutual nearest
neighbor (MNN; Haghverdi et al., 2018), aimed to remove batch
effects across datasets by aligning MNNs, as calculated by the
Euclidean distances between cells across datasets in a common fea-
ture space. However, MNN is restricted to cases in which batch ef-
fect is almost orthogonal to the biological subspace and cases in
which batch-effect variation is much smaller than biological-effect
variation between different cell types (Haghverdi et al., 2018). The
established single-cell data analysis pipeline, Seurat (Stuart et al.,
2019), projected (distinct) feature spaces across datasets using ca-
nonical correlation analysis (CCA) into a common subspace which
maximizes the inter-dataset correlation structure, and then adopted
a strategy similar to that of MNN to align the cells between datasets
by finding anchor cells (i.e. corresponding points) across datasets
based on the MNNs calculated from the projected common sub-
space. However, since CCA is a linear dimensionality reduction
method, it cannot capture the non-linear inter-relationships among
single-cell multi-omics data across modalities. Scanorama (Hie
et al., 2019) was built upon the MNN-based strategy for the compu-
tationally efficient integration of many large-scale scRNA-seq data-
sets. scAlign (Johansen and Quon, 2019) developed a deep
autoencoder-based approach for the non-linear dimensionality re-
duction of shared common feature space across one-modality
scRNA-seq datasets and then aligned cells across datasets. Harmony
(Korsunsky et al., 2019) projected cells into a shared embedding
using principal components analysis (PCA), and iterated between
two complementary stages to simultaneously account for multiple
experimental and biological factors.

Methods developed for single-cell multi-omics integration across
modalities are emerging. Liger (Welch et al., 2019), which worked
on datasets with pre-matched common feature space across modal-
ities, employed non-negative matrix factorization to find the shared
low-dimension factors of the common features to match single-cell
omics datasets. MATCHER (Welch et al., 2017) removed the re-
quirement for correspondence information of features across modal-
ities and integrated single-cell multi-omics datasets based on
manifold alignment. However, MATCHER is limited to the align-
ment of 1D trajectories (Welch et al., 2017), but it is incapable of
aligning complex trajectories, such as branched tree structures.
MAGAN (Amodio and Krishnaswamy, 2018) integrated single-cell
multi-omics datasets by aligning the biological manifolds via a gen-
erative adversarial networks approach. However, it lacked power in
unsupervised task when the correspondence information among
samples across datasets is unavailable (Liu et al., 2019). Harmonic
(Stanley et al., 2018) aligned the diffusion geometries across datasets
based on diffusion map method, but it required partial feature cor-
respondence information. Maximum mean discrepancy-manifold
alignment (MMD-MA; Liu et al., 2019), an unsupervised manifold
alignment algorithm for single-cell multi-omics datasets, embedded
the latent biological low-dimensional structures in Reproducing
Kernel Hilbert spaces (RKHSs), and found a shared common sub-
space of the RKHSs for manifold alignment by minimizing the
MMD across modalities.

In this study, we present a novel algorithm, termed UnionCom,
for the unsupervised topological alignment of single-cell multi-omics
integration. UnionCom is an unsupervised method which does not
require any correspondence information, either among cells or
among features, across single-cell multi-omics datasets. It extends
the generalized unsupervised manifold alignment (GUMA) algo-
rithm (Cui et al., 2014), which was originally applied to the 3D
structure alignment of protein sequences, to tackle the difficulty in
the topological alignment of complex non-linear distorted intrinsic

low-dimensional structures embedded in the single-cell data.
Specifically, UnionCom first embeds the intrinsic low-dimensional
structure of each single-cell dataset into a distance matrix of cells
within the same dataset and then aligns the cells across single-cell
multi-omics datasets by matching the distance matrices via a matrix
optimization method. Finally, it projects the distinct unmatched fea-
tures across single-cell datasets into a common embedding space for
feature comparability of the aligned cells (Fig. 1). UnionCom works
on the general assumption that cells of single-cell multi-omics data-
sets are from similar cell populations sampled from similar biologic-
al processes or tissues with similar intrinsic low-dimensional
structures embedded in the data. It does not require one-to-one cor-
respondence among cells across datasets, and it can take care of
samples with dataset-specific cell types.

We demonstrate the power of UnionCom in unsupervised topo-
logical alignment for single-cell multi-omics integration, especially
for complex intrinsic structure embeddings, using both simulated
and real single-cell multi-omics datasets. When compared with
state-of-the-art methods, UnionCom outperforms them with high
accuracy. In addition, UnionCom is robust in terms of parameter
choices, as well as subsampling of features.

2 Materials and methods

2.1 UnionCom algorithm
UnionCom is an unsupervised topological alignment algorithm for
single-cell multi-omics integration (Fig. 1). We describe details of
UnionCom as follows.

Here, we formulate our method for the case of two datasets.
However, it can be easily generated for cases of any number of
single-cell multi-omics datasets. Suppose we have two single-
cell multi-omics datasets, X ¼ ½x1; . . . ; xnx

� 2 R
dx�nx and Y ¼

½y1; . . . ; yny
� 2 R

dy�ny , across two modalities where dxðdyÞ and
nxðnyÞ are the number of features (e.g. gene expression, DNA
methylation) and cells for the X ðYÞ, respectively. Without loss of
generality, we assume that nx � ny. We assume that the intrinsic
low-dimensional manifolds of X and Y areMx andMy, respective-
ly, which share similar topological structure. Given the input of X
and Y, UnionCom aligns the cells between the datasets and then
projects the distinct unmatched features into a common embedding
space as the coordinates of the aligned cells between datasets.
UnionCom consists of the following three major Steps (A1–A3).

A1. Embedding the intrinsic low-dimensional structure of each

single-cell dataset into the geometrical distance matrix

UnionCom embeds the intrinsic low-dimensional structure of each
single-cell dataset into a metric space by using the geometrical dis-
tance matrix of the cells within the same dataset which is defined as
½K�ij¼dðxi;xjÞ, where d is a geodesic distance between cells on the in-
trinsic manifold. Accordingly, Kx and Ky represent geometrical dis-
tance matrices for Mx and My, respectively. To calculate the
geodesic distance, UnionCom first constructs a weighted k nearest
neighbor graph of cells for each dataset based on Euclidean distance,
and then calculates the shortest distance between each pair of nodes
(cells) on the graph using the Floyd–Warshall algorithm since the
shortest distance path will approximate to geodesic distance
(Tenenbaum et al., 2000). We set k to be the minimum number that
makes k-nn graph connected. We demonstrate that UnionCom is ro-
bust to the choices of k in a wide range (Fig. 6b).

A2. Aligning cells across single-cell multi-omics datasets by match-

ing the geometrical distance matrices

UnionCom aligns cells across single-cell datasets by matching the
geometrical distance matrices. By extending the unsupervised mani-
fold alignment algorithm GUMA (Cui et al., 2014), UnionCom pro-
poses and adjusts a global scaling parameter a in Equation (1) for
rescaling the global geometrical distortions for the topological struc-
ture alignment across datasets. In addition, UnionCom relaxes the
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restriction of one-to-one cell correspondence required by GUMA. It
is capable of handling samples with dataset-specific cell types.

Specifically, UnionCom formalizes the unsupervised topological
alignment problem into a matrix optimization problem as follows:

min
F;a
jja1nx�ny

� Kx � FKyF>jj2F ;

where F ¼ ½Fij�nx�ny
is a point matching matrix satisfying certain

constraints needed for matching; the 1n 2 R
n and 1m�n 2 R

m�n rep-
resent vector and matrix of ones; the superscript > denotes the
transpose of a vector or matrix, and jjXjj2F¼trðX>XÞ is the
Frobenius norm [trð�Þ is the trace norm]. The a, which is newly pro-
posed by UnionCom, is a global scaling parameter for the rescaling
of the global geometrical distortions between datasets; the a1nx�ny

stands for a matrix with elements all of a; and the � denotes
Hadamard product which is the element-wise product taken on two
matrices of the same dimensions.

In the GUMA algorithm, F 2 f0; 1gnx�ny is a hard matching ma-
trix, i.e. a 0–1 integer matrix, to mark the correspondences of cells
between X and Y, where ½F�ij ¼ 1 denotes that xi and yj are the
counterpart of each other. Therefore, GUMA implicitly assumes
that individual cells are matched in a one-to-one fashion between
the two datasets, a phenomenon that is often inconsistent with real
data. GUMA finds the F over the constraint set P of all possible 0–1
integer matrices

P ¼ fFjF 2 f0;1gnx�ny ; F1ny
¼ 1nx

;F>1nx
� 1ny

;nx � nyg;

using KuhnC–Munkres algorithm. However, the set P is neither
close nor convex, leading to an NP-hard optimization problem.

UnionCom seeks a soft matching of cells between datasets. It
relaxes the constraints of F to the following compact and convex set
P0 as

P0 ¼ fFjF � 0; F1ny
¼ 1nx

;F>1nx
� 1ny

;nx � nyg;

where F � 0 denotes that each element in the matrix is non-negative
and that the summation of each row of F equals 1. The F 2 P0 pro-
vides a probabilistic interpretation of sample matching between two
datasets: ½F�ij indicates the likelihood of xi matching with yj.
Therefore, UnionCom aligns the topological structures between two
datasets by solving the matrix optimization problem over the con-
straint set P0 as follows:

min
F;a

LðF; aÞ ¼ jja1nx�ny
� Kx � FKyF>jj2F;

s:t: F � 0; a � 0;
F1ny

¼ 1nx
;

F>1nx
� 1ny

:

(1)

We develop a prime-dual method to solve the optimization prob-
lem of Equation (1) by minimizing an augmented Lagrangian func-
tion as

Fig. 1. Schematic overview of UnionCom. (a) Given the input of single-cell multi-omics datasets (e.g. Datasets 1 and 2), which have similar embedded topological structures,

UnionCom (b) embeds the intrinsic low-dimensional structure of each single-cell dataset into a geometrical distance matrix of cells within the same dataset; (c) rescales the glo-

bal distortions on the topological structures across datasets by a global scaling parameter a; (d) aligns the cells across single-cell datasets by matching the geometrical distance

matrices based on a matrix optimization method; and (e) finally projects the distinct unmatched features across modalities into a common embedding space for feature compar-

ability of the aligned cells. It does not require one-to-one correspondence among cells across datasets, and it can accommodate samples with dataset-specific cell types (see the

branch with black points in Dataset 2 for example)
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LqðF; a; s; k; lÞ ¼ jja1nx�ny
� Kx � FKyF>jj2F þ l>ðF1ny

� 1nx
Þ

þk>ðF>1nx
þ s� 1ny

Þ þ qUðFÞ;
(2)

where l and k are the Lagrangian multipliers; the ny dimensional
non-negative vector s � 0 is a slack variable that transforms the in-

equality constraint to an equality constraint of F>1nx
þ s ¼ 1ny

;

UðFÞ ¼ 1
2 ðjjF1ny

� 1nx
jj22 þ jjF>1nx

þ s� 1ny
jj22Þ is the penalty term

added to make the solution stable and converging fast (Fig. 6c); and
q is a user-defined hyperparameter. UnionCom is robust for the
choice of q (Fig. 6c and d), and we set its default as q¼10.

The proposed prime-dual algorithm minimizes (2) over F 2 P0

and a by the following iterative steps

Fkþ1  PþðFk � �rFLqðF; a; s; k; lÞÞ;
skþ1  Pþðsk � �ðkk þ qðF>kþ11nx

þ sk � 1ny
ÞÞÞ;

lkþ1  lk þ �ðFkþ11ny
� 1nx

Þ;
kkþ1  kk þ �ðF>kþ11nx

þ skþ1 � 1ny
Þ;

akþ1  arg min
a

LqðFkþ1; a; skþ1; kkþ1; lkþ1Þ:

where Pþ is a projection operator that maps the function into the
non-negative quadrant. The � is the learning rate which is often set
as a small value (in generally less than 1e� 3). By alternating itera-
tions on the scaling factor a and matching matrix F, UnionCom
reaches an optimal solution over the relaxed convex constraint set
P0. For numerical stability, we normalize Kx  Kx=maxðnx; nyÞ and
Ky  Ky=maxðnx;nyÞ before applying prime-dual algorithm (see the
pseudocode in Supplementary Note S1).

It is worth noting that UnionCom can be easily extended to
supervised or semi-supervised alignment by fixing the corresponding
elements of F to be 1 when correspondence information of cells be-
tween datasets is available.

A3. Projecting distinct unmatched features across single-cell multi-

omics datasets into a common embedding space

UnionCom projects the distinct unmatched features across single-
cell multi-omics datasets into a common embedding space as the
coordinates for the aligned cells across datasets. To preserve both
the intrinsic low-dimensional structures and the aligned cells to-
gether simultaneously, UnionCom builds upon a t-distribution sto-
chastic neighbor embedding (t-SNE) method as in van der Maaten
and Hinton (2008).

Specifically, UnionCom aims to embed the datasets X 2 R
dx�nx

and Y 2 R
dy�ny into a common embedded space of p-dimension

(p � minfdx;dyg), with the dimensionality reduced datasets
denoted as X0 2 R

p�nx and Y0 2 R
p�ny , respectively. UnionCom finds

the optimal X0 2 R
p�nx and Y0 2 R

p�ny by minimizing a loss function
J ðX0;Y0Þ as follows:

min
X0 ;Y0
J ðX0;Y0Þ ¼ KLðPXjjQX0Þ þ KLðPY jjQY0Þ þ bjjX0 �Y0F>jj2F ;

(3)

where F is the optimal matching matrix obtained in Step A2; PX ¼
½PX

ij �nx�nx
and PY ¼ ½PY

ij �ny�ny
are the cell-to-cell transition probability

matrix defined in the original spaces of X and Y, respectively, as in
t-SNE; and QX0 ¼ ½QX0

ij �nx�nx
and QY0 ¼ ½QY0

ij �ny�ny
, which are con-

strained to t-distribution, are the cell-to-cell transition probability
matrix defined in the dimensionality reduced common space of X0

and Y0, respectively, as in t-SNE; the KL-divergence is defined as
KLðPjjQÞ ¼

P
i

P
jPij log

Pij

Qij
. The loss function J ðX0;Y0Þ has three

items: two KL-divergence terms between PXðPYÞ and QX0ðQY0Þ for
the two datasets, respectively, and a coupling term for measuring
the distance between the matched datasets in the common embed-
ding space. The b is a tradeoff parameter to balance the two KL
terms and the coupling term. UnionCom uses the ‘2 norm to meas-
ure the distance of matched datasets, but other distances in the
embedding space can also be used. We solve this optimization prob-
lem by the gradient descent method (see Supplementary Note S2 for

more details). We set p ¼ 32 as defaults when the size of the fea-
tures is above 100.

It is worth noting that, UnionCom is not restricted to the t-SNE-
based approach for Step A3. Dimensionality reduction methods, such
as elastic embedding (Chen et al., 2019) and Uniform Manifold
Approximation and Projection (UMAP) (Becht et al., 2019; McInnes
et al., 2018), both of which preserve local and global structures of
data, can also be adopted by UnionCom for Step A3.

2.2 Data
2.2.1 Simulated data

We simulate two sets of single-cell multi-omics datasets as follows:
(i) Simulation 1 contains two datasets, which share a similar com-
plex tree with two branching points embedded in distinct 2D spaces
(Fig. 2a, left panels); (ii) Simulation 2 contains two datasets: Dataset
1 has a bifurcated tree embedded in 2D space (Fig. 2b, upper left
panel). To test the power of proposed global scaling factor a, the se-
cond dataset is non-linearly distorted and embedded in a 3D space,
which is different from Dataset 1. Besides, a unique branch, which
has different statistics from other branches, is added to evaluate the
capability of UnionCom to identify unique cell type. Therefore,
Dataset 2 has a trifurcated tree embedded in 3D space with one
branch as the dataset-specific cell type (Fig. 2b, lower left panel; the
green branch is the dataset-specific cell type).

The correspondence information of cells between the two data-
sets within the same simulation is known from simulation. We pro-
ject the two simulated datasets into high-dimensional feature spaces
(with dimensionality of 1000 for Dataset 1 and 500 for Dataset 2,
respectively, for each simulation) by adding the feature vectors with
elements being sampled randomly from Gaussian distribution.

2.2.2 Real single-cell multi-omics datasets

We use two real sets of single-cell multi-omics of single-cell analysis
of genotype, expression and methylation (sc-GEM) data (Cheow
et al., 2016) and single-cell nucleosome, methylation and transcrip-
tion (sc-NMT) data (Clark et al., 2018). The first real set generated
by sc-GEM sequencing, hereinafter denoted as sc-GEM data, con-
tains two single-cell omics datasets of gene expression and DNA
methylation on samples from human cells undergoing reprogram-
ming to induced pluripotent stem (iPS) cells. The data were gener-
ated by (Cheow et al., 2016) and used in MATCHER (Welch et al.,
2017). The second real dataset generated by sc-NMT sequencing,
hereinafter denoted as sc-NMT data, contains three single-cell omics
datasets of gene expression, DNA methylation and chromatin acces-
sibility on samples from mouse gastrulation collected at three-time
stages [embryonic day 5.5 (E5.5), E6.5 and E7.5]. The data were
generated by Clark et al. (2018).

The sc-GEM sequencing measured the gene expression and DNA
methylation of the same cell simultaneously; and the sc-NMT
sequencing measured the gene expression, DNA methylation and
chromatin accessibility of the same cell–cell simultaneously. Thus,
for each of the real datasets, the cell correspondence information
across single-cell multi-omics datasets is available.

2.3 Method evaluations
We evaluate the single-cell multi-omics integration methods using
two indexes, (i) Neighborhood Overlap and (ii) Label Transfer
Accuracy, to measure the alignment accuracies. Both indexes work
on the basis of the common embedded space (coordinate) of the inte-
grated datasets.

When the cell–cell correspondence information between multi-
omics datasets is available, the Neighborhood Overlap, which was
proposed by Harmonic (Stanley et al., 2018), is used to measure the
ability to recover the one-to-one correspondence of cells between
two datasets: for a given size of neighborhood of each cell in the
common embedded space, the percentage of neighborhood overlap
of a dataset is defined as the percentage of cells that can find their
correspondence cells from the other dataset in their neighborhood,
respectively. We use the averaged percentage of neighborhood
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overlap of the two datasets. The averaged percentage of neighbor-
hood overlap ranges from 0% to 100%, and a higher percentage is
indicative of a better recovery of cell-to-cell relationship between
two datasets.

When the cell label information (e.g. cell types, branches of cell
trajectories) is available, Label Transfer Accuracy, which has been
widely used in the transfer learning community and was adopted by
scAlign (Johansen and Quon, 2019), is used to measure the ability
of transferring labels of cells from one dataset to another in the com-
mon embedded space. Assuming that Dataset 2 has more cells than
Dataset 1, we use Dataset 2 as the training set and Dataset 1 as the
testing set. We construct a kacc-nn classifier trained by cells with
their labels using Dataset 2, and Label Transfer Accuracy is the pre-
diction accuracy of the cell labels on the testing set, i.e., Dataset 1.
The value of Label Transfer Accuracy, which is the percentage of
cells with correctly predicted labels among all predicted cells, ranges
from 0% to 100%, and a higher percentage is indicative of a better
performance in transferred labels based on the two aligned datasets.
We set kacc ¼ 5 as default, but the Label Transfer Accuracy is stable
across different choices of kacc (Fig. 4g).

3 Results

3.1 UnionCom outperforms the state-of-the-art methods

on integrating simulated datasets with highest

accuracies
We simulate two sets of single-cell multi-omics datasets. Each simu-
lated set has similar complex topological structures, but with differ-
ent geometrical distortions embedded in distinct high-dimensional
spaces (Section 2.2).

We apply UnionCom for the alignment of the simulated datasets.
We project the common space of the two aligned datasets by
UnionCom to a 2D space for visualization using t-SNE. For each of
the simulations, UnionCom integrates the two datasets with well-
aligned geometrical structures (see upper right panels of Fig. 2a and
b) and well-matched branches (see lower right panels of Fig. 2a and
b). Although Dataset 2 of Simulation 2 has a dataset-specific branch
(see the branch with green-colored points shown in the lower left
panel of Fig. 2b), UnionCom still shows its accuracy in aligning the
two datasets accordingly, leaving the dataset-specific branch un-
aligned to any other branches (see the lower right panel of Fig. 2b).
In addition, we also test the cases when the dimensionality of feature
space is smaller than number of samples (cells) on Simulations 1 and
2, UnionCom still aligns embedding structures quite well
(Supplementary Fig. S1).

For our comparisons, we also apply the MMD-MA algorithm,
which adopts a MMD term to reduce distribution discrepancy in
feature spaces and to align the simulated datasets using its defaulting
parameters. Although MMD-MA can align the two datasets rela-
tively well in Simulation 1 (Fig. 2a, upper middle panel), it fails to
merge samples from the two datasets of Simulation 2 into common
regions (Fig. 2b, upper middle panel). We also compare with Seurat,
scAlign and Harmony, and show their results of alignments in
Supplementary Figure S2.

We further evaluate the accuracy of the aligned datasets using
indexes of both Neighborhood Overlap and Label Transfer
Accuracy (Section 2.3) and compare the performances of UnionCom
with that of the state-of-the-art methods MNN, Seurat v3, scAlign,
Harmony and MMD-MA (see Supplementary Note S3 for the
details of the parameter settings of the compared methods). In add-
ition, to validate the effectiveness of using geodesic distance and glo-
bal scaling factor a, we also test UnionCom using Euclidean distance
instead of geodesic distance (denoted as UnionCom1), as well as
UnionCom with a fixed a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dy=dx

p
(denoted as UnionCom2) for

our comparisons. We do not include Liger because it needs datasets
with pre-matched common feature space. We do not include
MAGAN and Harmonic in our comparisons because both need cor-
respondence information, either among samples or among features
between datasets.

(a)

(b)

(c)

Fig. 2. Alignment of simulated datasets. (a) Simulation 1 and (b) Simulation 2:

Visualizations of Dataset 1 (upper left panel) and Dataset 2 (lower left panel), separ-

ately using t-SNE before alignment; branches with points in the same colors are

matched between datasets; visualization of the common embedding space of the

two aligned datasets by MMD-MA (upper middle panel: points are colored accord-

ing to their corresponding datasets; lower middle panel: points are colored accord-

ing to their corresponding branches) and UnionCom (upper right panel: points are

colored according to their corresponding datasets; lower right panel: points are col-

ored according to their corresponding branches). The green branch of Dataset 2 of

Simulation 2 (lower left panel of (b)) is a dataset-specific cell type, which has unique

topological structure with branches of Dataset 2. (c) Averaged percentage of

Neighborhood Overlap at different size of neighborhood (left panel: Simulation 1;

right panel: Simulation 2)

Fig. 3. The Label Transfer Accuracy (%) by 8 methods on the 2 simulation studies.

UnionCom1: UnionCom using Euclidean distance instead of geodesic distance;

UnionCom2: UnionCom with a fixed a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dy=dx

p
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Among the eight methods tested, UnionCom always has the
highest accuracy in both Neighborhood Overlap and Label Transfer
Accuracy on the two simulated datasets (Figs 2c and 3).
UnionCom1, which uses Euclidean distance, achieves almost the

same accuracy as that of UnionCom in Simulation 1, but dramatical-
ly drops in accuracy on Simulation 2 in which the embedded mani-
folds are non-linearly distorted. UnionCom2 does not incorporate
the global scaling parameter a, but it still ranks both third highest in
accuracy for Simulations 1 and 2, respectively. Harmony ranks se-
cond highest accuracy on Simulation 2 but drops in accuracy on
Simulation 1. MMD-MA has moderate accuracy performance on
both Simulations 1 and 2 (Figs 2c and 3). It is also not surprising
that MMN, scAlign and Seurat v3 do not achieve high accuracy
since both were mainly developed for integrating scRNA-seq data-
sets of one modality.

Finally, we further compare UnionCom with MMD-MA on the
three simulated datasets generated by MMD-MA (Liu et al., 2019).
UnionCom outperforms MMD-MA in aligning these datasets
(Supplementary Note S4 and Figs S3–S6).

3.2 UnionCom accurately integrates sc-GEM omics

datasets across two modalities
We apply UnionCom to integrate sc-GEM omics datasets of gene ex-
pression and DNA methylation (see Section 2.2 for details). We in-
clude Seurat v3 (which has a CCA step, to find a common feature
space across datasets), Harmony (which embeds cells into a shared
PCA space) and MMD-MA, for our comparisons. We obtain the
processed sc-GEM data from MATCHER (Welch et al., 2017),
which contain 177 cells with 34 features in the gene expression data-
set and 177 cells with 27 features in the DNA methylation dataset.
The cell-type annotation is from Cheow et al. (2016).

We visualize the gene expression dataset and the DNA methyla-
tion dataset separately using t-SNE with cells being colored by their
annotated cell types before alignment (Fig. 4a). Both datasets dem-
onstrate similar linear structures with the same orders on cell types:
the BJ (human foreskin fibroblast) cells (red points) locate at one
end, and the iPS cells (yellow points) locate at the other end of the
linear trajectories. This is consistent with the underlying processes
of cells undergoing reprogramming to iPS cells.

Since sc-GEM data have relatively small feature sizes, we embed
the two datasets in a common space using UnionCom with dimen-
sionality of p¼2 and visualize them on the 2D UnionCom space
(Fig. 4e). We find that UnionCom aligns the cells between the two
datasets quite well by locating samples between datasets on a com-
mon region with similar distributions (Fig. 4e, left panel). In contrast,
Seurat v3 locates cells from the gene expression dataset in an interior
region surrounded by cells from the DNA methylation dataset outside
(Fig. 4b, left panel); and Harmony has similar situation as that for
Seurat (Fig. 4d, left panel). MMD-MA does not put the cells between
two datasets on comparable scales, because the cells from the gene ex-
pression dataset are all collapsed together (Fig. 4c, left panel). When
looking at the cell-type labels, we find that UnionCom (Fig. 4e, right
panel) has the best separation of cell types as well as preservation of
the global structures of cell lineage on the merged datasets compared
with Seurat v3 (Fig. 4b, right panel) and MMD-MA (Fig. 4c, right
panel). We further include MATCHER, which aligns 1D manifold
and embeds data to 1D space, for comparing alignment accuracies. It
is shown that UnionCom, MATCHER and Harmony achieve similar
highest accuracy in Neighborhood overlap (Fig. 4f), whereas
UnionCom and MATCHER achieve similar highest Label Transfer
Accuracy (Fig. 4g).

The common embedding coordinates by UnionCom (Fig. 4e) can
be used to reveal gene expression and/or DNA methylation patterns.
When plotting the gene expression and/or DNA methylation values
of the genes related to the biological process of human cells under-
going reprogramming to iPS cells (Cheow et al., 2016), we find that
cells with highly expressed genes and/or highly methylated DNA are
always close together on the common coordinates by UnionCom,
forming into tight clusters (Supplementary Fig. S7).

3.3 Unioncom accurately integrates sc-NMT omics data-

sets across three modalities
We obtain the sc-NMT data from Clark et al. (2018; see Section 2.2
for details). We filter out cells with all features being denoted as

(a)

(b)

(c)

(d)

(e)

(f) (g)

Fig. 4. Alignment of sc-GEM omics datasets of gene expression and DNA methyla-

tion. (a) Visualizations of the gene expression and DNA methylation datasets separ-

ately using t-SNE before alignment. Visualizations of the common embedding space

of the two aligned datasets by Seurat (b), MMD-MA (c), Harmony (d) and

UnionCom (e), respectively [left panel: points (cells) are colored according to their

corresponding datasets; right panel: points (cells) are colored according to their cor-

responding cell types]. (e) Averaged percentage of Neighborhood Overlap at differ-

ent size of neighborhood. (f) Label Transfer Accuracy at different kacc of the kacc-nn

classifier
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missing values (‘NA’) for each of the 3 datasets, resulting in 1940
cells with 5000 features in the gene expression dataset, 709 cells
with 2500 features in the DNA methylation dataset, and 612 cells
with 2500 features in the chromatin accessibility dataset, respective-
ly. We find that UMAP (Becht et al., 2019; McInnes et al., 2018)
can obtain a best preservation of the global structure of cell lineage
for the sc-NMT data than PCA and t-SNE (Fig. 5a). Therefore, we
apply UMAP to conduct the dimensionality reduction of each of the
3 datasets to a dimensionality of 300, respectively, prior to the align-
ment using UnionCom, Seurat v3, MMD-MA and Harmony.

We visualize the three datasets of gene expression, DNA methy-
lation and chromatin accessibility separately using UMAP with cells
being colored by their annotated time stage (e.g. E5.5, E6.5 and
E7.5; Fig. 5a). All three datasets demonstrate similar dominant lin-
ear structures of cell lineage, consistent with the underlying proc-
esses of cell development during mouse gastrulation from E5.5 to
E7.5.

We apply UnionCom to integrate sc-NMT omics datasets of
gene expression, DNA methylation and chromatin accessibility sim-
ultaneously, and embed them into a common space (Fig. 5c). For
multiple datasets, UnionCom selects the dataset with largest sample
size as the reference dataset, and aligns the other datasets with re-
spect to the reference. When visualizing the common embedded
space of the three datasets by UnionCom using UMAP in 2D space,
we find that UnionCom integrates the three datasets across

modalities quite well by aligning cells across datasets along a domin-
ant linear trajectory on similar regions (Fig. 5c, upper right panel),
and also by preserving the global structure of time stage orders
(Fig. 5c, lower right panel).

In addition, we include Seurat v3, MMD-MA and Harmony as
our comparisons and demonstrate their performances on the align-
ment of the two datasets of DNA methylation and chromatin acces-
sibility. UnionCom still achieves highest accuracy in both
Neighborhood Overlap (Fig. 5d, upper panel) and Label Transfer
Accuracy when using time stages as cell labels (Fig. 5d, lower panel).
We find that UnionCom aligns the cells between the two datasets
quite well in 2D space by aligning the cells between the datasets
along a linear trajectory and by merging the two datasets on a com-
mon region with similar distributions (Fig. 5c, upper right panel);
when looking at the cell labels of time stages, we find that
UnionCom preserves the global structures of time stage orders
(Fig. 5c, lower right panel). In contrast, both Seurat v3 (Fig. 5b, left
panel) and MMD-MA (Fig. 5b, middle panel) do not merge the cells
between two datasets into comparable spaces.

3.4 Robustness analysis of UnionCom
We confirm the robustness of UnionCom in both subsampling fea-
tures of data and parameter choices on the two sc-NMT datasets for
DNA methylation and chromatin accessibility. When randomly
sampling a subset of features without replacement from both DNA
accessibility and chromatin methylation datasets separately prior to
data alignment, the label transfer accuracies by UnionCom are sta-
ble, showing much smaller fluctuation than those by Seurat, MMD-
MA and Harmony (Fig. 6a). When choosing k of the k-nn graph in
Step A1 of UnionCom from 4 to 10, the label transfer accuracies of
UnionCom are stable around 80% (Fig. 6b). When choosing differ-
ent hyperparameter q for the penalty term UðFÞ in Equation (2), the
training loss of the prime-dual algorithm converges very fast to the
same value when q ranges from 5 to 20; however, when q ¼ 0
which means no penalty term is applied, the loss shows a strong os-
cillation pattern and convergences slowly (Fig. 6c). Besides, when q
¼ 0, the label transfer accuracy decreases significantly to about
40% with the same training epoch and rate, indicating the necessity
of adding the penalty term (Fig. 6d). When tradeoff parameter b in
Equation (3) ranges from 1 to 50, the label transfer accuracies of
UnionCom are changing slowly (Fig. 6e). Finally, when embedding
the two dataset into a common space of different dimensionality of
p in Step A3 of UnionCom from 10 to 100, the label transfer accura-
cies of UnionCom are stable with small fluctuation (Fig. 6f).

4 Discussion

Manifold alignment is one of the foremost research fields of
machine-learning and data science (Cui et al., 2012, 2014; Ham
et al., 2005; Liu et al., 2019; Pei et al., 2012; Wang and
Mahadevan, 2008, 2009, 2011). In this study, we develop
UnionCom, the unsupervised topological alignment method for
single-cell multi-omics data integration. UnionCom represents the
intrinsic topological structures embedded in data as distance matri-
ces and then formulates the alignment problem into a convex prob-
lem of soft matching of matrices.

UnionCom has the three advantages. First, it is totally unsuper-
vised and data-driven: it does not need the correspondence informa-
tion, either among cells or among features. UnionCom not only
achieves high accuracy in the integration of single-cell multi-omics
datasets, but also has high accuracy when applying to the batch cor-
rection of scRNA-seq datasets with matched features (see
Supplementary Note S5 and Fig. S8). Second, it is a non-linear
method, which characterizes the non-linear intrinsic structures of
the data based on using the geometrical distance matrices for align-
ment and a t-SNE-like method for finding common embedding
space. Therefore, UnionCom achieves best performance on match-
ing non-linear topological structures comparing with linear batch
correction methods (e.g. Seurat, MNN and Harmony). Third,
UnionCom not only matches similar structures between datasets,

(a)

(b)

(c) (d)

Fig. 5. Alignment of sc-NMT omics datasets of gene expression, DNA methylation,

and chromatin accessibility. (a) Visualizations of the gene expression, DNA methy-

lation and chromatin accessibility datasets separately using UMAP before align-

ment. (b) Visualizations of the common embedding space of the two aligned

datasets of DNA methylation and chromatin accessibility by Seurat (left panel),

MMD-MA (middle panel) and Harmony (right panel), respectively; (c)

Visualizations of the common embedding space of two aligned datasets of DNA

methylation and chromatin accessibility (left panel) and three aligned datasets of

DNA methylation, chromatin accessibility and gene expression by UnionCom (right

panel). Upper panel of (b and c): points (cells) are colored according to their corre-

sponding datasets; Lower panel of (b and c): points (cells) are colored according to

their corresponding time stages. (d) Averaged percentage of Neighborhood Overlap

(upper panel) and Label Transfer Accuracy (lower panel) on the alignment of the

two datasets of DNA methylation and chromatin accessibility
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but also can accommodate samples with dataset-specific cell types,
since UnionCom utilizes both local and global topological informa-
tion of data. On the other hand, the non-linear MMD-based meth-
ods (e.g. MMD-MA), which can be regarded as ‘matching of
infinite-order moments’, will always transform the matched datasets
into the same distribution and thus cannot handle data-specific
structures.

Different from methods, such as Seurat and scAlign, which con-
duct the dimensionality reduction prior to the alignment of the cells,
UnionCom first aligns the cells across datasets based on the geomet-
rical distance of metric space and then projects the distinct features
into a common low-dimensional embedded space. We thus propose
a global scaling factor a to account for the global geometrical distor-
tions on the embedded intrinsic topological structures and remove
the need for pre-matching and normalizing distinct features across
multi-omics datasets. Since the un-matched features across datasets
have different distributions with complex intercorrelations, normal-
ization of features across single-cell multi-omics datasets to the same
distribution can further distort the intrinsic geometric structures,
making the alignment problem more difficult. For complex
embedded hierarchical structures with multi-scales, UnionCom can
align the manifold recursively by introducing scaling-specific factors
for each scale of the manifold, and we plan to pursue this topic in
our future work.

UnionCom has the following potential limitations. First,
UnionCom may be inadequate to align the embedded structures

with certain symmetries, since distance matrices will be invariant
when switching symmetric parts of the embedded structure. It will
be potential limitation for the unsupervised matching methods, since
the geometry information itself cannot distinct the symmetric parts.
However, it is not a big issue for single-cell data analysis, since sin-
gle cells are highly heterogeneous with non-uniform distributions.
We can see clearly that UnionCom aligns the linear structures quite
well on both sc-GEM and sc-NMT datasets. Second, UnionCom is
not scalable to large-scale datasets with cells up to 	106, which can
be handled by Harmony on a personal computer. Although slower
than the batch correction methods such as Seurat, MNN and
Harmony, UnionCom is computationally efficient with computing
time <50 s on the datasets utilized in our study on a personal com-
puter, showing comparable computational speed as MMD-MA (see
Supplementary Table S1). As the demanding computation and mem-
ory storage of distance matrices raised by large-scale single-cell data,
we plan to pursue high performance computing and memory effi-
ciency simultaneously in our future work.
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