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Brain tumors are one of the most deadly diseases with a high mortality rate. The shape and size of the tumor are random during the
growth process. Brain tumor segmentation is a brain tumor assisted diagnosis technology that separates different brain tumor
structures such as edema and active and tumor necrosis tissues from normal brain tissue. Magnetic resonance imaging (MRI)
technology has the advantages of no radiation impact on the human body, good imaging effect on structural tissues, and an
ability to realize tomographic imaging of any orientation. Therefore, doctors often use MRI brain tumor images to analyze and
process brain tumors. In these images, the tumor structure is only characterized by grayscale changes, and the developed images
obtained by different equipment and different conditions may also be different. This makes it difficult for traditional image
segmentation methods to deal well with the segmentation of brain tumor images. Considering that the traditional single-mode
MRI brain tumor images contain incomplete brain tumor information, it is difficult to segment the single-mode brain tumor
images to meet clinical needs. In this paper, a sparse subspace clustering (SSC) algorithm is introduced to process the diagnosis
of multimodal MRI brain tumor images. In the absence of added noise, the proposed algorithm has better advantages than
traditional methods. Compared with the top 15 in the Brats 2015 competition, the accuracy is not much different, being
basically stable between 10 and 15. In order to verify the noise resistance of the proposed algorithm, this paper adds 5%, 10%,
15%, and 20% Gaussian noise to the test image. Experimental results show that the proposed algorithm has better noise
immunity than a comparable algorithm.

1. Introduction

Tumor is one of the common malignant diseases that endan-
ger human health. According to origin, tumors are generally
divided into primary and secondary. Compared with breast,
lung, and esophageal tumors, the incidence of brain tumors
is relatively low. Compared with the overall incidence of
human tumors, it accounts for about 1.4%; however, the
mortality rate reaches 2.4% of human tumors [1]. Glioma is
the most common primary brain tumor in adults. It is mainly
distributed in glial cells and the tissues it infiltrates, and it is
the most common malignant brain tumor. According to the
nature of tumors, gliomas are generally divided into benign
and malignant. Benign gliomas generally grow relatively
slowly, patients have a longer survival period, and the long
course of disease is the main manifestation of benign gliomas.

Malignant gliomas generally grow faster, and the short
course is a prominent manifestation of malignant gliomas.
If the intracranial lesions can be detected as soon as possible,
and the corresponding treatments can be implemented, the
health hazards of brain tumors to humans can be reduced.
CT or MRI imaging to analyze the pathological state of brain
tissue is currently the mainstream method for examining
brain tumors. Different imaging techniques have different
advantages for tumor diagnosis. Compared with CT imaging,
MRI uses a noninvasive imaging method, which can provide
the observer with high-quality images without damage and
skull artifacts, with clear anatomical structure, and with very
good soft tissue resolution. At the same time, intracranial
images in any direction can be obtained by adjusting the
relevant parameters. In addition, using different imaging
sequences, MRI of different angles or modalities of the same
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tissue can be obtained. This type of image is generally
referred to as a multimodal MRI image.

The effective diagnosis of brain tumors requires the
successful segmentation of tumors in brain images. Based
on the results of the segmentation, the doctor can determine
the shape, size, and specific location of the tumor. According
to the segmentation results of the tumor in the image, a
corresponding treatment plan is given. Due to the increase
in the number of patients with brain diseases and the
development of intelligent diagnostic technology, the
research work based on brain tumors continues to increase.
The International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI) began in
2012 and has organized competitions based on multimodal
brain tumor segmentation for four consecutive years, greatly
promoting the development of brain tumor segmentation
technology. It is of great research value and practical signifi-
cance to improve the diagnosis efficiency by mining potential
pathological information of MRI brain tumor images
through image processing technology and machine learning
methods. However, the tumor is only characterized by
gray-scale information on the MRI image, and the edge of
the tumor structure and the normal tissue have significant
gray-scale similarity. Simultaneously, the size, location,
shape, and corresponding expansion of the tumor in the
brain tissue will show different states with different patients.
These characteristics pose challenges to the development of
tumor segmentation technology.

The so-called brain tumor segmentation refers to the
process of segmenting various tumor tissues from a variety
of conventional brain tissues. In general, the segmentation
methods of brain tumor images can be summarized into
three categories [2]: purely artificial, semiautomatic, and fully
automatic segmentation. Manual segmentation refers to
manually drawing the outline of the target tissue. Figure 1
is a schematic diagram of manual segmentation. Manual seg-
mentation is boring and time consuming, so it cannot meet
the growing demand for segmentation. In addition, each
segmenter has a different segmentation style, which leads to
deviations in segmentation results. Although manual
segmentation has many disadvantages, manual segmentation
has the highest segmentation accuracy so far, and is often
used as the ground truth for automatic segmentation. Semi-
automatic segmentation is sensitive to initialization. Users
need to input certain initialization data to get the final
segmentation result. Fully automatic segmentation does not
need to set any parameters manually and can automatically
locate and segment the tumor area.

There is still a lack of a general method that can process
all brain tumor images and obtain satisfactory results cur-
rently. Usually, the segmentation method is aimed at specific
image data. Reviewing related literature, tumor image
segmentation methods can be summarized as follows:

(1) Threshold based method. The practicability and
segmentation effect of this method are very good.
The histogram in the global threshold can be
expressed as a bimodal model, and a single thresh-
old can be used to distinguish tumor from back-

ground. Reference [3] proposes an unsupervised
method to enhance pixel grayscale and utilize it
to segment brain tumors in T1c images. If there
are multiple types of regions in the image, a multi-
threshold strategy needs to be added to the seg-
mentation method, called local threshold. For the
local mean, it can be obtained by estimating the
local statistical characteristics, such as gray average
[4] and data Gaussian distribution [5]. Generally,
the threshold-based method cannot use all the
information of the MRI image, and the segmenta-
tion result is relatively rough. Therefore, the
threshold-based method in brain tumor segmenta-
tion is first applied

(2) Area-based approach. Through predefined similarity
criteria, in the way of merging neighboring pixels in
the intersecting areas, the target MRI brain image is
divided into the required subareas. Reference [6]
applied region growth to MRI tumor segmentation
image segmentation with good results. Reference [7]
proposed an improved method of region growth. This
method obtains a more exact boundary message by
reducing the volume effect. The leak gap that may be
generated after the division is also filled to a certain
extent. As a morphological method, watershed
segmentation represents the target contour edge as a
partial watershed, which is widely used in brain tumor
segmentation. References [8, 9] proposed a multiscale
watershed transformation method. Reference [10]
constructed an artificially assisted segmentation
method by the hierarchical watershed method. From
the principle of the watershed segmentation method,
this kind of image edge and region watershed conver-
sion easily produces oversegmentation. In order to
solve this problem, some related processing methods
have been excavated one after another

(3) Pixel classification method. The collected MRI brain
tumor data generally has two formats, namely, 2D
slices and 3D volume. If it is a brain tumor segmenta-
tion based on slice format, its essence is the same as
traditional image segmentation. The pixel-based
method mainly uses the pixel characteristics of the
image, and uses some related classifiers to classify

Figure 1: Tumor labels manually segmented on T1c and T2 modal
images.
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all the pixels in the brain tissue image, so as to achieve
the effect of segmentation. Unsupervised classifica-
tion is mainly represented by clustering [11, 12].
The core idea is to measure the relationship between
tumor tissue and other tissues in the tumor image.
The supervised classifier [13, 14] mainly uses those
labeled training samples to train the relevant param-
eters in the model, which has reached the optimal
tumor segmentation effect [15].

(4) Model-based method. Model-based tumor segmenta-
tion methods are mainly 3D-oriented volume data,
followed by 2D slice data. The most typical are the
active contour model [16] and the level set method
[17]. On the basis of these two models, tumor segmen-
tation has formed two schools: the segmentation
methods based on the generative algorithm and the
discriminant algorithm. The generation algorithm
uses the unique information of various organizations
to predict the information of brain tissue that cannot
be captured in the image [18–20]. In some generative
models, in order to solve the problem of difficult
coding of a priori knowledge of tumors, the diseased
tissue of the tumor can be modeled as the desired
shape [21–23], or it can be inferred using the given
patient image and the tumor growth model’s possible
location of the tumor structure [24]. Discriminant
methods generally require a certain size of training
samples [25–27]. After many trainings, the processing
effect of the discriminant model is more robust to the
effects of MRI image artifacts and grayscale informa-
tion. Figure 2 shows the basic flow of model-based
tumor segmentation. For effective training, the first step
of this type of method is generally to extract local gray-
scale differences [28] or gray-scale distribution and
other voxel-wise features [29], and then send these
features to the discriminant classifier of the model. In
order to combine the advantages of discriminant
models and generative models, a method called genera-
tive discriminant model [30, 31] was proposed

In this paper, the BRATS 2015 competition database is
used as the experimental object, and the traditional segmenta-
tion method and the sparse subspace clustering method based
on sparse representation are used to segment the brain tumor
images. The main innovations of this article are as follows:

(1) Introduce the sparse subspace clustering algorithm to
achieve brain tumor image segmentation. The advan-
tage of this algorithm is to use low-dimensional data to
recover and approximate high-dimensional data,
effectively reducing the dimension of high-
dimensional data while retaining the correlation
between the data. The introduction of this algorithm
can solve the problem of excessive data dimension

(2) This article focuses on the segmentation of MRI
brain tumor images under multimodality. In the
single-modality image fusion strategy, a simple
and fast linear fusion strategy is selected. Before

segmenting multimodal images, the image is pre-
processed by superpixel segmentation, feature
vectors are extracted, and the data dimension is
reduced. Experimental results show that for brain
tumor segmentation, multimodal brain tumor infor-
mation can be used as much as possible to obtain
more accurate segmentation results

2. Related Information

2.1. Multimodal MRI Brain Tumor Image Introduction.
Multimodal MRI images are images of the same tissue
under different contrasts obtained through different MR
development sequences. When tumors and other lesions
occur in brain tissue, water molecules existing in free form
in brain tumors begin to undergo lesion reactions, such as
tissue edema. In Flair and T2 images, the water molecules
in the bound state are displayed in the form of high signals.
Therefore, it is theoretically feasible to use Flair modal MRI
images as the main basis for segmenting the entire tumor.
However, due to some special circumstances, the tumor will
also show irregular changes in the Flair image. At this time,
the image data of the T2 mode can provide additional refer-
ence. Figure 3 depicts three different sets of Flair and T2
images. Among them is (1) the Flair image, (2) the T2 image,
and (3) the artificially labeled tumor structure image. The
data used in this paper are all from the BRATS 2015 [32]
database, and the database includes images in four modes:
T1, T1c, T2, and Flair.

2.2. Difficulties in MRI Brain Tumor Image Segmentation.
There are many difficulties in the segmentation of MRI brain
tumor images. These difficulties can be summarized as
follows:

(1) The most typical problem of MRI comes from the
different nonstandard intensity ranges obtained by

MRI image
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Tumor
segmentation
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Figure 2: Flow of the brain tumor segmentation method based on
the discriminant model.
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different scanners. Because of different magnetic field
strengths and acquisition protocols, for the same
patient, the brain MRI strength values are also differ-
ent between hospitals

(2) The brain tumor itself has no fixed shape or prior
knowledge. Brain pathology can appear anywhere in
the brain and can have any shape. In addition, the
gray value range of this pathology may overlap with
the gray value range of healthy tissues, making
segmentation of brain tumors more complicated

(3) MRI has nonnegligible white Rician noise during the
acquisition process [33]

(4) Uniform organization is often affected by changes in
the spatial intensity of each dimension. This is caused
by the bias field effect. The MRI bias affects the
smoothed low-frequency signal of the image inten-

sity. This problem requires an offset field correction
preprocessing step, which usually increases the inten-
sity value around the brain

(5) Large tumors or lesions in the brain may distort the
overall structure of the brain, making some proce-
dures impossible to perform. For example, a larger
tumor may affect the overall symmetry of the brain,
making it impossible to calculate the left-right sym-
metry feature. In addition, brains with large tumors
are difficult to register with healthy brain templates

3. Brain Tumor Image Segmentation Based on
Sparse Subspace Clustering Algorithm

Sparse representations are widely used in image segmenta-
tion algorithms. Sparse representations can effectively reduce
the complexity of data operations and bring convenience

(a)

(b) (c)

Figure 3: Flair and T2 images and corresponding tumor labels.

(a) (b)

Figure 4: SLIC super pixel segmentation. (a) Original image. (b) SLIC superpixel segmentation image.
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to the subsequent processing of data. SSC is a clustering
algorithm based on sparse representation and subspace
clustering [34]. Before segmentation, the target image
needs to be preprocessed.

3.1. Image Preprocessing. Before SSC splits an image, the
image needs to be split into superpixels. Superpixels are irreg-
ular image blocks composed of a series of adjacent pixels with
similar characteristics, such as texture, color, and brightness.
It replaces a large number of pixels with a few superpixels,
which effectively reduces the amount of data that expresses
the features of the picture, thereby reducing the complexity
of image postprocessing. Superpixel segmentation algo-
rithms are currently divided into two types, one is based on
graph theory, and the other is based on gradient descent,
such as Simple Linear Iterative Clustering (SLIC) [35]. The
segmentation method based on gradient descent belongs to
an iterative segmentation method. First, an initial clustering
is given, and then the gradient clustering method is used to
modify the result of the previous clustering, and iterate
continuously until the convergence condition is satisfied.
The superpixel rendering using SLIC segmentation is shown
in Figure 4.

3.2. Basic Model. The algorithm is to assume that the data is
composed of high-dimensional spatial data, and each data
can be represented in a low-dimensional subspace. That is,
by letting the data in the high-dimensional space be
expressed linearly with the data in the low-dimensional
subspace, the low-dimensional subspace to which the data
belongs can be clearly known, which is beneficial to the clus-
tering operation. The basic framework of sparse subspace
clustering is shown in Figure 5.

The SSC model building process is as follows.
Given a set of datasets X = fx1, x2, x3,⋯, xng, the dimen-

sion is D, located in n linear subspaces fSig, i = 1, 2⋯ , n.
The dimensions of the linear subspace are fdig, i = 1, 2⋯ ,
n. Then define the matrix

X = x1, x2, x3,⋯, xnf g = X1, X2,⋯, Xn½ � ×Ζ, ð1Þ

where Xi ∈ RD×Ni is a matrix of rank di composed of the ith
subspace data. Z is the permutation matrix. Subspace cluster-
ing is essentially to obtain the Xi ∈ RD×Ni matrix.

Subspace representation means that every data in matrix
X can be linearly represented by data in the same subspace
except for itself:

xi = Xai, aii = 0, ð2Þ

where ai = ½ai1, ai2,⋯, ain�T . Formula (1) can be written in
matrix form as follows:

X = XA, Aii = 0, ð3Þ

where A = ½a1, a2,⋯, an� ∈ RN∗N is a sparse matrix. In
order to make the sparse matrix A the most sparse, that

is, the nonzero values in matrix A are minimized, by obtain-
ing the l0 − norm to minimize, we use convex optimization
to perform the following process:

min   Ak k0
s:t: X = XA, Aii = 0:

ð4Þ

However, the solution of the l0 − norm is an NP-Hard
problem in practical problems. Usually the l1 − norm is used
to replace the l0 − norm to solve, so as to convert the
subspace representation model to

min   Ak k1
s:t: X = XA, Aii = 0:

ð5Þ

3.3. Brain Tumor Image Segmentation Based on Sparse
Subspace Clustering. Image segmentation is the process of
segmenting images into nonoverlapping regions and

Subspace representation
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Figure 5: The basic framework of sparse subspace clustering.

Sparse coefficient
matrix

Similarity
matrix

Data clustering
results

Feature matrix

Segmentation result

Superpixel block

Image

Subspace
representation

Figure 6: Image segmentation framework based on sparse subspace
clustering.
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extracting ROI from them, while sparse subspace cluster-
ing is a process used to cluster data of the same class into
the same subspace. An image contains multiple target
images with a complex texture structure, but the features
on the image are composed of multiple low-dimensional
subspace data. Therefore, the sparse subspace clustering
algorithm can be used to segment the image. First, divide
the image to be divided into multiple superpixel blocks,
and divide the superpixel blocks of the same target image
into the same subspace, so as to achieve the purpose of
extracting the target image. The process is shown in
Figure 6.

A variety of modal image fusion strategies use linear
fusion. Linear fusion is the simplest multimodal MRI brain
tumor image fusion method. It is a pixel-level fusion method,
and the processing object is pixels. It is mainly to operate
the pixel unit in each modal brain image, so as to compre-
hensively process the pixel information in each modal
brain tumor image. Through the linear fusion operation,
multimodal brain images can be converted into single-
modal brain images containing multimodal brain tumor
tissue information. Thus, multimodal image segmentation
is converted into single-modal image segmentation, and
the operation of multimodal processing is simplified. The
specific operation of linear fusion is as follows:

Fij = αT1 i, jð Þ + βT2 i, jð Þ + εT3 i, jð Þ, ð6Þ

where Fij is the fused image; T1ði, jÞ, T2ði, jÞ, and T3ði, jÞ
are the pixel values of T1, T2, and T3 at position ði, jÞ; and
α, β, and ε are the weights of each modal image, and

meets α + β + ε = 1. Figure 7 is a fusion image of multi-
modal images. Using the linear fusion operation, we use
the following Flair ratio to obtain the fusion image in
the figure: T1 : T1c : T2 = 3 : 2 : 1 : 4. After preprocessing
the fused image, SSC can be used to complete the multi-
modal image segmentation.

The steps of the SSC-based multimodal image segmenta-
tion algorithm are as follows:

(1) Input image I and use the preprocessing algorithm
described in Section 3.1 to divide the fused image into
N superpixel blocks

(2) Extract D-dimensional feature vectors from super-
pixel blocks to form a feature matrix fXig ði = 1, 2,
⋯, nÞ

(3) Use the basic model of sparse subspace clustering to
obtain the sparse coefficient matrix C

(4) Calculate the similarity matrix W = jCj + jCT j,
wherewij =wji = jcijj + jcjij

(5) The clustering result is obtained by using the spectral
clustering algorithm

4. Simulation Experiment Analysis

4.1. Experiment-Related Settings. The comparison algorithms
mainly include FCM, SVM, and the top 15 results of the Brats
2015 challenge. The experimental data of this paper is Brats
2015 [28]. The database contains data of two types of
patients, those with benign tumors and those with malignant

(a) (b)

(c)

Figure 7: FLAIR image segmentation result when the m value changes. (a) Superpixel segmentation result when m = 10. (b) Superpixel
segmentation result when m = 20. (c) Superpixel segmentation result when m = 30.
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tumors, and contains brain image data of 274 patients. Each
patient’s brain image data contains Flair images, T1 images,
T1c images, T2 images, and golden section results. The size
of each modal image is 240 ∗ 240. We randomly selected data
from 25 patients with brain tumors. Each patient’s data
includes five parts, namely, the Flair mode, the T1 mode,
the T1c mode, the T2 mode, and the golden section results.
The data size of each mode is 240 ∗ 240 ∗ 163. Because the
two-dimensional tumor pictures of the same patient are

similar, a set of two-dimensional multimodal brain tumor
images is extracted from the data of each patient. There was
a total of 25 sets of multimodal brain tumor image data.
Among them, there are 15 groups of malignant tumor data
and 10 groups of benign tumor data.

The performance of the algorithm in this paper mainly
depends on the quality of the superpixels. The quality of
the superpixels is controlled by the number K of the super-
pixels and the compact factor m. In this paper, the SLIC

(a) (b)

(c)

Figure 8: FLAIR image segmentation result when the n value changes. (a) Superpixel segmentation result when n = 300. (b) Superpixel
segmentation result when n = 500. (c) Superpixel segmentation result when n = 1000.

Table 1: Evaluation indicator introduction.

Number Index Explanation

1 Dice P, Tð Þ = 2 P ∩ Tj j/ Pj j + Tj j:

The Dice coefficient is a set similarity measurement method. In the image, it mainly
refers to the degree to which the actual segmentation result and the golden

segmentation result overlap each other, and the value is 0, 1½ �. Among them, 0
represents that there is no overlap between the actual segmentation result and the
golden segmentation result, which represents the worst segmentation accuracy at this

time, and 1 represents that the actual segmentation result and the golden
segmentation result completely overlap, which represents the optimal segmentation

accuracy at this time.

2 Jaccard P, Tð Þ = P ∩ Tj j/ Pj j + Tj j − P ∩ Tj j:
The Jaccard coefficient is a method similar to the Dice coefficient that relies on
similarity as a measure. It describes the degree of overlap between the actual

segmentation result and the golden segmentation result from another perspective.

3 Precision P, Tð Þ = P ∩ Tj j/ Pj j:
The false positive rate (Precision) reflects the accuracy of the actual segmentation

result. The ratio of the overlap between the actual segmentation result and the golden
segmentation result is used for description. The higher the ratio, the higher the
proportion of the golden result included in the actual segmentation result.

4 Recall P, Tð Þ = P ∩ Tj j/ Tj j:
The true positive rate (Recall) reflects the accuracy of the actual results in the actual
segmentation results. It refers to the ratio of the overlap between the actual and golden

section results. The higher the ratio, the higher the proportion of the true
segmentation result in the golden section.

7Computational and Mathematical Methods in Medicine



superpixel segmentation method needs to consider the den-
sity factor m and the number of target superpixel blocks
[36]. In order to study the influence of the density factor m,
the numbernof predefined superpixel blocks is 1000 at first.
Then, we explore the impact of the change of the compact
factor size on the segmentation results. The compact
factorm = 10 leads to a more rigid boundary, while m = 20
will produce a very flexible boundary, but it will increase
the shape and irregularity of the superpixel. Figure 7 is the
result of FLAIR image segmentation when the value of m is
different. By visually checking the superpixel boundary and
area, whenm = 20, the boundary can obtain a better segmen-
tation result.

The next step is to determine the number of target super-
pixel blocks. Figure 8 shows the result of the FLAIR image
segmentation when the value of m is 20 and the number n
of the target superpixel blocks is different. When the compac-
tion factor is fixed atm = 20, by changing the numbernof the
target superpixel blocks, the Dice measure is used to evaluate
the formation performance of the superpixels.

Based on the above experimental results, the compact
factorm = 20 in this experiment and the number of superpix-

els n = 500. The fuzzy factor in FCM is 2, and the parameter
in SVM σ ∈ ½10−5, 105�.

4.2. Evaluation Index. There are four evaluation indicators
commonly used in objective evaluation criteria, namely, the
Dice coefficient, the Jaccard coefficient, the false positive
rate (Precision), and the true positive rate (Recall). The
four evaluation indicators are shown in Table 1.

4.3. Simulation Results and Analysis. Table 2 shows the eval-
uation index results of the algorithm for different groups of
multimodal image segmentation results, and Table 3 shows
the top 15 segmentation results of the Brats 2015 challenge.
It can be seen from the comparison of the data in the table
that the average Dice index of this algorithm is 0.8577.
Compared with the top 15 of the Brats 2015 competition,
the accuracy is not much different, and it can even exceed
the results of several of the rankings. The average Precision
index is as high as 0.9615, which is a big advantage compared
with the top 15 data. Compared with the top 15, the true
positive rate is slightly inadequate. This is because the top
15 competition algorithms use a deep learning algorithm to
segment the tumor in three dimensions and use the three-
dimensional information of the brain tumor. Considering
comprehensively, the algorithm in this paper can use the
two-dimensional information of brain tumors to obtain a

Table 2: Comparison of multimodal image segmentation results.

Experimental sample
Index

Dice Jaccard Precision Recall

Malignant tumor

1 0.8923 0.8042 0.9627 0.8287

2 0.8596 0.7752 0.9748 0.7789

3 0.8385 0.7431 0.9263 0.7821

4 0.9507 0.8785 0.9874 0.9264

5 0.9310 0.7886 0.9845 0.7954

6 0.8746 0.7964 0.9678 0.8103

7 0.9152 0.8522 0.9034 0.9371

8 0.8386 0.7371 0.9976 0.7352

9 0.8731 0.7796 0.9948 0.7911

10 0.8694 0.7649 0.9563 0.8002

11 0.8627 0.7628 0.9915 0.7832

12 0.7016 0.5364 0.9997 0.5349

13 0.8018 0.6742 0.9306 0.7132

14 0.8220 0.6976 0.9736 0.7120

15 0.8129 0.6842 0.9637 0.7058

Bright tumor

1 0.7961 0.6425 0.9264 0.6779

2 0.8129 0.8413 0.9779 0.8646

3 0.9298 0.6624 0.9836 0.6732

4 0.9401 0.6830 0.7375 0.9118

5 0.9228 0.8698 0.9990 0.8769

6 0.9418 0.8891 0.9862 0.8996

7 0.7147 0.5510 0.9996 0.5534

8 0.7753 0.6256 0.9676 0.6394

9 0.9027 0.8244 0.9834 0.8426

10 0.8624 0.7632 0.9623 0.7824

Mean 0.8577 0.7451 0.9615 0.7743

Table 3: The top 15 segmentation results of the Brats 2015
challenge.

Rank Dice Precision Recall

1 0.8730 0.8715 0.8916

2 0.8710 0.8621 0.9140

3 0.8720 0.8531 0.8633

4 0.8511 0.8619 0.8633

5 0.8739 0.8532 0.9180

6 0.8650 0.8530 0.9011

7 0.8325 0.8344 0.8457

8 0.8670 0.8623 0.8820

9 0.7760 0.7475 0.8635

10 0.8513 0.8248 0.9150

11 0.8417 0.8345 0.8917

12 0.8580 0.8716 0.8635

13 0.8512 0.8343 0.8916

14 0.8327 0.8527 0.8363

15 0.8328 0.8055 0.9090

Table 4: Comparison of evaluation indexes of different
segmentation methods.

Methods
Evaluation index

Dice Jaccard Precision Recall

FCM 0.7110 0.5564 0.7205 0.6975

SVM 0.8012 0.7056 0.9013 0.7558

SSC 0.8577 0.7451 0.9615 0.7743
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segmentation accuracy similar to the top 15 algorithms in the
competition. It can be seen that the algorithm in this paper
has certain value.

Table 4 shows the comparison of the average evaluation
indexes of these three algorithms in 25 sets of data tests.
From the comparison of the data in the table, we can see that
the SSC algorithm used in each index is greatly improved
compared to the other two algorithms.

Figure 9 is a comparison of the histograms of the various
evaluation methods on the four evaluation indicators. From
the figure, the greater advantages of the SSC algorithm can
be clearly found.

In order to verify the noise resistance of the SSC algo-
rithm, this paper adds 5%, 10%, 15%, and 20% Gaussian
noise to the original image. The segmentation results after
noise addition are shown in Tables 5–8. From the changing
trends of the values of the four evaluation indicators in
Tables 5–8, it can be analyzed that the tumor segmentation
effect decreases with increasing noise. The greater the noise
content, the worse the segmentation effect. This is completely
consistent with theory.
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Figure 9: Comparison of evaluation indexes of various algorithms.

Table 5: Comparison of multimodal image segmentation results
with 5% noise.

Experimental sample
Index

Dice Jaccard Precision Recall

Malignant tumor

1 0.8123 0.7758 0.9036 0.8080

2 0.8016 0.7469 0.9229 0.7568

3 0.8001 0.7154 0.9086 0.7735

4 0.8462 0.8369 0.9321 0.8858

5 0.8528 0.7427 0.9650 0.7804

6 0.8134 0.7528 0.9487 0.7940

7 0.8347 0.8274 0.8936 0.9166

8 0.8006 0.7144 0.9376 0.7130

9 0.8104 0.7423 0.9721 0.7668

10 0.8110 0.7417 0.9325 0.7878

11 0.8234 0.7326 0.9639 0.7626

12 0.6841 0.5146 0.9688 0.5229

13 0.7695 0.6155 0.9129 0.7007

14 0.7996 0.6639 0.9639 0.7013

15 0.8005 0.6582 0.9470 0.6982

Bright tumor

1 0.7486 0.6301 0.9003 0.6663

2 0.7952 0.8204 0.9575 0.8452

3 0.8985 0.6471 0.9588 0.6620

4 0.8625 0.6598 0.7176 0.9031

5 0.8563 0.8446 0.9425 0.8206

6 0.9012 0.8396 0.9393 0.8759

7 0.6852 0.5329 0.9579 0.5414

8 0.7410 0.6012 0.9493 0.6225

9 0.8863 0.8071 0.9389 0.8223

10 0.8401 0.7540 0.9522 0.7639

Mean 0.8110 0.7167 0.9315 0.7557

Table 6: Comparison of multimodal image segmentation results
with 10% noise.

Experimental sample
Index

Dice Jaccard Precision Recall

Malignant tumor

1 0.7585 0.7147 0.8452 0.7581

2 0.7662 0.7020 0.8967 0.7052

3 0.7596 0.6996 0.8746 0.7196

4 0.8008 0.7989 0.9003 0.8320

5 0.8020 0.7011 0.9114 0.7404

6 0.7642 0.7102 0.9095 0.7462

7 0.8001 0.7834 0.8482 0.8346

8 0.7779 0.6996 0.9063 0.6730

9 0.7823 0.7032 0.9101 0.7162

10 0.7863 0.7142 0.9011 0.7285

11 0.7903 0.7020 0.9039 0.7126

12 0.6523 0.5011 0.9008 0.5028

13 0.7124 0.6031 0.8557 0.6896

14 0.7210 0.6313 0.8932 0.6745

15 0.7695 0.6220 0.8712 0.6512

Bright tumor

1 0.7103 0.6102 0.8103 0.6326

2 0.7533 0.7945 0.8410 0.8071

3 0.8120 0.6103 0.8124 0.6426

4 0.8236 0.6120 0.6731 0.8426

5 0.8022 0.8008 0.8526 0.7945

6 0.8471 0.8106 0.8989 0.8142

7 0.6326 0.5030 0.9009 0.5231

8 0.7002 0.5936 0.8855 0.6005

9 0.8308 0.7852 0.8797 0.8030

10 0.8001 0.7262 0.8722 0.7103

Mean 0.7662 0.6853 0.8702 0.7142
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Table 9 gives a comparison of the segmentation perfor-
mance of the three algorithms under different noise ratios.
Each data in the table is the average value of the above 25
sample data after division. Figure 10 shows the changing
trend of the segmentation accuracy of the three algorithms
with increasing noise. It can be concluded from Table 9 and
Figure 10 that the SSC algorithm is relatively better in terms
of the antinoise performance of the three algorithms. As the
amount of noise increases, the performance of FCM declines
the fastest, followed by SVM, and the relative decline of SSC
is smaller. This further illustrates the feasibility and reference
value of the SSC algorithm selected in this paper.

5. Conclusion

Different features have different effects on tumor segmenta-
tion results. In order to make better use of multimodal brain
tumor image information, this paper proposes an SSC-based
multimodal brain tumor image segmentation method. First,
linear fusion is used to fuse multiple single-modality brain
MRI images into one image to be processed; secondly, super-
pixel features are extracted to construct a feature matrix; and

finally, a sparse subspace clustering algorithm based on
sparse representation is used to complete the segmentation.
Using Brats 2015 competition data to experiment with the

Table 7: Comparison of multimodal image segmentation results
with 15% noise.

Experimental sample
Index

Dice Jaccard Precision Recall

Malignant tumor

1 0.7010 0.6235 0.7788 0.6963

2 0.7121 0.6417 0.8293 0.6625

3 0.7006 0.6582 0.8126 0.6741

4 0.7259 0.7128 0.8253 0.6701

5 0.7361 0.6733 0.8256 0.6693

6 0.7140 0.6682 0.7896 0.6642

7 0.7263 0.7117 0.7526 0.6723

8 0.7030 0.6336 0.7864 0.6008

9 0.7234 0.6402 0.8124 0.6037

10 0.7026 0.6513 0.8102 0.6395

11 0.7263 0.6412 0.8006 0.6279

12 0.6136 0.4562 0.8152 0.4963

13 0.6742 0.5846 0.7852 0.6230

14 0.6892 0.6006 0.7984 0.6172

15 0.7211 0.6001 0.8010 0.6003

Bright tumor

1 0.6982 0.5895 0.7142 0.6110

2 0.7120 0.7312 0.7265 0.6753

3 0.7361 0.5742 0.7416 0.5996

4 0.7216 0.5863 0.6246 0.7582

5 0.7121 0.7323 0.7693 0.7296

6 0.7132 0.7125 0.8263 0.7369

7 0.6030 0.4852 0.8082 0.5020

8 0.6482 0.5611 0.8060 0.5801

9 0.7413 0.7230 0.8132 0.6778

10 0.7143 0.6736 0.8007 0.6256

Mean 0.7028 0.6346 0.7862 0.6405

Table 8: Comparison of multimodal image segmentation results
with 20% noise.

Experimental sample
Index

Dice Jaccard Precision Recall

Malignant tumor

1 0.6013 0.5582 0.5786 0.6030

2 0.6230 0.5631 0.6023 0.5436

3 0.6058 0.5477 0.6113 0.5633

4 0.6003 0.5693 0.6037 0.5721

5 0.6146 0.5746 0.6012 0.5126

6 0.6008 0.5832 0.5963 0.5362

7 0.6001 0.5746 0.5748 0.5284

8 0.6200 0.5365 0.5836 0.5369

9 0.5963 0.5208 0.5862 0.5623

10 0.5982 0.5300 0.5916 0.5123

11 0.5996 0.5613 0.5746 0.5023

12 0.5342 0.4203 0.5842 0.4523

13 0.5846 0.5110 0.5532 0.5203

14 0.5768 0.5030 0.5631 0.5417

15 0.5636 0.5007 0.5711 0.5731

Bright tumor

1 0.5875 0.5114 0.5369 0.5324

2 0.5939 0.5630 0.5284 0.6064

3 0.5742 0.5023 0.5748 0.5412

4 0.5936 0.5431 0.5303 0.6234

5 0.5768 0.5623 0.5923 0.6127

6 0.5693 0.5665 0.5830 0.6471

7 0.5234 0.4528 0.5746 0.4864

8 0.5236 0.5220 0.5822 0.5520

9 0.5741 0.5360 0.5623 0.6113

10 0.5698 0.5142 0.5722 0.5436

Mean 0.5842 0.5331 0.5765 0.5527

Table 9: Comparison of segmentation performance of three
algorithms under different noise ratios.

Noise ratio Algorithm Dice Jaccard Precision Recall

5%

FCM 0.7002 0.5316 0.7010 0.6753

SVM 0.7912 0.6902 0.8956 0.7412

SSC 0.8410 0.7367 0.9515 0.7657

10%

FCM 0.6833 0.5241 0.6931 0.6595

SVM 0.7800 0.6789 0.8763 0.7286

SSC 0.8362 0.7353 0.9402 0.7542

15%

FCM 0.6658 0.5056 0.6767 0.6323

SVM 0.7682 0.6574 0.8553 0.7001

SSC 0.8268 0.7246 0.9362 0.7405

20%

FCM 0.6312 0.4712 0.6420 0.6125

SVM 0.7404 0.6310 0.8211 0.6803

SSC 0.8182 0.7131 0.9265 0.7327

10 Computational and Mathematical Methods in Medicine



proposed method, the results show that the method used can
well integrate the tumor information of the multimodal
images and obtain good segmentation results. After adding
different proportions of noise, the segmentation performance
of the proposed algorithm decreases significantly slower than
that of the comparison algorithm, which also verifies that the
proposed algorithm has good noise resistance. However, the
method used in this paper has certain limitations. It needs
to optimize the weights of various modal data fusions, which
is very time consuming.
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