Bioinformatics, 36, 2020, i236—i241
doi: 10.1093/bioinformatics/btaa408
ISMB 2020

OXFORD

Hopper: a mathematically optimal algorithm for
sketching biological data

Benjamin DeMeo'? and Bonnie Berger®>*

'Department of Bioinformatics, Harvard University, Cambridge, MA 02138, USA, Computer Science and Artificial Intelligence
Laboratory and 3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Single-cell RNA-sequencing has grown massively in scale since its inception, presenting substantial ana-
lytic and computational challenges. Even simple downstream analyses, such as dimensionality reduction and cluster-
ing, require days of runtime and hundreds of gigabytes of memory for today’s largest datasets. In addition, current
methods often favor common cell types, and miss salient biological features captured by small cell populations.
Results: Here we present Hopper, a single-cell toolkit that both speeds up the analysis of single-cell datasets and
highlights their transcriptional diversity by intelligent subsampling, or sketching. Hopper realizes the optimal
polynomial-time approximation of the Hausdorff distance between the full and downsampled dataset, ensuring that
each cell is well-represented by some cell in the sample. Unlike prior sketching methods, Hopper adds points itera-
tively and allows for additional sampling from regions of interest, enabling fast and targeted multi-resolution analy-
ses. In a dataset of over 1.3 million mouse brain cells, Hopper detects a cluster of just 64 macrophages expressing
inflammatory genes (0.004% of the full dataset) from a Hopper sketch containing just 5000 cells, and several other
small but biologically interesting immune cell populations invisible to analysis of the full data. On an even larger
dataset consisting of ~2 million developing mouse organ cells, we show Hopper's even representation of important
cell types in small sketches, in contrast with prior sketching methods. We also introduce Treehopper, which uses
spatial partitioning to speed up Hopper by orders of magnitude with minimal loss in performance. By condensing
transcriptional information encoded in large datasets, Hopper and Treehopper grant the individual user with a lap-
top the analytic capabilities of a large consortium.

Availability and implementation: The code for Hopper is available at https://github.com/bendemeo/hopper. In add-
ition, we have provided sketches of many of the largest single-cell datasets, available at http://hopper.csail.mit.edu.
Contact: bab@csail.mit.edu

1Introduction There are several recent methods with this aim. Dropclust (Sinha

Recent improvements in single-cell technologies have enabled high-
throughput profiling of individual cells, allowing fine-grained analy-
ses of biological tissues. Droplet-based technologies have enabled
profiling of millions of cells in a single experiment. Even larger data-
sets, containing tens or hundreds of millions or even billions of cells,
are imminent (Angerer et al., 2017). For example, the Human Cell
Atlas project aims to characterize and classify all cells in the human
body (Rozenblatt-Rosen et al., 2017).

While these large-scale assays have enormous scientific and
therapeutic potential, they also present significant computational
and analytic challenges. Even the most basic exploratory analyses—
visualization, clustering and removal of batch effects—become in-
tractable for more than tens of thousands of cells. Clinically or sci-
entifically relevant cells are often far outnumbered by common cell
types (Hie et al., 2019). Thus, there is a pressing need to produce
sketches that reduce the size of single-cell datasets while preserving
their transcriptional diversity.

©The Author(s) 2020. Published by Oxford University Press.

et al., 2018) performs Louvain clustering on an approximate
nearest-neighbor network (Blondel ez al., 2008), and uses the result-
ing clusters as points of reference for downsampling. However, clus-
tering itself is a very difficult and computationally expensive task,
with the quality of the resulting sketches depending entirely on the
clustering algorithm. The recently introduced Geometric Sketching
(Hie et al., 2019) samples evenly across transcriptional space by cov-
ering the Principal component-reduced dataset with a gapped grid of
disjoint axis-aligned hypercubes of uniform size, and sampling a
point at random from each. Geometric Sketching is very fast; yet, as
we shall show, the fixed gridding axis can lead to artificial clusters
near the grid intersections, potentially negatively affecting down-
stream analyses. Moreover, neither of these methods provides math-
ematical guarantees as to the approximation quality of the output
sketches.

To address these challenges, we introduce Hopper, a novel tool-
kit that produces sketches with mathematical optimality guarantees
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on the distance from a point in the original data to the nearest point
in the sketch. It achieves this result by implementing farthest-first
traversal, a provably optimal polynomial-time approximation to the
k-center problem.

Intuitively, this means that every point in the full dataset X is
very close to some point in the sketch S. Compared to Geometric
Sketching, the current state of the art, Hopper dramatically
improves the quality of sketches as measured by the Hausdorff dis-
tance, and better represents low-dimensional substructures without
artifacts introduced by gridding. Unlike all prior methods, Hopper
allows fast insertion and removal of cells from the sketch, whilst
preserving strong mathematical guarantees. This enables fast multi-
resolution analyses of large datasets.

Hopper uses the triangle inequality to speed up farthest-first tra-
versal, yielding feasible runtimes on today’s largest datasets.
However, producing large sketches of large datasets is slow com-
pared to Geometric Sketching (Fig. 1). To address this issue, we
introduce Treehopper, which leverages spatial partitioning to reduce
the runtime by orders of magnitude without significant loss in per-
formance. In particular, Treehopper yields lower Hausdorff distan-
ces than any prior approach, with speed comparable to or faster
than Geometric Sketching (Fig. 1). We thus recommend Treehopper
as the state of the art for sketching large datasets.

The code for Hopper and Treehopper is freely available at
https://github.com/bendemeo/hopper. In addition, we have provided
pre-computed sketches of many of the largest single-cell datasets,
available at http://hopper.csail.mit.edu.

2 Algorithm

2.1 Overview of Hopper
At the core of Hopper is the farthest-first traversal, an elegant
greedy approximation to the k-center problem. Here the goal is to
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Fig. 1. Hausdorff distances and runtimes for various Hopper and Treehopper
routines, with Geometric Sketching for comparison, on ~1.3 million mouse neurons
(a, b) and ~2 million developing organ cells (c, d). For the Treehopper tests, the
number of partitions d is indicated parenthetically in the legends. The basic Hopper
routine produces the lowest Hausdorff distance obtainable in polynomial time, with
our faster Trechopper routines nearly realizing the optimum. All significantly out-
perform Geometric Sketching, and show more consistent Hausdorff performance.
Both Hopper and Treehopper take time linear in the sketch size, with slope depend-
ing on the overall dataset size and the degree of pre-partitioning. Geometric
Sketching performs variably depending on the dataset’s geometry

minimize, for some sample S of size k from a ground set X, the
Hausdorff distance

du (S, X) = maxyexminsesd(x, s)

where d is a metric of choice (in our experiments, we use the
Euclidean metric).

The algorithm works by sampling an initial point from X at ran-
dom, and repeatedly adding to the sample the point p that is furthest
from any of the previously sampled points:

p = arg maxyex (minsesd(x, s)). (1)

Intuitively, we repeatedly add to S the point of X that is least
well-represented by S. We call this hopping, and implement it in the
"hop" function of the Hopper module.

By design, this method is guaranteed to strictly decrease the
Hausdorff distance dyi(X, S) after each step, assuming that the max-
imum is realized by only one point. In fact, one can show the
following:

THEOREM 1. Suppose that S is a k-step farthest traversal of X. Then,

du(X,8) < 247" (X, k)

where di¥" (X, k) is the optimal Hausdorff distance realized by any subset
of size k.

Thus, farthest-first traversal realizes a 2-approximation to the optimal
Hausdorff distance. The proof of this Theorem is found in the study by
Gonzalez (1985). The following theorem, due to Hochba (1997), shows
that we cannot reasonably hope to do any better:

THEOREM 2. Let o < 2. Then, unless P = NP, there is no polynomial
time algorithm for producing a set S satisfying

dn(X.S) < a-dP(X, k).

Thus, Hopper provides a gold-standard for sketching in the sense that
no algorithm can reliably obtain a better Hausdorff distance, unless
P = NP. The output of Hopper is an ordered collection of x1,x3,...,x;
of cells from X, such that for any ¢ < k, the subset x1,..
within a factor of two of the lowest possible Hausdorff distance for any
sketch of size ¢.

., x¢ reaches

2.1.1 Geometric speedups

The most computationally expensive aspect of farthest-first traver-
sals is identifying the point p from Equation 1. To do so, one must
maintain for each x € X, the distance to the nearest point in S. Each
time a point is added to S, these distances must be updated. A naive
approach computes the distance from every x € X to the newly
added p, and updates the minimum distances accordingly. This
requires O(n) time for each point addition, where 7 is the size of X.
Producing a sketch of size k thus takes O(nk) time, which can be
prohibitive for large sketches of large datasets.

Various speedups have been proposed in the theoretical com-
puter science community (e.g. Har-Peled and Mendel, 2006), but all
scale poorly with the dimensionality of the dataset. Instead, Hopper
implements two simple geometric speedups using the triangle in-
equality. First, if the newly added point p has distance 7 to its nearest
representative in S, then by the triangle inequality,

r < d(s,p) < d(s,x) +d(x,p)

for any s € S and x € X. In particular, if d(x,p) < d(s,x), then we
must have d(s,x) > 4. Thus, we need only examine those points in X
with distance > £ to their nearest point in S. To quickly find these
points, the points X are sorted by their distance to the nearest point
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of S. Second, for s € S, if d(s,p) > 2r, then if x € X is closest to s,
the triangle inequality gives:

d(s,x) > d(s,p) —d(x,p) > r

so there is no need to update any of the points associated to s. These
two observations often allow significantly fewer than 7 points to be
examined at each iteration. The exact runtime depends on the
dimensionality and geometry of the dataset (Yu ez al., 2015), but in
practice the speedup is noticeable, especially for the first few thou-
sand cells (Fig. 1).

2.2 Overview of Treehopper

In spite of the speedups discussed above, Hopper may still be pro-
hibitively slow on very large datasets (Fig. 1). We therefore intro-
duce Treehopper, a derivative of Hopper which newly uses spatial
partitioning to drastically speed up sketch generation, with little loss
in performance. The dataset X is first divided into disjoint subsets
X1, ..., Xy using Principal Component Trees (PC-trees), which hier-
archically split the data into equal halves along the leading principal
component (Verma et al., 2009). A Hopper H; is instantiated in each
partition X, beginning a farthest-first traversal S; of X;. These
Hoppers are sorted according to their Hausdorff distance dyi(S;, X;).
At each step, the Hopper with highest Hausdorff distance hops, add-
ing a point to S;, and adjusting its position in the sorted list of
Hoppers. The final sketch is the union of all the sub-traversals S;.

Treehopper is inspired in part by Geometric Sketching, which
demonstrates the utility of spatial partitioning for rapid sketch gen-
eration. However, in contrast with Geometric Sketching, where the
partitions are all hypercubes of the same size and a point is drawn
from each, Treehopper allows partitions to occupy variable-sized
regions of transcriptional space, and draws variable numbers of
points from the partitions according to their individual geometries.
Thus, Trechopper bridges the gap between the fast partition-and-
sample approach and the slower, but mathematically optimal,
farthest-first traversal approach. We thus recommend Treehopper,
and incorporate it into Hopper as the method of choice.

Using a fast heap implementation, Treehopper achieves an aver-
age hop time of O(n/d) instead of O(n). Within each partition, the
traversals S; realize the optimality bound of Theorem 1, but this
bound may not be achieved globally. This tradeoff between time
and performance is fully tunable. If d=1, we achieve optimal
polynomial-time performance in O(nk) worst-case time. On the
other extreme, if d=n, a random subsample is produced in O(k)
time. For d-values in the tens to hundreds, these methods produce
drastic speedups with little loss in accuracy, sketching today’s largest
datasets with very low Hausdorff distance in a matter of minutes
(Fig. 1). Thus, Trechopper improves the state of the art in both time
and sketch quality.

3 Experimental results

3.1 Hopper better approximates biological datasets

We assessed our method’s performance on two of the largest pub-
lished single-cell RNA-seq experiments: A set of 1.3 million mouse
neurons from 10X Genomics, and a set of ~2 million mammalian
organogenesis cells (Cao et al., 2019). Each dataset underwent
standard normalization and feature selection protocols, and was
projected to its first 100 independent components. Consistent with
our mathematical guarantees, Hopper obtained Hausdorff distances
significantly lower than any prior sketching technique, showing em-
pirically that all cells in the dataset are better-represented (Fig. 1a,
¢). These improvements remained significant even when Treehopper
was used with as many as 256 pre-partitions, suggesting that pre-
partitioning does not substantially reduce performance. In contrast
with Geometric Sketching, Hausdorff distance decreases smoothly
as the number of points increases, likely because Hopper and
Treehopper are highly sensitive to individual outliers. Hopper,
Treehopper and Geometric Sketching all require memory approxi-
mately equal to the size of the input dataset (data not shown).

As expected, Hopper and Treehopper run approximately linearly
in the dataset size, with slopes depending on the number of pre-
partitions (Fig. 1). Geometric Sketching shows variable time per-
formance between the two tested datasets. We suspect that because
Geometric Sketching relies on a binary search to select the correct
grid size, runtime is heavily impacted by the number of search itera-
tions needed, which depends rather unpredictably on the starting
grid size and on the dataset’s geometry. Because even small sketch
sizes may require several iterations, this leads to slower performance
for small sketch sizes. On the other hand, the runtime may be faster
for larger sketches (Fig. 1b, d).

3.2 Hopper reveals novel clusters of immune cells in

mouse brain data

Clustering is a key step in the analysis of single-cell data, allowing
identification of known cell types, and discovery of new cell types,
in a sample. Hopper facilitates better clustering by representing rare
clusters even with small sketches. To demonstrate this, we used
Hopper to order the first 5000 cells (about 0.4%) of the 1.3 million
neuron dataset, and clustered the resulting cells using Louvain com-
munity detection (Blondel et al., 2008). These cluster labels were
then propagated to the full dataset via nearest-neighbor classifica-
tion. The detected clusters, plotted and annotated in Figure 2(a), re-
veal several small but interesting cellular populations. For example
one of the clusters, consisting of a mere 64 cells, showed elevated ex-
pression of the Cd5l gene, which is expressed by macrophages in
inflamed tissues (Sanjurjo et al., 2015) (Fig. 2a). Another cluster
consisted of just 114 cells with elevated expression of Pf4 and
F13al, marker genes for activated platelets (Newman and Chong,
2000) (Fig. 2a, c). Another, consisting of just 221 cells, showed ele-
vated expression the Interferon-f gene Ifnb1, expressed in fibro-
blasts and monocytes in response to viral infection (Hu ez al., 2007).
Clusters 2—4 express canonical microglial markers, highlighting the
transcriptional diversity of this group (Hammond et al., 2019; Lee
et al., 2008). Figure 2(c) shows expression heatmaps for each of
these genes. Considering the role of the immune system in modulat-
ing disease states, these clusters are likely clinically important des-
pite their small size.

Figure 2(b) lists all clusters, together with their sizes and differ-
entially expressed genes relative to the total. Remarkably, almost all
of the clusters computed from the Hopper sketch are extremely
small relative to the full dataset size, indicating that miniscule popu-
lations can account for a large proportion of the dataset’s transcrip-
tional diversity. These populations are completely invisible to any
analysis of the full dataset. For example the Louvain clustering pro-
duced by scanpy (Wolf ef al., 2018) on the full dataset lumps all of
the immune cell clusters into a single relatively small cluster of 8856
cells, obscuring their true diversity (Fig. 2d). This reflects a funda-
mental limitation of all modularity-based approaches, as docu-
mented in Kumpula et al. (2007): as the size of a dataset increases,
so does the size of the smallest community that can be detected by
modularity optimization. This has serious implications for single-
cell pipelines: it is mathematically impossible to detect sufficiently
small populations of cells via Louvain clustering, which remains the
most popular method. Hopper and Treehopper circumvent this limi-
tation by reducing the overall dataset size whilst retaining rare cell
types, thus increasing the proportion of rare cells in the overall sam-
ple to the point where Louvain clustering can uncover them. Thus,
our sketched datasets are not only more computationally manage-
able, but allow finer-grained detection of cellular populations as
compared to the full data.

3.3 Hopper samples smoothly across low-dimensional

substructures

Geometric Sketching, the prior state of the art, covers the data with
a gapped grid of axis-aligned boxes and samples a point from each
box. This is a well-motivated approach that works well on many
datasets. However, we have observed that axis-aligned grid hyper-
cubes do not always represent the data evenly, especially where the
local low-dimensional structure of the data aligns poorly with the
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0 1280407 Pm, Tubala, Tmsmbl0
1 12814 Igfbp7, Cidn5, Ramp2
2 635 Ccl2, Ccl3, Cd83
Louvain Clustering 3 1144 P2ryi2 Csfix Hexb
4 1738 Tmsbix RgsiO Aifl
Artivated Platelety
Infammatory 5 (Pfa & F13al; 47 cels) 5 849 Cd83 A df}. m’jﬁ
ey - 6 844 Sppl, Igfl, Lpi
a 7 7 381 Apoe, Msfabc, Rgsl
8 383 Cds2, B2m, Aifl
9 1853 P2, Dbi, Zicl
10 462 Plac8, Lgals3, S100a6
11 221 Ifnb1, PppriSa, Cxcll0
12 480 N7t Tmshi0, Acigl
13 901 P, Colsal, Lgals]
8 Active Moncoytes 14 176 Stfal, 5100a8, Gm3483
oot e 15 14 P, Fi3al, Mrcl
ey 16 115 Hear2 Ccl3, Crybbl
17 1497 Hba-a2, Hba-al, Hbb-bs
- 18 94 Cxcl3, Cxcl2, Cd83
e 21 19 221 Rsphl, M2 Meigl
= o Mr-enhanced 20 64 Cdsl, Cish, Fll
= ] popudation (480 cels) 21 58 Ppbp, Gp9, Cila2a
UMAP 1
(c) (d)

Louvain clusters on full data

Fig. 2. (a) Louvain clustering on the 5000-cell Hopper sketch of the 1.3 million-cell mouse brain dataset. Each cluster is numbered, and biologically interesting clusters are
annotated with their inferred identity. (b) Table showing the cell counts per cluster after nearest-neighbor classification on the whole dataset, and the top differentially
expressed genes in each cluster. (c) Heat maps showing the expression of four different marker genes in a Hopper sketch of 5000 mouse brain cells out of 1.3 million. Elevated
CD68 expression in the top half suggests a diverse population of immune cells. (d) Louvain clusters computed on the entire dataset fail to distinguish any of the cell subtypes

identified by clustering on the sketch (see main text)

gridding axis (Yu et al., 2015). As demonstrated schematically in
Figure 3(a), this results in more points near the grid square intersec-
tions. This effect is compounded as the ambient dimension D
increases, since as many as 2° hypercubes may meet. As a result, we
observe clumping even when the underlying data are Gaussian
(Fig. 3b). On the mouse organogenesis dataset, this manifests as
additional clusters not present in the Hopper sketches (Fig. 3d).

Hopper avoids this issue entirely by not relying on any axis,
ensuring that all low-dimensional substructures are smoothly repre-
sented regardless of spatial orientation (Fig. 3c, d). Sketches pro-
duced with Treehopper closely resemble those of Hopper, even with
partition sizes less than 5% of the total sample size (Fig. 3d).

We note that the pure-partitioning approach taken by Geometric
Sketching does allow remarkably fast runtimes, and the artificial
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Fig. 3. Grid-based sketches clump at grid intersections. (a) Schematic diagram, assuming the data lies near a one-dimensional line (red) in two-dimensional space. Where the
line meets the grid intersection, four points are sampled, causing an artificial clump (circled). This effect is compounded in higher dimensions. (b) A sample geometric sketch
on 2-D Gaussian data randomly embedded into 100-dimensional space. The 100 sampled points are shown in white, with the remaining points colored by grid cell. The grids
partition the data erratically, and regions near grid intersections are preferentially sampled. (¢) Hopper sketch of the same data, with 100 points colored according to their clos-
est sampled point. The data are smoothly represented. (d) UMAP visualizations of sketches produced by Hopper, Geometric Sketching and by Treehopper with 32 partitions,
coloured by cell type. Geometric Sketching generates additional clusters at grid intersections. Hopper and Treehopper avoid this issue

clumping effect does not occur on all datasets; indeed, geometric
sketches of the 1.3 million mouse neuron dataset closely resemble
Hopper sketches (data not shown). We suspect that the observed de-
fect emerges primarily when the data have high intrinsic dimension-
ality, i.e. lie on a high-dimensional manifold, because this allows for
more high-dimensional intersections between occupied grid
hypercubes.

4 Discussion

Hopper leverages the mathematical power of farthest-first traversal
to produce sketches that preserve a sample’s transcriptional diver-
sity and biological meaning. These sketches are mathematically
guaranteed to represent the original data as well as any
polynomial-time algorithm, thus providing a much-needed gold
standard. By incorporating the powerful partition-and-sample ap-
proach implemented in Treehopper, we allow tunable scaling to
massive-scale single-cell datasets without excessive computational
burden.

We have provided the first 50 000 cells in the far traversal of
two super-massive single-cell RNA-seq datasets. This data require
only a few megabytes of storage, but allow immediate production of
mathematically optimal sketches of any size smaller than 50 000.

This allows the researcher immediate access both to small sketches,
which may isolate the rare cell types, and larger sketches, which
may be more comprehensive at the expense of obscuring rare cell
types. Indeed, the position of a cell in the far traversal produced by
Hopper may prove a valuable input to other downstream analyses.
For example, one could modify the Louvain community detection
algorithm by weighting vertices according to their traversal posi-
tions, and modifying the modularity-detection step to ensure that
both rare and common clusters are represented.

The experiments in this article exclusively use Euclidean distance
as a measure of dissimilarity, but Hopper also generalizes to arbi-
trary dissimilarity measures, provided that they satisfy the triangle
inequality (e.g. Manhattan distance, Minkowski distance, etc.)
Unlike other methods, an explicit embedding of the cells is not
required—only a method of determining distance. As demonstrated
by kernel support vector machines, this is a highly desirable prop-
erty. There are several existing machine algorithms for learning dis-
criminative metrics from single cell datasets, which can be directly
fed into the Hopper framework. For example SIMLR (Wang et al.,
2017) uses machine learning to jointly predict the clustering and the
distance measure. Other possibilities abound, from established ker-
nels (e.g. polynomial kernels or radial basis functions) to custom-
designed kernels which may incorporate prior knowledge about the
relevant factors shaping a dataset’s diversity. Because the distance
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function can be user-specified, inputting such custom kernels into
the Hopper framework is very straightforward.

Hopper offers a flexible, scalable and mathematically principled
workflow for distilling the essence of a single-cell dataset. As these
datasets grow, such methods will become increasingly vital for ena-
bling the advanced and computationally expensive downstream
workflows that the future of single-cell data undoubtedly holds.
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