
Identifying diagnosis-specific genotype–phenotype

associations via joint multitask sparse canonical

correlation analysis and classification

Lei Du1,*, Fang Liu1, Kefei Liu2, Xiaohui Yao2, Shannon L. Risacher3, Junwei Han1,

Lei Guo1, Andrew J. Saykin3 and Li Shen2,*; for the Alzheimer’s Disease

Neuroimaging Initiative†

1Department of intelligent science and technology, School of Automation, Northwestern Polytechnical University, Xi’an 710072, China,
2Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

19104, USA and 3Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA

*To whom correspondence should be addressed.$262#†Data used in preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implemen-

tation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be

found at: http://adni.loni.usc.edu/wpontent/uploads/how_to_$262#apply/ADNI_Acknowledgement_List.pdf.

Abstract

Motivation: Brain imaging genetics studies the complex associations between genotypic data such as single nucleo-
tide polymorphisms (SNPs) and imaging quantitative traits (QTs). The neurodegenerative disorders usually exhibit
the diversity and heterogeneity, originating from which different diagnostic groups might carry distinct imaging
QTs, SNPs and their interactions. Sparse canonical correlation analysis (SCCA) is widely used to identify bi-
multivariate genotype–phenotype associations. However, most existing SCCA methods are unsupervised, leading
to an inability to identify diagnosis-specific genotype–phenotype associations.

Results: In this article, we propose a new joint multitask learning method, named MT–SCCALR, which absorbs the
merits of both SCCA and logistic regression. MT–SCCALR learns genotype–phenotype associations of multiple tasks
jointly, with each task focusing on identifying one diagnosis-specific genotype–phenotype pattern. Meanwhile, MT–
SCCALR cannot only select relevant SNPs and imaging QTs for each diagnostic group alone, but also allows the se-
lection of those shared by multiple diagnostic groups. We derive an efficient optimization algorithm whose conver-
gence to a local optimum is guaranteed. Compared with two state-of-the-art methods, MT–SCCALR yields better or
similar canonical correlation coefficients and classification performances. In addition, it owns much better discrim-
inative canonical weight patterns of great interest than competitors. This demonstrates the power and capability of
MTSCCAR in identifying diagnostically heterogeneous genotype–phenotype patterns, which would be helpful to
understand the pathophysiology of brain disorders.

Availability and implementation: The software is publicly available at https://github.com/dulei323/MTSCCALR.

Contact: dulei@nwpu.edu.cn or Li.Shen@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative disorder
incurring heavy economic and emotional costs to patients and their
families (Alzheimer’s Association, 2013). Generally, AD, as well as
other neurodegenerative and neuropsychiatric disorders, exhibits
the heterogeneity and diversity (Lam et al., 2013; Wang et al.,
2015), supported by mounting evidence that the sporadic AD could
be multiple diseases instead of a single disease (Au et al., 2015).
Therefore, uncovering the diagnosis-specific, including subgroup-
specific and normal ageing-specific, genetic factors, imaging

phenotypes and their interactions is an important and meaningful
research topic. This could underpin AD subgroup identification,
thereby help with mechanistic understanding of this neurodegenera-
tive disorder.

Brain imaging genetics provides us a powerful opportunity to
gain new in-depth insights into the genetic basis of the phenotypic
characteristics of the brain (Shen and Thompson, 2020). Within this
area, the genetic variations such as single nucleotide polymorphisms
(SNPs) and brain imaging quantitative traits (QTs) are jointly ana-
lyzed with expectation to understand the normal and disordered
brain function and behavior (Saykin et al., 2015; Shen et al., 2014).
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Given a large number of SNPs and imaging QTs, the univariate
methods and the regression based methods have limited capability.
The univariate methods treat each marker (SNP or QT) independ-
ently and thus they inevitably overlook the relationship within SNPs
and imaging QTs (Shen et al., 2010). The regression-based methods
alleviate this issue by looking into multiple SNPs’ (QTs’) impact on
a single imaging QT (SNP) or a few candidate imaging QTs (SNPs).
Obviously, they cannot select features of interest for SNPs and imag-
ing QTs simultaneously, which, however, is a critical issue in imag-
ing genetics.

The above drawback can be addressed by bi-multivariate learning
methods, such as sparse canonical correlation analysis (SCCA), par-
tial least squares regression (Beaton et al., 2014) and reduced rank re-
gression (Vounou et al., 2010). Among which SCCA and its variants
become more and more popular due to its simplicity but powerful de-
tection capability (Chen et al., 2013; Du et al., 2016, 2018, 2019a;
Witten and Tibshirani, 2009). However, SCCA is unsupervised and
thus the diagnosis information is usually overlooked. This might lead
to discovering disease irrelevant SNP–QT associations even though
the discriminative information among distinct diagnostic groups has
been implied in imaging QTs. Many efforts have been made in this
direction to enable supervised SCCA. For example, Yan et al. (2017)
proposed discriminative SCCA (DSCCA) which considers the rela-
tionship within the same diagnostic group and that between groups.
They later designed another outcome-relevant SCCA (Yan et al.,
2018) to make use of the diagnosis information through regulariza-
tion with the similarity matrix among subjects. Zille et al. (2018) pro-
posed a fused method in which the diagnosis information is
considered by the regression objective while the SNP–QT association
is captured by the SCCA objective simultaneously. A common critical
issue holding by methods above is that they find out only one feature
subset in terms of SNP–QT associations for all diagnostic groups.
According to the feature selection taxonomy in the machine learning
community (Baggenstoss, 1999; Pineda-Bautista et al., 2011), these
SCCAs fall into the traditional feature selection category, in contrast
to the class-specific [or diagnosis-specific (The diagnosis-specific and
class-specific are alternatively used throughout this article without
distinction.)] feature selection (Pineda-Bautista et al., 2011), as they
only select a single feature subset to discriminate all classes.
Obviously, the identified SNP–QT associations are not diagnosis-
specific. Nevertheless, identifying diagnosis-specific imaging genetic
patterns could be of great interest and meaning, to which the targeted
in-depth investigation, subgroup identification and personalized
medication could be applied (Mukherjee et al., 2018).

On this account, the diagnosis-specific feature selection methods
which select a feature subset (possibly different) for each diagnostic
group (Pineda-Bautista et al., 2011) is more desirable and essential.
This topic is in agreement with class-specific feature selection. For ex-
ample, Wang et al. (2015) used the multitask support vector machine
(SVM) to learn multiple heterogeneous classification tasks together.
This method is somewhat difficult to interpret due to its nonobvious
modeling strategy, and it only identifies imaging markers which is in-
sufficient to subtype identification. The joint SCCA (JSCCA) (Fang
et al., 2016) studied the imaging genetic associations within each diag-
nostic group via a modified multiview SCCA (mSCCA). However, its
shortcoming is conspicuous as many undesirable associations could
dominate the association of interest when conducting SCCA within a
single diagnostic group (Lorena et al., 2008). Strictly speaking, both
methods are beyond the diagnosis-specific feature selection due to their
nonstandard modeling paradigm (Pineda-Bautista et al., 2011; Wang
et al., 2016; Zhang and Wu, 2015). Thus, both of them are inadequate
for diagnosis-specific identification. It is straightforward to employ
well-studied diagnosis-specific algorithms for imaging genetics
(Pineda-Bautista et al., 2011). Unfortunately, they are classification-
based methods indicating that they can only identify label-relevant fea-
tures. As a result, the primary mission of brain imaging genetics, i.e.
identifying meaningful SNP–QT associations, is overlooked.

To address the issues above, we propose a novel multitask bi-
multivariate learning method with feature selection to identify
diagnosis-specific genotype–phenotype patterns for each patient
group as well as normal controls. The proposed method, named
MT–SCCALR, integrates multitask SCCA and multitask logistic

regression (LR) in a unified model. The advantages of MT–SCCALR
are fourfold. First, different to existing unsupervised and supervised
SCCAs, MT–SCCALR can identify diagnosis-specific SNP–QT asso-
ciations by jointly learning multiple SCCA tasks and LR tasks. The
identified diagnosis-specific feature set, including SNPs and imaging
QTs, is exclusively held by a specific diagnostic group. Second, bet-
ter than JSCCA which incurs undesirable diagnosis-irrelevant fea-
tures, MT–SCCALR follows sophisticated class-specific modeling
strategy, and thus could avoid the diagnosis-irrelevant QTs, SNPs
and their associations. Third, using regularization techniques, MT–
SCCALR not only selects features such as SNPs and QTs for each
diagnostic group, but also those that are commonly carried by all
subjects, enabling a hierarchical strategy for feature selection.
Fourth, an efficient iteration optimization algorithm is derived,
which is demonstrated to converge to a local optimum.

To evaluate the performance of MT–SCCALR, we use four syn-
thetic datasets with distinct characters and a real neuroimaging gen-
etic dataset downloaded from the Alzheimer’s disease neuroimaging
initiative (ADNI) database (Mueller et al., 2005). There are 755
non-Hispanic Caucasian participants with their 18-Fr florbetapir
PET scans and genotyping data contained. We aim to detect the
diagnosis-specific associations between these imaging QTs and
SNPs. Compared with two state-of-the-art methods (Fang et al.,
2016; Yan et al., 2017), the experimental results show that MT–
SCCALR performs better than or similarly to benchmarks in terms
of correlation coefficients and classification accuracies.
Interestingly, the canonical weights reveal that our method success-
fully identifies QTs, SNPs and their associations being specific for
each diagnostic group while those competitors cannot. In a word,
the proposed integrated multitask SCCA and multitask LR offers a
very promising new strategy for brain imaging genetics.

2 Materials and methods

In this article, lowercase letters denote vectors, and uppercase ones

denote matrices. xi and xj denote the ith row and jth column of ma-
trix X ¼ ðxijÞ. kxk2 denotes the Euclidean norm, kXk1;1 ¼P

i

P
j jxijj denotes the element-wise ‘1-norm, kXk2;1 ¼

P
i kxik2

denotes the ‘2;1-norm, and kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j x2

ij

q
denotes the

Frobenius norm.

2.1 Overview
To identify diagnosis-specific features in imaging genetics, it is
straightforward to train multiple classifiers independently with re-
spect to different tasks. For example, we can build a classifier to dis-
criminate HC from AD, and build another classifier to discriminate
between MCI and AD. However, this strategy treats these tasks as
independent and isolated models, hence the underlying interacting
relationships among tasks might be overlooked. Another critical
issue is that it is somewhat difficult to interpret the identified fea-
tures as it is not a rigorous model for class-specific feature selection
(Pineda-Bautista et al., 2011).

In this article, we formally define the diagnosis-specific feature
selection model for imaging genetics following the strategy in trad-
itional feature selection community (Pineda-Bautista et al., 2011;
Zhang and Wu, 2015). Figure 1 presents the framework of the
diagnosis-specific feature selection workflow. First, the whole target
population is divided into different groups such as healthy control
(HC), mild cognitive impairment (MCI) and AD. If possible, the AD
patients can be further split into AD subgroups, e.g. the typical,
limbic-predominant, or hippocampal-sparing groups (Ferreira et al.,
2017). Second, the class binarization is applied to construct multiple
classification tasks via the one-versus-all [OVA, or one-against-all
(OAA)] decomposition strategy. The OVA has shown, in general,
good performance for all datasets (Lorena et al., 2008). In particu-
lar, each task in our method is to classify a specific diagnostic group
out of those subjects not in this group, e.g. HC versus non-HC or
MCI versus non-MCI. This is of great importance and meaning as
doing this is helpful to understand the in-depth and unique
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characters for the diagnostic group of interest, making personalized
clinical diagnosis and treatment possible. Besides, if necessary, the
class balancing techniques such as oversampling will be used to
overcome the class imbalance issue (Pineda-Bautista et al., 2011).
Third, the novel heterogeneous multitask method, i.e. the joint
multitask SCCA and multitask LR, is proposed to simultaneously
and systematically considering the different diagnostic groups’ re-
latedness. The SCCA objective is used to learn the association be-
tween QTs and SNPs, and the LR objective is used to learn
discriminating features. In addition, the class-specific as well as
class-consistent characteristics of both imaging QTs and SNPs are
also considered by newly designed penalties. Finally, we obtain the
dementia-related, including both MCI and AD, and the normal
ageing-related imaging QTs and SNPs. These diagnosis-specific fea-
ture sets would be of more interest than a single set for all diagnosis
groups.

The class binarization and class balancing are easy to implement
(Pineda-Bautista et al., 2011). Thus we focus on discussing the MT–
SCCALR algorithm which is also the major contribution of this study.

2.2 The diagnosis-specific feature selection model for

imaging genetics
MT–SCCALR is a heterogeneous multitask method with class-
specific feature selection which fuses the bi-multivariate (SCCA)
associations identification and classification (multiclass LR).
Suppose we are given n participants with p SNPs and q imaging QTs
from C diagnostic groups, we then use Xc 2 R

n�p to load the genetic

data, Yc 2 R
n�q to collect the imaging QT data and zl 2 R

1�C to col-

lect the diagnostic label vector of subject l. Generally, in zl, only one
element is one and others are zeros. Then we directly learn two ca-

nonical weight matrices as U ¼
u11 � � � u1C

� � � � � � � � �
up1 � � � upC

2
4

3
5 2 R

p�C, and

V ¼
v11 � � � v1C

� � � � � � � � �
vq1 � � � vqC

2
4

3
5 2 R

q�C, where uic is the weight of the ith

SNP for the cth task, and vjc is the weight of the jth imaging QT for
the cth task. Obviously, these two canonical weight matrices can
capture the local feature importance for both SNPs and imaging
QTs with respect to each class, indicating their class-specific influ-
ence. In contrast, the traditional SCCA learns a canonical weight
vector for SNPs and QTs, resulting in inability to select diagnosis-
specific features. To identify the class-specific features and account
for their interrelationships, we fuse the LR objective and the SCCA
objective, i.e.

min
U;V
LLRðVÞ þ LSCCAðU;VÞ: (1)

In this model, LLR identifies the discriminating imaging QTs by
conducting multitask classification for C tasks. After that, LSCCA

jointly learns the bi-multivariate associations between imaging QTs
and SNPs for multiple tasks. It is worth mentioning that we do not
include the logistic term between SNPs and the class label as associa-
tions between QTs and SNPs will finally encourage the identified
SNPs being discriminating. This is reasonable and will make our
model concise.

The model above encounters severe overfitting problem as gener-
ally the number of SNPs or imaging QTs is much larger than the

sample size. Therefore, the sparsity regularization technique is uti-
lized. On this account, our MT–SCCALR model becomes

min
U;V
LLRðVÞ þ LSCCAðU;VÞ þ XðUÞ þ XðVÞ: (2)

The XðUÞ is the sparsity-inducing penalty to identify those SNPs
of interest, and XðVÞ is to identify relevant imaging QTs. In this class-
specific multitask model, XðUÞ and XðVÞ are designed to incorporate
three types of regularization methods for feature selection, i.e. the
class-consistent sparsity, the class-specific sparsity in terms of select-
ing features jointly and individually for SNPs and imaging QTs.

To sum up, the multitask SCCA term captures the SNP–QT asso-
ciations. The LR term captures the QT–diagnosis relationship. The
sparsity-inducing terms help select relevant QTs and SNPs holding by
a specific diagnosis group while accounting for those shared by mul-
tiple groups. Therefore, this novel fusion model is endowed with a di-
verse feature selection, especially the interesting class-specific feature
selection. Next, we will present each term of MT–SCCALR in details.

2.3 The OVA multiclass classification via the LR
The LR is a popular classification method due to its simplicity but
efficiency. In the proposed model, we regress the class label on imag-
ing QTs by the LR objective to learn their associations. In the multi-
class setting, we train multiple binary classifiers by the multitask
modeling, i.e.

LLRðVÞ ¼
XC

c¼1

1

nc

Xnc

l¼1

½logð1þ eyl
cvc Þ � zlcy

l
cvc�; (3)

where nc is the sample size for each classification task. nc’s could be
equal without class balancing or unequal after class balancing. zlc is
the corresponding class label of the lth subject for the cth task, and
yl

c is the data vector of the lth subject for the cth task. This objective
is usually called the negative log-likelihood and is convex (Zaidi and
Webb, 2017).

2.4 The bi-multivariate association identification via the

multitask SCCA
Conventional SCCA cannot identify class-specific SNP–QT associa-
tions as it only learns a single feature subset for all classes. The
multitask SCCA (Du et al., 2019b) systematically considers the re-
latedness among multiple SCCA tasks and thus can be applied to
handle class-specific SNP–QT associations identification. Denoting
data matrices with respect to the cth SCCA task as Xc and Yc, the
multitask SCCA is defined as

min
uc ;vc

XC

c¼1

� u>c X>c Ycvc

s:t: kXcuck2
2 ¼ 1; kYcvck2

2 ¼ 1; 8c:
(4)

According to (Du et al., 2019b), this equation can be equivalent-
ly rewritten as

min
uc ;vc

XC

c¼1

kXcuc �Ycvck2
2

s:t: kXcuck2
2 ¼ 1; kYcvck2

2 ¼ 1; 8c:
(5)

based on 8c; kXcuck2
2 ¼ 1 and kYcvck2

2 ¼ 1.
This objective jointly learns bi-multivariate associations and

thus, in general, outperforms conventional SCCAs (Du et al.,
2019b). It is worth noting that in this model, Xc and Yc correspond
to the whole population but not only subjects in the cth class. For
example, suppose the cth task is MCI versus non-MCI as shown in
Figure 1, Xc and Yc contain all subjects other than only MCI sub-
jects. On the contrary, in JSCCA model, both Xc and Yc come from
only the MCI group (Fang et al., 2016). As we analyzed earlier, fea-
tures identified by our model possess stronger discriminating ability
than that of JSCCA whose might be out of interest.

HC

AD

MCI
HC vs. non-HC

MCI vs. non-MCI

AD vs. non-AD

HC-specific

MCI-specific

AD-specific

SNP-QT associations

Multi-task SCCALR 
Learning with 

Feature Selection

Class binarization
& class balancing

Fig. 1. Framework of diagnosis-specific imaging genetic pattern identification with

three diagnostic groups: HC, MCI and AD. There certainly can be more than three

diagnostic groups
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2.4.1 Regularization for imaging QTs via class-consistent and

class-specific sparsity

The brain disorder such as AD usually exhibits the heterogeneity for
multiple diagnostic groups (Lam et al., 2013; Wang et al., 2015).
This diversity and complexity raise three critical questions. First, an
imaging QT could present similar degenerative pattern among all
diagnostic groups, because that both dementia brain and normal
ageing brain suffer from functional and structural degeneration.
Second, more commonly, an imaging QT probably exhibits diverse
and different degenerative patterns across multiple diagnostic
groups. The hippocampal-sparing AD patients show similar atrophy
to normal aging in hippocampus (Murray and Dickson, 2008),
while typical AD patients suffer from pronouncedly severer hippo-
campus atrophy compared to normal ageing subjects. The last but
not the least, the network or graph structure has been clearly
observed by autopsy or noninvasive imaging techniques (Bullmore
and Sporns, 2009). Thus, a damage to the network structure might
be a sign of dementia. On the contrary, this implies that an intact
network might only exist in normal ageing subjects but not AD
patients.

Therefore, to consider the complexity of brain disorders, we
defined XðVÞ as follows

XðVÞ ¼ kv1kVk2;1 þ kv2kVk1;1 þ kv3

XC

c¼1

kvckGGL; (6)

where kv1; kv2 and kv3 are nonnegative parameters and can be
obtained by cross-validation or holdout.

The first term is the ‘2;1-norm which is defined as follows

kVk2;1 ¼
Xq

j¼1

kvjk2 ¼
Xq

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XC

c¼1

v2
jc

vuut : (7)

This penalty encourages the task-consistent sparsity, indicating
that elements of vector vjðj ¼ 1; . . . ; qÞ will be zeros or nonzeros sim-
ultaneously. As a result, an imaging QT presenting similar degenera-
tive pattern for all groups will be selected or discarded jointly. Using
this penalty is more practical since by finding out QTs shared among
multiple diagnostic groups, the identified class-specific QTs could be
more helpful.

The second regularizer is the ‘1;1-norm (‘1-norm for matrices)
which is defined as

kVk1;1 ¼
Xq

j¼1

kvjk1 ¼
Xq

j¼1

XC

c¼1

jvjcj (8)

This ‘1;1-norm penalty first prompts the individual sparsity for
an imaging QT across all classes, and then prompts the sparsity for
all imaging QTs. This is important and meaningful as it cannot only
select relevant imaging QTs, but also determinate whether an imag-
ing QT is relevant for a specific class. Similar to ‘1-norm, although
‘1;1-norm is nonsmooth, it is convex and thus is easy to optimize.

The third term is the graph-guided pairwise group Lasso (GGL)
(Du et al., 2017, 2020) whose definition is

kvckGGL ¼
X
ðj;kÞ2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

jc þ v2
kc

q
; (9)

where E is the edge set of the graph in which those highly correlated
nodes are connected. Given the network structure of the brain
(knowledge-guided), or considering the brain as a completed graph
(data-driven), this penalty captures the high-level structure informa-
tion among imaging QTs. As shown in Du et al. (2017, 2020), it
holds the capability to assign similar weights for highly correlated
imaging QTs, and thus can help identify the network structure.
Moreover, using this penalty within each diagnostic group, we could
capture the network holding by a specific group alone. Finally, the
GGL penalty is convex, indicating that it can be easily solved.

In summary, combining these three regularizers together can
well address three questions raised at the beginning of this

subsection. On this account, plugging XðVÞ into MT–SCCALR will
make it a more reasonable model, and thus yield class-consistent
and class-specific feature subsets of interest.

2.4.2 Regularization for SNPs via class-consistent and

class-specific sparsity

Once those relevant imaging QTs, including both class-consistent
and class-specific ones, are correctly identified, they could guide us
to identify those class-consistent and class-specific SNPs as well. It is
well known that SNPs usually affect the brain structure and function
at both group level [linkage disequilibrium (LD) structure (Reich
et al., 2001)] and individual level. In particular, at the individual
level, a SNP could affect normal ageing brain and dementia brain at
the same time, while another SNP might only influence the dementia
one. This requires both class-consistent and class-specific feature se-
lection for an individual SNP. In addition, at the group level, SNPs
within the same LD or gene might jointly affect the brain structure
and function (Wang et al., 2012b). An important thing is that, the
genetic variation might happen to patients but not HCs, resulting in
that an LD structure could only exist in healthy subjects. For this
reason, we define the XðUÞ as

XðUÞ ¼ ku1kUk2;1 þ ku2kUk1;1 þ ku3

XC

c¼1

kuckFGL; (10)

with ku1; ku2 and ku3 being nonnegative tuning parameters. Both
‘2;1-norm and ‘1;1-norm are the same to that in Eqs. (7–8). They en-
courage class-consistent and class-specific feature selection for a sin-
gle SNP.

In addition, the third term in Eq. (10) is the fused pairwise group
Lasso (FGL) imposed on each uc (Du et al., 2020), i.e.

kuckFGL ¼
Xp�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

ic þ u2
ðiþ1Þc

q
; (11)

This penalty endows the model with a chain of smoothness
across all elements of uc, encouraging the selection of two adjacent
and strongly correlated variables (Du et al., 2020). This penalty
shows clearly grouping effects and thus could be used to automatic-
ally identify group structures. This plays a key role in our model as
it considers the feature selection at a higher level. In this article, we
use this penalty within each diagnostic group via the data-driven
setup with expectation to identify the group structure that only
exists in a specific group.

2.5 The optimization and convergence
Now we explicitly write both objectives and penalties with respect
to imaging phenotypes and genotypes,

min
U;V

XC

c¼1

1

nc

Xnc

l¼1

½logð1þ eyl
cvc Þ � zlcy

l
cvc� þ

XC

c¼1

kXcuc �Ycvck2
2

þkv1kVk2;1 þ kv2kVk1;1 þ kv3

XC

c¼1

kvckGGL

þku1kUk2;1 þ ku2kUk1;1 þ ku3

XC

c¼1

kuckFGL

s:t: kXcuck2
2 ¼ 1; kYcvck2

2 ¼ 1; 8c:
(12)

Mathematically, Eq. (12) is neither convex nor smooth. To han-
dle this issue, by replacing kXcuck2

2 ¼ 1 with kXcuck2
2 � 1 and

kYcvck2
2 ¼ 1 with kYcvck2

2 � 1, we analyze that Eq. (12) is convex
if we consider V as a constant, and vice versa. Fortunately, this
biconvexity has been well studied previously (Gorski et al., 2007),
based on which we can solve U and V alternatively after smoothing
those nonsmooth penalties such as XðUÞ and XðVÞ.
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2.5.1 The solution to V

First, we fix U to solve V. The Lagrangian of Eq. (12) with respect
to V can be simplified as

XC

c¼1

1

nc

Xnc

l¼1

½logð1þ eyl
cvc Þ � zlcy

l
cvc� þ

XC

c¼1

kXcuc �Ycvck2
2

þkv1kVk2;1 þ kv2kVk1;1 þ kv3

XC

c¼1

kvckGGL þ cv

XC

c¼1

kYcvck2
2

(13)

by discarding those constants.
Using the subgradient of these penalties, we can obtain the de-

rivative of Eq. (13) with respect to each vc. Letting it be zero yields
[When kvjk2 ¼ 0, we regularize the jth diagonal element of ~D1 as

1
2kvjþnk2

, where n is a very small positive value. �D1 and D1 can be
regularized similarly. It is easy to prove that when n! 0, the regu-
larized problem is equivalent to problem Eq. (13).]

@LLRðVÞ
@vc

� 2Y>c Xcuc þ 2kv1
~D1vc þ 2kv2

�D1vc þ 2kv3D1vc

þ2ðcv þ 1ÞY>c Ycvc ¼ 0;
(14)

where ~D1 is a diagonal matrix with the jth element being
1

2kvjk2
j ¼ 1; . . . ; qÞð , and �D1 is a diagonal matrix where the jth elem-

ent is 1
2kvjck2

ðj ¼ 1; . . . ;q; and c ¼ 1; . . . ;CÞ. D1 is also a diagonal

matrix with its jth element being
P

j;ðj;kÞ2E
1

2
ffiffiffiffiffiffiffiffiffiffiffi
v2

jc
þv2

kc

p ðj ¼ 1; . . . ; q; k ¼

1; . . . ;q; and c ¼ 1; . . . ;CÞ (Du et al., 2017). Obviously, ~D1; �D1

and D1 depend on the independent variable V, and thus they are un-
known. On this account, the iterative algorithm can be a solver
which first guesses an initial value of V, and then calculates these di-
agonal matrices.

Once ~D1; �D1 and D1 are available, we can solve Eq. (14) corres-
pondingly. However, we cannot find a closed-form solution due to
the nontrivial derivative of the logistic term. Thus we address this
using the Newton’s method which depends on the Hessian matrix.
Based on this, solving Eq. (14) is equivalent to solve

min
V
LLRðVÞ þ

XC

c¼1

kXcuc �Ycvck2
2 þ kv1TrðV> ~D1VÞ

þkv2TrðV> �D1VÞ þ kv3TrðV>D1VÞ þ cv

XC

c¼1

v>c Y>c Ycvc:

(15)

According to Krishnapuram et al. (2005) and Lee et al. (2006),
we first obtain the first-order derivative of the logistic objective with
respect to each vjc

@LLRðVÞ
@vjc

¼ 1

nc

Xnc

l¼1

ðPðzlc ¼ 1jyl
cÞ � zlcÞylj;c; (16)

where Pðzlc ¼ 1jyl
cÞ is the class posterior probability (Zaidi and

Webb, 2017). Here we use ylj;c denote the lth row and jth column
element of matrix Yc.

Then we can calculate the second-order derivative based on Eq.
(16),

@LLRðVÞ
@vjc@vkc

¼ 1

nc

Xnc

l¼1

ð1� Pðzlc ¼ 1jyl
cÞÞPðzlc ¼ 1jyl

cÞylj;cylk;c: (17)

After both the first-order and second-order derivatives have been
obtained, we can easily calculate the gradient (or subgradient) vector
gðvcÞ and the Hessian matrix HðvcÞ of Eq. (15) regarding vc.
Therefore, the solution to each vc can be finally attained via

vc ¼ vc �H�1ðvcÞgðvcÞ: (18)

2.5.2 The solution to U

Given V, the solution to U can be attained as well. First, we write
the Lagrangian of Eq. (12) with U being unknown variable,

XC

c¼1

kXcuc � Ycvck2
2

þku1kUk2;1 þ ku2kUk1;1 þ ku3

XC

c¼1

kuckFGL þ cukXcuck2
2

(19)

where those constants are discarded. If we treat Y ¼
½Y1v1; . . . ;Ycvc� as dependent variables and Xc’s as independent var-
iables, this equation becomes a multiregression task learning method
with class-consistent and class-specific feature selection. To solve
this multitask problem, we take its derivative with respect to uc and
set it to zero, i.e.

�X>c Ycvcþku1
~D2ucþku2

�D2ucþku3D2ucþðcuþ1ÞX>c Xcuc¼0: (20)
Similarly to solving V, ~D2 here is a diagonal matrix whose ith

element is 1
2kui˚2

i ¼ 1 � � � ; pÞð , and �D2 is a diagonal matrix with the

ith element being 1
2kuick2

ði ¼ 1; . . . ;p; and c ¼ 1; . . . ;CÞ. Finally, D2

is a diagonal matrix whose ith diagonal entry is 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
ði�1Þcþu2

ic

p þ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

ic
þu2
ðiþ1Þc

p ði ¼ 1; . . . ; p; and c ¼ 1; . . . ;CÞ [The first element of D2

is 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
u2

1c
þu2

2c

p , and the pth element is 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
ðp�1Þcþu2

pc

p . See Du et al. (2020)

for details.].
Using the iteration algorithm, we can obtain the closed-form

equation regarding each uc, i.e.

uc ¼ ðku1
~D2 þ ku2

�D2 þ ku3D2 þ ðcu þ 1ÞX>c XcÞ�1X>c Ycvc: (21)

Now we have the building blocks for optimizing Eq. (12). The
final solution can be attained via iteratively and alternatively opti-
mizing V and U. The pseudocode is presented in Algorithm 1 which
is guaranteed to converge to a local optimum. In this algorithm,
Steps 1 and 5 are easily and very fast to calculate. Step 3 involves
computing the Hessian matrix which can be obtained efficiently
based on (Lin et al., 2007). At last, Steps 4 and 6 can be attained by
efficiently solving a system of linear equations (Wang et al.,
2012a,b).

2.5.3 Convergence analysis

We have the following theorem for the MT–SCCALR Algorithm.

THEOREM 1. The Algorithm 1 decreases the objective in each iteration.

Algorithm 1 The MT-SCCALR algorithm

Require:

The genotype data X 2 R
n�p and imaging phenotype data

Y 2 R
n�q of C diagnostic groups. The pre-tuned

kv1; kv2; kv3, cv, ku1; ku2; ku3, and cu.

Ensure:

Canonical weights V and U.

1: Class binarization and class balancing, initialize U 2 R
p�C

and V 2 R
q�C;

2: while not convergence do

3: Calculate the first-order and second-order derivatives of

Eq. (15);

4: Solve vc according to Eq. (18), and scale vc so that

kYcvck2
2 ¼ 1;

5: Update ~D2; �D2 and D2;

6: Solve uc according to Eq. (21), and scale uc as that

kXcuck2
2 ¼ 1;

7: end while

8: Sorting each uc and vc in descending order based on their

absolute value respectively.

Identifying diagnosis-specific genotype–phenotype associations via MT–SCCALR i375



The proof is contained in Supplementary Material due to space limitation.

We have known that MT–SCCALR is biconvex, and obviously, Eq. (12)

has the lower bound of zero, hence a local optimum can be attained finally

by running Algorithm 1. To ensure efficiency, we stop our algorithm

when both maximaxcjÛ �Uj � � and maxjmaxcjV̂ � Vj � � hold. In

addition, we empirically set the tolerance error � ¼ 10�5 in this article for

all experiments, and certainly, � can be obtained based on experiments.

3 Experimental results and discussions

3.1 Experimental design
We compared our method with two most related SCCA method, i.e.
the discriminate SCCA (DSCCA) (Yan et al., 2017) and the JSCCA
(Fang et al., 2016), which directly identify imaging QTs and SNPs
with discriminating ability. DSCCA extended the traditional SCCA
by the locality preserving projection penalty. Its identified imaging
QTs and proteomic markers can successfully discriminate between
every two diagnostic groups such as HC versus AD. JSCCA was a
type of mSCCA (Witten and Tibshirani, 2009) which learns the as-
sociation between QTs and SNPs within the same diagnostic group.
Therefore, using DSCCA and JSCCA as benchmarks, our approach
was compared with the state-of-the-art discriminating SCCA
method, assuring a practical and meaningful performance evalu-
ation. Of note, our primary aim in this study was to identify mean-
ingful diagnosis-specific features other than just classification. Thus
we did not compare to methods which use one versus one classifica-
tion or a nonobvious modeling strategy (Wang et al., 2015).

To find out suitable parameters, we used the fivefold cross-
validation strategy to fine-tune them. Generally, we set parameters
to those which generate the highest testing canonical correlation
coefficients (CCC) and classification accuracy. There were in total
eight parameters in the original model which was time intensive. To
alleviate this issue for both MT–SCCALR and benchmarks, we fixed
cv ¼ 1 and cu ¼ 1 because that they mainly affect the amplitude of
U and V (Chen and Liu, 2012). In addition, we also used several
heuristic rules to further reduce the time effort. Specifically, if we
prefer the class-specific feature selection as in this study, we could
use large parameters for ‘1;1-norm, FGL-norm and GGL-norm. On
the contrary, we might sometimes desire for the class-consistent fea-
ture selection, and then we could set large parameters for the ‘2;1-
norm. This could yield reasonable results as only focusing on the
CCC might lead to undesirable features. Besides, we used a two-
stage tuning procedure which first tuned parameters from 10i

(i ¼ �2;�1;0; 1; 2) with a large interval, and then further tuned
them from a relative smaller interval C6½0:1;0:2; . . . ; . . . ;1�, where
C was the optimal parameters obtained from the first stage. Usually,
this two-stage parameter tuning could yield better performance,
compared to blindly grid search, for both correlation coefficients
and feature selection. In experiments, we only tuned parameters in
the first loop where the first fold was used for testing and the
remaining folds were used for training, and these tuned parameters
were used for all experiments to generate final results. According to
experiments, this setup will not affect the performance significantly
and could reduce the time consumption significantly. All methods
used the same experimental setup to assure a fair comparison.

3.2 Simulation study
We generated four simulation datasets based on different ground
truths to make a thorough comparison. We assumed three groups of
imaging data Y and genotype data X. The first two datasets
(n¼100, p¼120 and q¼150) contained the same true signal but
different noise levels. The third dataset (n¼100, p¼120 and
q¼150) mainly simulated a task-specific situation while the fourth
one (n¼200, p¼400 and q¼300) primarily simulated a task-
consistent situation. Specifically, in the fourth dataset, there was a
successive relationship among classes to simulate the relationship
between HC and MCI, and that between MCI and AD. All four
datasets are generated as follows. First, we created two sparse

matrices U 2 Rp�C and V 2 Rq�C. Within both U and V, there are
features shared by all tasks and specifically hold by a single task. We
then generated a latent vector z 2 Rn�1, based on which we gener-
ated three pairs of Xc � Nðziuc; Ip�pÞ and Yc � Nðzivc; Iq�qÞ to form
three diagnostic groups. We showed the ground truth in Figure 2
(top row).

As we mainly focus on the identified class-specific features, in
Figure 2, we first showed the heatmaps of canonical weights which
indicate the importance of features. DSCCA identified one canonical
weight vector for all classes, and then we stacked it for C times to
make its heatmap available. JSCCA generated one canonical weight
vector for u and C canonical weight vectors for V, and thus we only
stacked u for C times. In this figure, the features identified by MT–
SCCALR were consistent to the ground truth, while DSCCA cannot.
JSCCA performed slightly better than DSCCA, and they both had
little capability in identifying class-specific features. From Data 4,
we observed that if there were no class-specific features, all three
methods could find out these class-consistent features. These results
demonstrated that MT–SCCALR had more diverse feature selection
ability than DSCCA and JSCCA. In Figure 3, we showed the testing
CCCs and testing classification accuracies which were obtained by
SVM based on LIBSVM (https://www.csie.ntu.edu.tw/�cjlin/libsvm/
) software package. The CCCs and classification performance
showed no significant difference between MT–SCCALR and
DSCCA, and they both performed better than JSCCA, especially on
the CCCs. This demonstrated that MT–SCCALR had similar CCCs
and classification performance to benchmarks, but identified much
better class-specific features while those benchmarks cannot.

3.3 Real neuroimaging genetic study
The real brain imaging and genotyping data were obtained from the
ADNI (adni.loni.usc.edu) database. The primary goal of the initia-
tive is to test whether serial magnetic resonance imaging (MRI), or
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of MCI
and early AD. For up-to-date information, see www.adni-info.org.

There are 755 non-Hispanic Caucasian participants, including
182 HC, 292 MCI and 281 AD, whose baseline 18-Fr florbetapir
PET scans were collected. We used the pipeline to preprocess these
PET scans such as average, alignment, resample, smoothness and
normalization to obtain the standardized uptake value ratio (SUVR)
images (Jagust et al., 2010). To reduce the time consumption and
boost the statistical power, we extracted the region of interest level
amyloid measurements instead of the voxel level measurements. We
finally generated 116 mean amyloid measurements spanning the
whole brain according to the MarsBaR AAL atlas (Tzourio-
Mazoyer et al., 2002), and used them as imaging QTs. Moreover,
these imaging QTs were preadjusted to remove the effects of the
baseline age, gender, handedness and years of education (Table 1).

The genotyping data were genotyped by the Human 610-Quad
or OmniExpress Array platform (Illumina, Inc., San Diego, CA,
USA), and preprocessed following standard quality control and im-
putation procedures. There were 1692 SNPs included which were
collected from the neighbor of AD risk gene APOE according to the
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Fig. 2. Canonical weights on synthetic data. Row 1–4: Ground truth, DSCCA,

JSCCA and MT–SCCALR respectively. For each data, canonical weights U is shown

on the left, and V is shown on the right. In each panel, there are three rows (each

row contains fivefold canonical weights) corresponding to three tasks
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ANNOVAR annotation. In this study, we intend to study bi-
multivariate associations between regional imaging amyloid deposi-
tions and SNPs, and with focus on identifying diagnosis-specific
amyloid depositions and SNPs, as well as their interactions.

3.3.1 Identification and interpretation of imaging QTs

We applied all three methods to this real neuroimaging genetic data.
The selected imaging QTs are highlighted in Figure 4, in which there
are three columns for both MT–SCCALR and JSCCA. We stacked
the canonical weight vector of DSCCA for three times. We observed
that DSCCA did not hold the diagnosis-specific feature selection
capability due to the nature of its modeling method. JSCCA identi-
fied multiple weights corresponding to multiple diagnostic groups,
showing a somewhat diverse feature selection. Our method per-
formed the best among three methods as we could observe a much
clear diagnosis-specific feature selection profiles. Besides, MT-
SCCALR showed a clearly group feature selection patterns due to
the structure identification penalties such as FGL and GGL.

We further investigated the meaning of the selected imaging
QTs. MT–SCCALR identified three canonical weight vectors in ac-
cordance to three diagnostic groups, i.e. HC, MCI and AD. Most of
the HC-specific signals were from the frontal areas, indicating that a
subject’s health condition could be determined based on the amyloid
burden of these areas. Besides, the cingulum and the precuneus were
also highlighted by MT–SCCALR. Interestingly, most of the AD-
specific signals were from the frontal area too but with oppositive
signs, which matches our intuition. It is obvious that oppositive
weights of these areas for HCs and ADs tell us that there are an
oppositive amyloid deposition pattern for these two groups. In con-
trast, both DSCCA and JSCCA cannot draw this in-depth conclu-
sion. For MCI-specific imaging QTs, our method reported signals
from the bilateral calcarine, lingual, fusiform and temporal. It seems
strange as the frontal areas were not identified, but the truth is not.
In general, MCIs have intermediate amyloid burden and thus using
the deposition measurement from the frontal might not discriminate
MCI subjects from those non-MCI subjects. Moreover, these brain
areas had been shown to be related to MCI (Pan et al., 2017), con-
firming the detection power of our method. Of note, both DSCCA
and JSCCA could not identify heterogeneous imaging QTs. The
results together demonstrated that the diagnosis-specific feature se-
lection is of great interest and meaning.

3.3.2 Identification and interpretation of SNPs

We presented the identified SNPs in Figure 5. In this figure, both
DSCCA and JSCCA only identified one canonical weight vector for
all tasks, and we stacked them for three times. We observed that all
three methods identified rs429358 (APOE), i.e. the well-known

AD-risk loci. Taking the top five selected SNPs as examples,
DSCCA identified two additional AD associated locus rs7412
(APOE) (Yi et al., 2014) and rs10119 (TOMM40), with further in-
vestigation being warranted for rs4803792 and rs203711. JSCCA
also identified SNPs from AD-associated genes such as APOC1
(rs7247707, rs10414043 and rs7256200) and APOE (rs1081105),
indicating its better identification than DSCCA. MT-SCCALR
exhibited distinct patterns as it assigned different weight values (im-
portance) for each SNP for different groups. At first glance, the
SNPs for HC, MCI and AD were similar. However, similar to that
for imaging QTs, our method yielded oppositive feature signs for
HC versus non-HC, and AD versus non-AD tasks. This is interesting
as it reveals that HCs and ADs hold different genotypes which pro-
vide us a more in-depth clue. Compared to benchmarks which only
tell us that a SNP is relevant or irrelevant, our method not only
reveals whether a SNP is relevant, but also implies the directionality
of the genetic effect. One may argue that we can swap both signs for
imaging QTs and SNPs simultaneously, but the directionality of the
imaging genetic correlation stays the same. Therefore, based on the
heterogeneous multitasking, our method could successfully identify
a diverse diagnosis-specific SNPs. These results suggest that MT-
SCCALR is quite promising and might possess enhanced feature se-
lection ability in imaging genetics.

3.3.3 Bi-multivariate association and classification

Finally, the testing CCC and classification accuracy are shown in
Figure 6, in which a higher value indicated a stronger association or
more accurate prediction. It is clear that DSCCA estimated the high-
est CCCs as it used all sample size to yield the CCC. Our method
obtained better CCCs than JSCCA due to the OAA class binariza-
tion. Using the top ten selected features, including both imaging
QTs and SNPs, of each method, we used LIBSVM (https://www.
csie.ntu.edu.tw/�cjlin/libsvm/) software package to implement SVM
using the linear kernel with default setting. The classification results
showed that all three methods performed similarly, implying that it
is difficult to separate this real imaging genetic data (Wang et al.,
2012a). On the contrary, this confirms the necessity and meaning of
the diagnosis-specific feature selection, which could be helpful to
subgroups identification. As a result, following the multitask model-
ing, MT–SCCALR showed a promising performance in multiclass
imaging genetics.

Table 1. Participant characteristics

HC MCI AD

Number 182 292 281

Gender (M/F, %) 48.90/51.10 48.63/51.37 53.38/46.62

Handedness (R/L, %) 89.56/10.44 88.70/11.30 90.39/9.61

Age (mean6SD) 73.9365.51 70.9066.84 72.6168.15

Education (mean6SD) 16.4362.68 16.1862.68 15.9562.82
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Fig. 3. Comparison of the mean CCCs and classification accuracy obtained from

fivefold testing trials on synthetic data
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4 Conclusion

Identifying diagnosis-specific genetic markers and brain imaging
measurements is an important task in precision medicine. AD is a se-
vere neurodegenerative disorder presenting significant heterogeneity
and diversity (Lam et al., 2013; Wang et al., 2015). Most existing
bi-multivariate learning methods were unsupervised. Although a
few studies made progress on supervised bi-multivariate learning,
they could not identify diagnosis-specific biomarkers. We formally
defined the framework of diagnosis-specific feature selection for
imaging genetics, and proposed a computational method to identify
diagnosis-specific, as well as diagnosis-consistent, feature subsets.
Different to existing supervised SCCA, MT–SCCALR learned ca-
nonical weight matrices with each column corresponding to a diag-
nostic group. Using fused LR and SCCA, as well as the
regularization, our model could identify meaningful and distinct
imaging QTs and SNPs for each group. The algorithm was proved
to converge to a local optimum.

Experiments on both synthetic data and real neuroimaging genetic
data were conducted. Compared with two state-of-the-art methods
[DSCCA (Yan et al., 2017) and JSCCA (Fang et al., 2016)], MT–
SCCALR obtained similar correlation coefficients and classification
accuracies to DSCCA and JSCCA. But it outperformed both bench-
marks on revealing canonical weights on both synthetic and real data.
In particular, our method successfully identified diagnosis-specific
features including QTs and SNPs, while those benchmarks cannot.
We also demonstrated that within each diagnostic group, the identi-
fied imaging QTs and SNPs were inconsistent, indicating that differ-
ent diagnostic groups could carry different feature subsets. This is
more reasonable and practical than existing methods as mounting evi-
dences suggest that the sporadic AD might not be a single disease (Au
et al., 2015). These results reveal that MT-SCCALR gains a promis-
ing success in diverse feature selection for multiple diagnostic groups
in imaging genetics as well as multiple omics analysis. However, as
the calculation of Hessian matrix and gradient of GGL penalty is
time-intensive, we suggest using brain region-based imaging measure-
ments other than voxel-based ones. An interesting future direction
could be to make our method able to stratify different AD patients in-
stead of only identifying diagnosis-specific features.
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