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Abstract
Study Objective: Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient 

sleep.

Methods: We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed 

three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity 

per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep 

conditions. Untargeted plasma metabolomics analyses were performed using blood samples collected every 4 hours across the final 24 hours of each condition. 

Biomarker models were developed using logistic regression and linear support vector machine (SVM) algorithms.

Results: The top-performing biomarker model was developed by linear SVM modeling, consisted of 65 compounds, and discriminated insufficient versus adequate 

sleep with 74% overall accuracy and a Matthew’s Correlation Coefficient of 0.39. The compounds in the top-performing biomarker model were associated with ATP 

Binding Cassette Transporters in Lipid Homeostasis, Phospholipid Metabolic Process, Plasma Lipoprotein Remodeling, and sphingolipid metabolism.

Conclusion: We identified potential metabolomics-based biomarkers of insufficient sleep in humans. Although our current biomarkers require further development 

and validation using independent cohorts, they have potential to advance our understanding of the negative consequences of insufficient sleep, improve diagnosis of 

poor sleep health, and could eventually help identify targets for countermeasures designed to mitigate the negative health consequences of insufficient sleep.
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Statement of Significance

Insufficient sleep is associated with negative health outcomes, including cardiometabolic and neurodegenerative disorders, impaired cog-
nition, and risk of accidents. Clinical biomarkers that can distinguish individuals between adequate versus insufficient sleep have not been 
identified. Such biomarkers could improve the diagnosis of poor sleep health and inform targets for countermeasures and personalized 
medicine approaches designed to mitigate the negative health consequences associated with insufficient sleep. Our findings demonstrate 
that mass spectrometry is a viable approach for identifying candidate biomarkers of insufficient sleep in humans using untargeted plasma 
metabolomics.
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Introduction

The Sleep Research Society and American Academy of Sleep 
Medicine jointly recommend adults aged 18–60 years regularly ob-
tain 7 hours or more of sleep per night to promote optimal health 
[1, 2]. However, insufficient sleep is widespread with estimates 
indicating that ~35% of American adults sleep less than the re-
commended 7 hours per night and 30% sleep less than 6 hours 
per night [3–5]. Furthermore, estimates show active military per-
sonnel sleep on average 5.5–6.5 hours per night [6, 7]. Findings from 
cross-sectional, case-control, prospective cohort, and laboratory-
controlled clinical translational studies consistently show insuffi-
cient sleep is associated with dysregulated physiology and risk of 
cardiometabolic and neurodegenerative disorders including obesity, 
diabetes, coronary heart disease, stroke, metabolic syndrome, and 
Alzheimer’s disease [8–20]. Furthermore, insufficient sleep results 
in impaired cognition and increased risk of accidents [21–24].

There is a high prevalence of sleep disorders, including insuf-
ficient sleep syndrome [25], that are often undiagnosed, in part 
due to the lack of established clinical biomarkers to discrim-
inate adequate versus insufficient sleep within an individual. 
Thus, the Sleep Research Society and the National Institutes 
of Health have recognized an immediate need and potential 
long-term benefits of identifying objective, point-of-care bio-
markers of insufficient sleep [26, 27]. Identifying biomarkers of 
insufficient sleep would provide a tool that has potential to im-
prove the ability of primary care providers to diagnose insuf-
ficient sleep, provide insight into mechanisms underlying the 
adverse health consequences associated with insufficient sleep, 
inform novel sleep countermeasures, and support the develop-
ment of personalized sleep medicine by identifying individuals 
most likely to benefit from sleep health-based countermeasures.

One approach to identify biomarkers of insufficient sleep is to 
use omics-based analyses such as transcriptomics, proteomics, 

or metabolomics. Findings from previous studies have charac-
terized changes in the human blood transcriptome, proteome, 
and metabolome during insufficient sleep, total sleep depriv-
ation, early versus late sleep timing, and circadian misalignment 
[28–38]. More specific to developing diagnostic biomarkers, Weljie 
et al. used metabolomics in rats and humans to identify oxalic 
acid and diacylglycerol (DAG)-[36:3] as potential single compound 
biomarkers of sleep debt [39], and Laing et al. used transcriptomics 
to identify and test the performance of biomarkers of insufficient 
sleep in humans [40]. Additionally, activity and mRNA levels of 
salivary amylase increase in response to 28 hours of total sleep 
deprivation in humans, indicating these amylase metrics are po-
tential biomarkers of extended wakefulness [41]. Still, the field 
is in the discovery phase of identifying clinically useful bio-
markers of insufficient sleep in humans. An optimal biomarker 
of insufficient sleep should have high sensitivity and specificity, 
low intra-individual variability, be easily interpreted by clinicians 
and patients, and be robust to physiological variation such as age, 
sex, and body mass index. We used untargeted metabolomics to 
analyze plasma samples from a crossover 14- to 15-day counter-
balanced in-laboratory protocol with the goal of identifying and 
testing biomarkers of insufficient sleep.

Methods

Participants

All procedures were approved by the scientific and advisory 
review committee of the Colorado Clinical and Translational 
Sciences Institute, the Colorado Multiple Institutional Review 
Board (IRB), and the University of Colorado Boulder IRB, and all 
participants provided written informed consent prior to study 
procedures. Data were collected in a previously described study 
(Figure 1) [14, 17]. Sixteen healthy participants (eight men) aged 
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Figure 1. Experimental protocol. (A; n = 8) condition order A. (B; n = 8) condition order B. Underlines represent scheduled wakefulness and colored boxes represent 

scheduled sleep. A recovery sleep opportunity (black box) was provided on study day 14 prior to discharge from the laboratory for participants in condition order 

A. Time of day is plotted as relative clock hour with scheduled waketime arbitrarily assigned to 08:00 am for the baseline and 9H conditions. All other times and 

protocol events are referenced to this arbitrarily assigned value (e.g. blood draws occurring 1 hours after scheduled waketime during the baseline condition are reported 

as occurring at 09:00 am). Actual sleep timing and protocol events were based on habitual sleep schedules of each individual participant, thus all participants were 

studied at their habitual sleep and circadian phase for baseline. Blood collection for untargeted metabolomics occurred on study days 3, 8, and 13, represented by T1, 

T5, T9, and T13 (note that T17 and T21 blood collections are not represented on the figure as they were not used for biomarker analyses).
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22 ± 5 years (mean ± SD), with normal body mass index (BMI) 
22.9 ± 2.4 kg/m2 completed the study. Each participant completed 
medical, psychological, and sleep history screening procedures, 
and polysomnographic clinical sleep disorders screening as 
previously described [17]. Participants were considered free of 
medical and psychological disorders based on these screening 
procedures. Breath alcohol testing and urine toxicology verified 
drug-free status upon laboratory admission.

Protocol

Participants completed a 7-day home ambulatory monitoring 
segment with ~9 hours nightly sleep schedules immediately 
prior to the 14- to 15-day in-laboratory protocol [17]. In-laboratory 
baseline (BL) assessments consisted of 3 days with 9 hours sleep 
opportunities with sleep and wake times aligned to individual 
habitual sleep schedules. Participants then completed two condi-
tions (9H; 9 hours per night sleep opportunities, and 5H; 5 hours 
per night sleep opportunities) in a crossover counterbalanced 
design (Figure 1). Each condition lasted 5 days. Men and women 
were randomized to condition order separately to ensure equal 
sex allocation to each condition order. All protocol events were 
scheduled relative to individual participant’s habitual sleep and 
waketimes. Participants were provided energy-balanced diets 
during BL, but energy intake was ad libitum during the 9H and 
5H conditions [17]. During ad libitum energy intake, registered 
dietitians weighed all food provided to participants and then 
weighed-back all uneaten food to facilitate precise measurement 
of energy intake. Blood was collected every 4 hours across 24 
hours (T1, T5, T9, T13, T17, and T21), starting 1 hour after scheduled 
waketime on study days 3, 8, and 13 (the final day of each condi-
tion; Figure 1). T1 blood samples were collected after an overnight 
fast, whereas the T5, T9, and T13 samples were collected in a non-
fasted state. Samples obtained during scheduled sleep (T17 and 
T21) were excluded from biomarker model analyses.

Metabolomics

Plasma sample preparation and untargeted metabolomics was 
conducted as previously described [42–44]. Prior to biomarker 
model analyses, metabolomics data were extracted and pro-
cessed, including batch correction (Supplementary Figure S1), 
per standard procedures in the Reisdorph laboratory [42–44], 
as detailed in the Supplementary Material. In total, 4114 com-
pounds were detected and analyzed. Prior to tandem mass 
spectrometry (MS/MS), the metabolomics software Mass Profiler 
Professional (v.B.14.5; Agilent Technologies, Inc.) [45–47] was 
used to putatively annotate compounds with common chemical 
names using isotope ratios and an error window of <10  ppm. 
This software utilizes an in-house database comprising data 
from METLIN, Human Metabolome Database (HMDB), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Lipid Maps, and 
data from an authentic standards database to match masses 
from unnamed compounds to database entries.

Biomarker models

During ad libitum energy intake in the 9H and 5H conditions, par-
ticipants consumed more energy than needed to maintain body 
weight [17], consistent with findings from other studies of insuf-
ficient sleep with ad libitum energy intake [13, 48–50]. To increase 

the specificity of our biomarker models for insufficient sleep, the 
compounds most impacted by this increased energy intake were 
excluded from all biomarker models. To identify the compounds 
most impacted by increased energy intake we exclusively analyzed 
samples in 9H versus BL, within condition order A, to remove the 
potential confounding effects of increased energy intake combined 
with insufficient sleep that occurred in 5H. Within the 9H versus BL 
comparison, compounds with an area under the receiver operator 
characteristic plot (AUROC) ≥ 0.70, detected using the biomarker 
module in Metaboanalyst [51], were excluded from all biomarker 
models—95 compounds met this criterion. Of these 95 com-
pounds, three (propionylcarnitine, phosphatidylcholine(PC)-[36:3], 
and sphingomyelin(SM)-[d34:1]) were previously found to be im-
pacted by insufficient sleep or total sleep deprivation [30, 33, 39].

Because findings from untargeted metabolomics studies 
show ~15%–20% of the human plasma metabolome is circa-
dian regulated [32, 34, 35], and nearly half of the metabolites in 
a targeted analysis showed 24-hour time-of-day patterns [29], 
we trained biomarker models using two planned datasets, one 
that included and one that a priori excluded compounds with 
24-hour time-of-day patterns. We also performed an explora-
tory analysis using only the compounds with 24-hour time-of-
day patterns (Supplementary Table S1). MetaCycle [52] (v1.1.0) 
for R [53] (v3.5.3) was used to identify compounds with 24-hour 
time-of-day patterns in at least one condition. LOG2 normalized 
metabolomics data from the BL, 9H, and 5H conditions, using 
the T1, T5, T9, T13, T17, and T21 samples, were loaded separ-
ately into MetaCycle and the “meta2d” function was used with 
“cycMethod” set to “JTK” and “LS.” The resulting p-values for 
each compound for each condition were combined using the 
minP method [54]. Statistical significance for detecting a 24 
hours time-of-day pattern was set at the 10% False Discovery 
Rate corrected level, similar to our previous proteomics findings 
[28]. Based on these analyses, we identified 985 compounds with 
24-hour time-of-day patterns in at least one condition.

For all biomarker models, plasma samples were divided into 
training and validation datasets. After filtering and QC analyses, 
153 plasma samples were included in the final biomarker model 
analyses. Within the BL, 9H, and 5H conditions, the plasma sam-
ples were randomly divided into training (2/3 samples) and val-
idation (1/3 samples) datasets (Supplementary Figures S2 and 
S3), balanced by time-points, using the caret [55] package (v6.0) 
for R (v3.5.3). We assigned 2/3 samples to the training dataset, 
as opposed to dividing the samples evenly between the training 
and validation datasets, to maintain higher statistical power in 
the training dataset during the discovery phase of our biomarker 
analyses. The training dataset consisted of 104 samples with 57 
from men and 47 from women. The validation dataset consisted 
of 49 plasma samples with 20 from men and 29 from women. 
Because participants had 9 hours per night sleep opportunities in 
the BL and 9H conditions, samples from BL and 9H were defined 
as adequate sleep and 5H samples defined as insufficient sleep.

Compound selection for biomarker models was conducted 
using least absolute shrinkage and selection operator (LASSO) 
in the GLMNET [56] package (v2.0–16) for R (v3.5.3), and included 
annotated and unannotated compounds. Biomarker models 
were trained individually on datasets that included and ex-
cluded the 985 compounds with 24-hour time-of-day patterns 
using the “cv.glmnet” function with “nfolds” set to the number 
of samples for leave one sample out cross-validation (LOOCV), 
“type.measure” set to “mae,” “family” set to “binomial” for 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
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logistic regression, “alpha” set to “1.0” for LASSO, and “nlambda” 
set to “500.” Lambda requires tuning; thus, the mean value of 
lambda across 500 searches that provided the minimum cross-
validated error within the training set was defined as the op-
timal lambda value for each final model. The predicted class (e.g. 
adequate sleep) in the validation datasets was determined using 
the “predict” function with “type” set to “class” and “s” set to the 
optimal lambda, additionally, the logistic regression linear pre-
dictor was determined using the “predict” function with “type” 
set to “link” and “s” set to the optimal lambda.

We also developed linear support vector machine (SVM) 
biomarker models using the e1071 package (v1.7-0.1) [27] for R 
(v3.5.3). SVM models were developed using subsets of the com-
pounds identified by LASSO. Specifically, compound subsets for 
training the SVM models were created using the “LASSO fre-
quency” function within the Biomarker module in MetaboAnalyst 
[51] that provides the frequency of LASSO compound selection 
using Monte Carlo cross-validation. SVM models were trained on 
the resulting subsets consisting of compounds with ≥100%, 90%, 
and 80% LASSO selection frequencies. The optimal compound 
subset for each SVM model was identified based on the com-
pound subset that produced the highest Matthew’s Correlation 
Coefficient [57, 58] (MCC) in the validation dataset using the in-
sufficient and adequate sleep classifications. MCC is invariant to 
the balancing of samples between classes [57] and ranges from 
−1 to 1, with −1 representing perfect negative correlation (all 
samples misclassified), and 1 representing perfect positive cor-
relation (all samples correctly classified). Thus, MCC was a priori 
selected as the primary performance metric of each biomarker 
model. Biomarker models were trained individually on datasets 
that included and excluded compounds with 24-hour time-of-
day patterns using the “svm” function with “cross” set to the 
number of samples in the training set for LOOCV, “kernel” set to 
“linear,” “scale” set to “FALSE,” and “type” set to “C-classification.” 
Additionally, the argument “class.weights” was set to the in-
verse of the number of samples in the insufficient and adequate 
sleep classifications in the training dataset to account for the 
larger number of adequate sleep samples. The “cost” function 
for SVM requires tuning. The “tune.svm” function was used 
to identify the optimal “cost” value for each SVM model with 
“scale” set to “FALSE,” “cost” set to the range 2–10 to 22, “cross” 
set to “10” for 10-fold cross-validation, “class.weights” set to the 
inverse of the number of samples for insufficient and adequate 
sleep classifications in the training dataset as described above, 
and “kernel” set to “linear.” Ten-fold cross-validation was used 
to tune the “cost” parameter, and the tuning procedure was re-
peated 25 times for each SVM model separately. The mode of the 
optimal “cost” value from the 25 tuning repetitions was selected 
as the final “cost” value for each SVM model. The predicted class 

and SVM decision values for the validation datasets were deter-
mined using the “predict” function with “decision.values” set to 
“TRUE” and “scale” set to “FALSE.”

Biomarker model assessments

Performance of the final biomarker models was assessed using 
LOOCV in the training dataset and by internal validation (IV) 
in the validation dataset, similar to Laing et al. [40]. For LOOCV 
and IV the positive classification was insufficient sleep and the 
negative classification was adequate sleep. For all classification 
comparisons for each model, we calculated the number of true 
positive samples (TP), true negative samples (TN), false-positive 
samples (FP), and false-negative samples (FN). Overall accuracy 
was calculated as [TP + TN/(TP + TN + FP + FN)], sensitivity as 
[TP/(TP + FN)], specificity as [TN/(TN + FP)], and MCC as [(TP·TN) 
– (FP·FN)]/√[(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)]. We calcu-
lated AUROC for each classification comparison for all models 
using OriginPro (OriginLab Corporation). To test the previously 
published metabolomics-based biomarkers of insufficient sleep 
[39], a one-tailed dependent t-test was used to test the targeted 
statistical analysis of DAG-[36:3]. Oxalic acid was not annotated 
in our dataset and thus was not tested.

Pathway and functional analyses

Compound annotations for each biomarker model were con-
verted to Human Metabolome Database [59] (HMDB, v4.0) IDs 
and searched using IMPaLA [60] to match compounds to rele-
vant biochemical pathways in the KEGG [61], Reactome [62], 
and Small Molecule Pathway Database [63]. Within IMPaLA, 
over-representation pathway analysis was conducted with 
statistical significance set at the 10% FDR corrected level for 
individual pathways. We also developed a gene-metabolite 
network to further assess potential biochemical functions as-
sociated with the top-performing biomarker model, using the 
Network Explorer module in Metaboanalyst [51], as detailed in 
the Supplementary Material.

Results
Planned analyses focused on four biomarker models of insuf-
ficient sleep, two that include compounds with and without 
24-hour time-of-day patterns and two that exclude compounds 
with 24-hour time-of-day patterns (Table 1). Collectively, there 
are 88 compounds in these four biomarker models, with 33 
compounds overlapping across the four models (Supplementary 
Table S2). LOOCV accuracy from the training dataset was higher 

Table 1. Overall performance metrics of biomarker models

LOOCV ACC IV ACC IV Sensitivity IV Specificity IV MCC

Compounds with and without 24-hour time-of-day patterns included
 Logistic Regression (66) 100% 71% 47% 82% 0.30
 Linear SVM (47) 97% 67% 47% 77% 0.23
Compounds with 24-hour time-of-day patterns excluded
 Logistic Regression (65) 100% 74% 47% 85% 0.34
 Linear SVM (65) 95% 74% 60% 79% 0.39

Numbers in parenthesis indicate total number of compounds in each biomarker model. ACC, accuracy.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
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than IV accuracy from the validation dataset for all four models 
(Table 1). The logistic regression and SVM models that excluded 
compounds with 24-hour time-of-day patterns had the highest 
IV accuracy at 74% (Table 1). The SVM model that excluded com-
pounds with 24-hour time-of-day patterns had the highest IV 
sensitivity at 60%, whereas all other models had IV sensitivity of 
47% (Table 1). The logistic regression model that excluded com-
pounds with 24-hour time-of-day patterns had the highest IV 
specificity at 85%, whereas all other models ranged from 77% to 
82% (Table 1). The SVM model that excluded compounds with 
24-hour time-of-day patterns had the highest IV MCC at 0.39, 
whereas all other models ranged from 0.23 to 0.34 (Table 1).

We compared the best performing model that included 
compounds with and without 24-hour time-of-day patterns 
(logistic regression model) versus the best performing model 
that excluded compounds with 24-hour time-of-day patterns 
(SVM model). The SVM model that excluded compounds with 
24-hour time-of-day patterns had higher MCC (0.39), IV sensi-
tivity (60%), and AUROC (0.71 ± 0.09; Figure 2), but slightly lower 
IV specificity (79%) compared to the logistic regression model 
that included compounds with and without 24-hour time-of-
day patterns (82%). Thus, the SVM that excluded compounds 
with 24-hour time-of-day patterns correctly classified more of 

the insufficient sleep samples, but less of the adequate sleep 
samples, compared to this logistic regression model (Figure 2, 
B  and  D), and was, therefore, the overall top-performing bio-
marker model. Additionally, as exploratory analyses, we gen-
erated two biomarker models that only included compounds 
with 24-hour time-of-day patterns (Supplementary Table S1). 
Both the logistic regression and SVM models that only included 
compounds with 24-hour time-of-day patterns had lower IV 
MCCs versus the planned logistic regression and SVM models 
that excluded compounds with 24-hour time-of-day patterns. 
Because these exploratory biomarker models had lower MCCs, 
the following in-depth analyses focus on the four planned bio-
marker models.

We further analyzed the SVM model that excluded com-
pounds with 24-hour time-of-day patterns, by sex and by condi-
tion order (Table 2). MCC for men (0.42) and women (0.40) were 
similar. However, IV sensitivity was 20% higher for men versus 
women, whereas IV specificity was 8% lower for men versus 
women. MCC for condition order A (0.34) and condition order B 
(0.38) were similar. Furthermore, IV sensitivity was 6% lower for 
condition order A versus condition order B, whereas IV specifi-
city was similar for condition order A (77%) and condition order 
B (75%).
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top-performing biomarker model that included compounds with 24-hour time-of-day patterns (logistic regression model). (B) Box plot of the logistic regression scores 

for all samples in the validation dataset for the logistic regression biomarker model that included compounds with 24-hour time-of-day patterns. Note that the logistic 

regression scores were multiplied by −1 so that positive values were classified as insufficient sleep. (C) Receiver operator characteristic plot for the top-performing 
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insufficient sleep. BL, baseline condition; 9H, control condition; 5H, insufficient sleep condition; AUROC, area under the receiver operator characteristic plot.
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We also analyzed by time-points across the day the top-
performing biomarker model that included compounds with 
and without 24-hour time-of-day patterns, and that excluded 
compounds with 24-hour time-of-day patterns, in part, to as-
sess potential differences between fasting and non-fasting 
time-points (Figure 3). Using IV MCC, the T1 fasting time-point 

had the highest performance for the logistic regression model 
that included compounds with and without 24-hour time-of-
day patterns (Figure 3A), whereas the T9 non-fasting time-point 
had the highest performance for the SVM model that excluded 
compounds with 24-hour time-of-day patterns (Figure 3B). Note 
that the general pattern of T1 and T9 having higher IV MCC 
compared to the T5 and T13 time-points was consistent in the 
logistic regression and SVM models, with IV accuracy, IV sensi-
tivity, and IV specificity following the same general pattern.

During ad libitum energy intake in the 9H and 5H conditions, 
participants consumed more energy than needed to maintain 
energy balance, leading to weight gain [17]. Thus, comparing 
biomarker model performance using the condition-specific clas-
sifications exclusively from 5H and BL versus exclusively from 
5H and 9H allowed us to assess how positive energy balance and 
weight-gain during adequate sleep impacted biomarker model 
performance. We analyzed the performance of the biomarker 
models by condition-specific comparisons using only the 5H 
and BL conditions, or only the 5H and 9H conditions (Table 3). 
Based on IV MCC, both models that included compounds with 
and without 24-hour time-of-day patterns and the logistic re-
gression model that excluded compounds with 24-hour time-
of-day patterns had the highest performance for classifying 
samples from the 5H and BL conditions, each with an IV MCC 
of 0.54 (Table  3). Furthermore, each of these models had 71% 
IV accuracy, 47% IV sensitivity, and 100% IV specificity, but the 
SVM model that included compounds with and without 24-hour 
time-of-day patterns had the highest IV AUROC at 0.91 ± 0.06 
(Table  3). Alternatively, the SVM model that excluded com-
pounds with 24-hour time-of-day patterns had the highest per-
formance for classifying samples from the 5H and 9H conditions 
with an IV MCC of 0.37. Furthermore, this model had the highest 
IV accuracy, IV sensitivity, IV specificity, and IV AUROC for classi-
fying samples from the 5H and 9H conditions (Table 3).

Pathway analyses identified 24 pathways associated with 
the logistic regression model that included compounds with 
and without 24-hour time-of-day patterns, 15 pathways asso-
ciated with the SVM model that included compounds with and 
without 24-hour time-of-day patterns, and 13 pathways asso-
ciated with the logistic regression and SVM models that ex-
cluded compounds with 24-hour time-of-day patterns (Table 4). 
Of these pathways, five were commonly associated with all 
four planned biomarker models, ATP Binding Cassette (ABC) 
Transporters in Lipid Homeostasis, High-Density Lipoprotein 
(HDL) Remodeling, Plasma Lipoprotein Remodeling, Golgi-to-
endoplasmic reticulum (ER) retrograde transport, and Intra-Golgi 
and Retrograde Golgi-to-ER Traffic (Table  4). Alternatively, five 
of the 13 pathways associated with the overall top-performing 

Table 2. Performance metrics of linear SVM biomarker model that excluded compounds with 24-hour time-of-day patterns, by sex and condi-
tion order (top overall performing biomarker)

IV ACC IV sensitivity IV specificity IV MCC

Performance by sex
 Men 75% 75% 75% 0.42
 Women 72% 55% 83% 0.40
Performance by condition order (excluding BL samples)
 Condition order A (9H first) 70% 57% 77% 0.34
 Condition order B (5H first) 69% 63% 75% 0.38

ACC, accuracy. The BL condition is excluded from all analyses by condition order as all participants completed the BL condition prior to the 9H or 5H conditions, re-

gardless of condition order.
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Figure 3. Top-performing biomarker models that included and excluded com-

pounds with 24-hour time-of-day patterns, plotted by time of day. IV accuracy 

(black line), IV sensitivity (blue line), IV specificity (gray line), and IV MCC (red 

line and right y-axis) for (A) the top-performing biomarker model that included 

compounds with 24-hour time-of-day patterns (logistic regression model); and 

the (B) the top-performing biomarker model that excluded compounds with 

24-hour time-of-day patterns (support vector machine model), plotted by hours 

from scheduled waketime. B, breakfast; L, lunch; D, dinner; S, scheduled snack; 

X, 20-minute stair-stepping session.
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biomarker model based on MCC (SVM model that excluded 
compounds with 24-hour time-of-day patterns) were uniquely 
associated with the models that excluded compounds with 
24-hour time-of-day patterns (Table  4). We also generated a 
gene-metabolite interaction network derived from the com-
pounds in the overall top-performing biomarker model based 
on MCC (SVM model that excluded compounds with 24-hour 
time-of-day patterns). The top 10 gene ontology biological pro-
cesses associated with this gene-metabolite interaction net-
work are presented in Supplementary Table S3. Consistently, the 
biochemical pathways and gene ontology biological processes 
associated with the overall top-performing biomarker model 
overlap in phospholipid metabolism.

Finally, based on the findings of Weije et  al. [39], we con-
ducted a targeted data analysis on fasting oxalic acid and DAG-
[36:3]. Oxalic acid was not annotated in our dataset; however, 
we did identify a compound annotated as DAG-[36:3] at the 
Metabolomics Standards Initiative level 3 [64]. When classifying 
fasting (T1) samples from the validation dataset as insufficient 
sleep or adequate sleep (BL-9H), DAG-[36:3] has an AUROC of 
0.69  ± 0.10, 73% accuracy, 64% sensitivity, 77% specificity, and 
MCC of 0.40 based on the optimal relative abundance cutoff 
value determined using the ROC. Fasting DAG-[36:3] was re-
duced (p < 0.05) in 5H versus BL, but not statistically different 
(p  =  0.12) in 5H versus 9H (Supplementary Figure S4). We also 
assessed the individual AUROC for all compounds in each of our 
four planned biomarker models. Including all time-points, indi-
vidual compound AUROCs in the validation dataset ranged from 
0.44 to 0.60 for 69 compounds and from >0.60 to 0.69 for 19 com-
pounds (Supplementary Table S2).

Discussion
We used untargeted plasma metabolomics to identify potential 
biomarkers of insufficient sleep in humans. The SVM biomarker 
model that excluded compounds with 24-hour time-of-day pat-
terns produced the best overall performance with 74% accuracy 
and MCC = 0.39. The logistic regression biomarker model that 
also excluded compounds with 24-hour time-of-day patterns 
produced a similar overall performance with 74% accuracy 
and MCC = 0.34. Using whole blood transcriptomics, Laing et al. 
identified biomarker models that predicted total sleep depriv-
ation with 92% accuracy and MCC = 0.83, and insufficient sleep 

(1 week of 6 hours sleep opportunities) with 57% accuracy and 
MCC = 0.14 [40]. Our findings in combination with the findings 
from Laing et al., suggest omics-based approaches are viable for 
identifying biomarkers of insufficient sleep and total sleep de-
privation. A key strength of the findings from Laing et al. and us 
is the use of independent training and validation datasets since 
performance assessments on training data often result in overly 
optimistic findings. Our findings of higher LOOCV accuracy in 
the training dataset compared to IV accuracy in the validation 
dataset for all our biomarker models is consistent with this con-
cept and supports the need for true independent validation. 
Ultimately, the candidate omics-based biomarkers identified to 
date will require further work to refine and validate for clinical 
and research uses. Such efforts will help advance the biomarker 
goals of the Sleep Research Society and the National Institutes 
of Health [26, 27].

The five biochemical pathways associated with all four 
planned biomarker models were ABC Transporters in Lipid 
Homeostasis, High-Density Lipoprotein (HDL) Remodeling, 
Plasma Lipoprotein Remodeling, Golgi-to-ER retrograde trans-
port, and Intra-Golgi and Retrograde Golgi-to-ER Traffic. The 
ABC transporters are highly conserved cellular transmembrane 
transport proteins, have high expression levels in monocytes and 
macrophages, are regulated in part by sterol flux, and have been 
linked to chronic inflammatory conditions including athero-
sclerosis [65]. Specifically, the ABC family A and G transporters 
facilitate reverse cholesterol transport from macrophage-foam 
cells to HDL particles, and are reported to be down-regulated 
during insufficient sleep [66]. Accordingly, potential changes in 
the ABC transporters during insufficient sleep may be linked to 
an inflammatory response and risk of atherosclerosis associ-
ated with insufficient sleep, although follow-up targeted studies 
are needed to confirm our findings. The associations with other 
pathways related to lipid metabolism consist of HDL Remodeling 
and Plasma Lipoprotein Remodeling, which may also be linked 
to changes in cholesterol homeostasis through the ABC trans-
porters, further suggesting insufficient sleep can impact chol-
esterol metabolism. In general, Golgi-to-ER retrograde transport 
must be tightly regulated with anterograde transport from the 
ER to the Golgi to maintain functionality of these organelles, 
especially in relation to transporting proteins and lipids [67]. 
However, much is still unknown about the regulation and func-
tion of Golgi-to-ER retrograde transport. Thus, in the context of 

Table 3. Between condition performance metrics

IV ACC IV sensitivity IV specificity IV MCC IV AUROC

Compounds with and without 24-hour time-of-day patterns included
 Logistic Regression: 5H and BL (66) 71% 47% 100% 0.54 0.82 ± 0.08
 Logistic Regression: 5H and 9H (66) 61% 47% 71% 0.19 0.60 ± 0.10
 Linear SVM: 5H and BL (47) 71% 47% 100% 0.54 0.91 ± 0.06
 Linear SVM: 5H and 9H (47) 56% 47% 62% 0.09 0.63 ± 0.10
Compounds with 24-hour time-of-day patterns excluded
 Logistic Regression: 5H and BL (65) 71% 47% 100% 0.54 0.83 ± 0.08 
 Logistic Regression: 5H and 9H (65) 64% 47% 76% 0.24 0.63 ± 0.10
 Linear SVM: 5H and BL (65) 71% 60% 85% 0.46 0.83 ± 0.08
 Linear SVM: 5H and 9H (65) 69% 60% 76% 0.37 0.64 ± 0.10

5H and BL indicates samples from the 9H condition were excluded from the calculation of performance metrics. 5H and 9H indicates samples from the BL condition 

were excluded from the calculation of performance metrics. Numbers in parenthesis indicate total number of compounds in each biomarker model. BL, baseline 

condition; 9H, control condition; 5H, insufficient sleep condition; ACC, accuracy.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsz321#supplementary-data
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Table 4. Biochemical pathways associated with each biomarker model

Pathway
Pathway 
source

Compound 
hits

Total compounds 
in pathway p-value FDR

Logistic regression—compounds with and without 24-hour time-of-day patterns included (66)
 Sphingolipid de novo biosynthesis Reactome 4 29 <0.0001 0.0104
 Sphingolipid metabolism Reactome 4 52 <0.0001 0.0288
 Immune System Reactome 4 56 <0.0001 0.0288
 Synthesis of PC Reactome 3 22 <0.0001 0.0372
 Synthesis of PS Reactome 2 5 0.0001 0.0609
 Acyl chain remodeling of PE Reactome 2 5 0.0001 0.0609
 Adaptive Immune System Reactome 3 29 0.0001 0.0609
 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid 

cell
Reactome 2 6 0.0002 0.0661

 Acyl chain remodeling of CL Reactome 2 6 0.0002 0.0661
 ABC transporters in lipid homeostasisa Reactome 2 7 0.0003 0.0767
 Sphingolipid Metabolism SMPDB 3 40 0.0004 0.0767
 Gaucher Disease SMPDB 3 40 0.0004 0.0767
 Globoid Cell Leukodystrophy SMPDB 3 40 0.0004 0.0767
 Metachromatic Leukodystrophy (MLD) SMPDB 3 40 0.0004 0.0767
 Fabry disease SMPDB 3 40 0.0004 0.0767
 Krabbe disease SMPDB 3 40 0.0004 0.0767
 Golgi-to-ER retrograde transport a Reactome 2 9 0.0005 0.0891
 Glycerophospholipid biosynthesis Reactome 3 46 0.0006 0.0913
 HDL remodelinga Reactome 2 10 0.0006 0.0913
 Plasma lipoprotein remodelinga Reactome 2 10 0.0006 0.0913
 Synthesis of PG Reactome 2 10 0.0006 0.0913
 Metabolism of proteins Reactome 4 117 0.0007 0.0949
 Intra-Golgi and retrograde Golgi-to-ER traffica Reactome 2 11 0.0007 0.0949
 Phospholipid metabolism Reactome 3 50 0.0007 0.0949
Linear SVM—Compounds with and without 24-hour time-of-day patterns included (47)
 ABC transporters in lipid homeostasisa Reactome 2 7 <0.0001 0.0826
 Golgi-to-ER retrograde transporta Reactome 2 9 0.0001 0.0826
 HDL remodelinga Reactome 2 10 0.0002 0.0826
 Plasma lipoprotein remodelinga Reactome 2 10 0.0002 0.0826
 Synthesis of PG Reactome 2 10 0.0002 0.0826
 Intra-Golgi and retrograde Golgi-to-ER traffica Reactome 2 11 0.0002 0.0826
 Role of phospholipids in phagocytosis Reactome 2 12 0.0003 0.0826
 Surfactant metabolism Reactome 2 13 0.0003 0.0826
 ABC-family proteins mediated transport Reactome 2 13 0.0003 0.0826
 Plasma lipoprotein assembly_ remodeling_ and clearance Reactome 2 13 0.0003 0.0826
 Fcgamma receptor (FCGR) dependent phagocytosis Reactome 2 14 0.0003 0.0903
 Synthesis of PA Reactome 2 15 0.0004 0.0936
 PLC beta mediated events Reactome 2 17 0.0005 0.0936
 G-protein mediated events Reactome 2 17 0.0005 0.0936
 PI Metabolism Reactome 2 17 0.0005 0.0936
Logistic regression and linear SVM—Compounds with 24-hour time-of-day patterns excluded (65)
 Acyl chain remodeling of PCb Reactome 2 6 <0.0001 0.0671
 Acyl chain remodeling of CL Reactome 2 6 <0.0001 0.0671
 ABC transporters in lipid homeostasisa Reactome 2 7 <0.0001 0.0671
 COPI-independent Golgi-to-ER retrograde trafficb Reactome 2 7 <0.0001 0.0671
 Phospho-PLA2 pathwayb Reactome 2 7 <0.0001 0.0671
 Golgi-to-ER retrograde transporta Reactome 2 9 0.0001 0.0673
 HDL remodelinga Reactome 2 10 0.0002 0.0673
 Plasma lipoprotein remodelinga Reactome 2 10 0.0002 0.0673
 Choline metabolism in cancer—Homo sapiens (human)b KEGG 2 10 0.0002 0.0673
 Ca-dependent eventsb Reactome 2 11 0.0002 0.0673
 Intra-Golgi and retrograde Golgi-to-ER traffica Reactome 2 11 0.0002 0.0673
 ABC-family proteins mediated transport Reactome 2 13 0.0003 0.0729
 Plasma lipoprotein assembly_ remodeling_ and clearance Reactome 2 13 0.0003 0.0729

Pathways within each biomarker model are ordered by p-value. Number of compounds indicates the number of compounds from the given biomarker model that 

appear in the pathway. Total compounds in the pathway indicates the number of compounds in the pathway that are in the background list. Numbers in parenthesis 

indicate total number of compounds in each biomarker model. FDR, false discovery rate.
aPathways that overlap between all four biomarker models.
bPathways that are unique to the models that exclude compounds with 24-hour time-of-day patterns.
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our current findings, the functional significance of Golgi-to-ER 
retrograde transport during insufficient sleep is not clear.

Of the five unique pathways associated with our top-
performing biomarker model, two are linked to phospholipid 
metabolism (Acyl Chain Remodeling of Phosphatidylcholine 
and Phospho-PLA2 Pathway), implicating altered phospholipid 
metabolism with insufficient sleep. The two altered compounds 
in both of these pathways are lysoPC-[18:3] and PC-[40:5]. 
Phospholipids are key structural and functional components 
of cell membranes [58]. Changes in skeletal muscle phospho-
lipid metabolism have been linked to altered insulin sensi-
tivity [68, 69]. We previously reported that insulin sensitivity 
was reduced during insufficient sleep in the current study [14]. 
It is possible that such changes in insulin sensitivity may be 
linked to some of the altered compounds involved in phospho-
lipid metabolism observed here, including lysoPC-[18:3], 
lysophosphatidylethanolamine (PE)-[22:5], PC-[38:5], PC-[40:5], 
PE-[35:3], PE-[39:2], and phosphatidylinositol (PI)-[38:3] from our 
top-performing biomarker model.

Nine out of the 10 gene ontology biological processes as-
sociated with the gene-metabolite network derived from 
our top-performing biomarker model are linked to ei-
ther phospholipid metabolism or sphingolipid metabolism. 
Specifically, the sphingolipids ceramide (CER)-[40:2], CER-[d41:2], 
sphingomyelin(SM)-[43:2], and SM-[d33:2] were altered during 
insufficient sleep in our top-performing biomarker model. In 
addition to phospholipids, changes in sphingolipids, and not-
ably ceramides have also been linked to inflammation and risk 
of metabolic disorders [68, 70, 71], further suggesting that our 
biomarker model may in part be reflecting changes in inflam-
mation and insulin sensitivity associated with insufficient sleep. 
Furthermore, altered phospholipid and sphingolipid metabolism 
have been linked to mild cognitive impairment and Alzheimer’s 
Disease [72]. As insufficient sleep is believed to contribute to 
risk of Alzheimer’s Disease [18, 20], altered phospholipid and 
sphingolipid metabolism may represent a common pathway 
linking insufficient sleep and risk of Alzheimer’s Disease. While 
it is possible that changes in phospholipid and sphingolipid me-
tabolism contribute to risk of metabolic and neurodegenerative 
disorders associated with insufficient sleep, causality cannot be 
determined in our current study. Ultimately, if our findings are 
validated in larger prospective trials it will strengthen the links 
between insufficient sleep, altered lipid metabolism, increased 
inflammation, and risk of disease.

Consistent with Weljie et al. [39], we show decreased fasting 
DAG-36:3 during insufficient sleep versus adequate sleep in the 
BL condition. However, fasting DAG-36:3 was not statistically 
different in 5H versus 9H, suggesting DAG-36:3 may also be im-
pacted by factors other than sleep duration. Fasting DAG-36:3 
produced an MCC of 0.40 whereas our top-performing biomarker 
model produced an MCC of 0.53 at the fasting time-point, sup-
porting the hypothesis that biomarkers of insufficient sleep 
with multiple compounds are likely to produce better overall 
performance compared to any single compound. Although 
DAG-36:3 was not in any of our current biomarker models, as 
a single compound, the MCC of 0.40 shows promise and fasting 
DAG-36:3 should be considered in future biomarker studies as 
a potential candidate, especially for samples collected after an 
overnight fast.

There are known biochemical links between the changes in 
DAG, phospholipid, and sphingolipid metabolism we observed 

during insufficient sleep. Specifically, the enzyme sphingo-
myelin synthase catalyzes the reaction CER + PC ↔ SM + DAG 
[68], and CER can increase the activity of phospholipase A2 [73], 
that hydrolyzes phospholipids at the SN-2 position resulting in 
a fatty acid and a lysophospholipid. Furthermore, the collective 
changes in DAG, phospholipid, and sphingolipid metabolism are 
hypothesized to be linked to reduced insulin sensitivity through 
mitochondrial dysfunction, reactive oxygen species, and in-
flammation, ultimately forming a negative feedback loop that 
contributes to metabolic dysregulation [68]. Since altered DAG-
36:3, PCs, and SMs have now been observed in humans and rats 
during insufficient sleep [39], a more thorough and targeted in-
vestigation of lipid metabolism including gene expression and 
lipidomic analyses during insufficient sleep is warranted. Such 
analyses will provide further insight into how lipid metabolism 
is altered during sleep loss and its potential impacts on insulin 
sensitivity and risk of disease.

Because we collected samples across the 24-hour day, 
we trained biomarker models on datasets that included and 
excluded compounds with 24-hour time-of-day patterns. 
Consistently, a priori exclusion of compounds with 24-hour time-
of-day patterns resulted in equal or better overall performance 
compared to the biomarker models that included compounds 
with and without 24-hour time-of-day patterns, and compared 
to the exploratory biomarker models that included only com-
pounds with 24-hour time-of-day patterns. Multiple factors 
such as the fasting/feeding cycle, sleep-wake cycle, and the cir-
cadian clock [29, 32, 34, 74], likely contributed to the 24-hour 
time-of-day patterns in many of the compounds. Laing et  al. 
also showed a priori variable selection improved some of their 
reported transcriptomics-based biomarker models [40]. Thus, in 
the context of biomarker development it is critical to test a range 
of potential biomarkers, and when possible, explore a priori 
variable selection to minimize known biological variation such 
as 24-hour time-of-day patterns. Future metabolomics-based 
biomarker trials should include compounds with and without 
24-hour time-of-day patterns to confirm our current findings. 
Furthermore, studies with ideally larger sample sizes and more 
frequent sampling, and that utilize established circadian proto-
cols such as the constant routine or forced desynchrony are re-
quired to identify 24-hour time-of-day patterns regulated by the 
behavioral (e.g. sleep-wake or fasting/feeding) versus circadian 
cycles [75].

When analyzing the performance of our biomarker models 
at individual time-points, the T1 fasting time-point and T9 non-
fasting time-point consistently produced the best perform-
ance. The T1 fasting time-point is the most clinically relevant 
as fasting blood collection is most common in clinical settings. 
Since consuming a single meal or a small snack acutely im-
pacts the human plasma metabolome [76–79], energy intake 
throughout the day likely increased the variability in non-fasted 
samples. Notably, during ad libitum energy intake during in-
sufficient sleep, more calories were consumed as post-dinner 
snacks compared to any other single meal [17], likely contrib-
uting to the lower performance of our biomarker models in the 
T13 samples that were collected during this post-dinner snack 
timeframe. Furthermore, participants completed two 20-minute 
stair-stepping sessions per day to simulate activity outside the 
laboratory setting [17] (Figure 3). The T5 samples were collected 
immediately before a stair-stepping session, whereas, the T9 
samples were collected ~40 minutes following a stair-stepping 
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session. The different timing of the stair-stepping sessions 
relative to the T5 and T9 sample collections may have contrib-
uted to the differences in performance metrics between time-
points. Our findings show normal activities of daily living can 
impact the human plasma metabolome and the performance 
of omics-based biomarkers must be carefully tested and valid-
ated using the specific conditions of their anticipated clinical 
and research uses.

Our top-performing biomarker model, the SVM model that 
excluded compounds with 24-hour time-of-day patterns, had 
higher IV sensitivity in men versus women indicating this 
biomarker model correctly classified insufficient sleep more 
frequently in men versus women. Alternatively, IV specificity 
was lower in men versus women indicating this biomarker 
model misclassified adequate sleep more frequently in men 
versus women. As previously described [17], women parti-
cipants had a history of regular menstrual cycles, and men 
were in greater positive energy balance and gained more 
weight versus women during the 5H and 9H conditions with 
ad libitum energy intake. Because blood was collected across 
13 days, and condition order was balanced by sex, we did not 
have statistical power to analyze model performance by dif-
ferent menstrual cycle phases. However, it is likely that sam-
ples collected across different menstrual cycle phases, and 
sex differences in energy intake and weight-gain contributed 
to some of the differences in biomarker model performance 
between men and women. Optimally, as omics-based bio-
markers of insufficient sleep progress, biomarker models will 
be trained and validated on men and women independently 
to determine the influence of menstrual cycle phase, opti-
mize sensitivity and specificity, and determine if there is a 
core biochemical signature of insufficient sleep common to 
men and women.

For the four planned biomarker models, the IV accuracy, IV 
specificity, IV MCC, and IV AUROC were higher when exclusively 
classifying samples in the 5H and BL conditions compared to ex-
clusively classifying samples in the 5H and 9H conditions, sug-
gesting ad libitum energy intake in the 9H condition reduced 
the performance of our models. It is also possible that condition 
order contributed to these findings. Specifically, during condi-
tion order B, where participants completed the 5H condition fol-
lowed by the 9H condition, 5 days of 9 hours sleep opportunities 
during 9H may not have fully recovered our biomarker models 
back to BL levels. However, in our top-performing biomarker 
model, MCC and IV specificity were similar between condition 
order A and B suggesting that our biomarker model recovered 
after the 9H condition in condition order B.  Another consid-
eration is the regularity of sleep timing and duration. Under 
free-living conditions, we expect the regularity of insufficient 
sleep and any attempts at recovery sleep to be more variable 
than our laboratory protocol since we controlled all sleep oppor-
tunities, keeping the mid-point of sleep centered across condi-
tions. How the regularity of insufficient and recovery sleep may 
impact metabolomics-based biomarkers of insufficient sleep 
remains to be determined, especially since insufficient and re-
covery sleep can alter energy intake [8, 13, 17]. As the field pro-
gresses, it is essential to validate our preliminary findings using 
independent cohorts studied under controlled laboratory condi-
tions as well as free-living conditions ranging from days to years 
to quantify the timescale of changes in our biomarker model 
with different sleep patterns.

Our findings are derived from a laboratory-controlled study 
of scheduled insufficient sleep based on habitual bed and wake 
times in otherwise healthy adults. As others have suggested [26, 
80, 81], this is a preferred experimental design during the bio-
marker discovery phase. The primary limiting factor of our bio-
markers is the high rate of false negatives (i.e. misclassifying 
insufficient sleep). Moving forward, large-scale independent 
validation studies conducted in laboratory and “real-world” or 
field settings using completely independent cohorts are neces-
sary to refine and validate our metabolomics-based biomarkers 
of insufficient sleep. Such independent validation studies could 
also facilitate direct comparison of the performance of dif-
ferent omics-based biomarkers such as transcriptomics and 
metabolomics. Factors including age, sex, body mass index, 
physical activity, and chronic disease status have the potential 
to influence biomarker performance and these factors must be 
considered at the population level in validation trials. Beyond 
our findings, there are opportunities to identify omics-based 
biomarkers that link insufficient sleep with behavior and physi-
ology such as cognitive performance, sleep staging, slow-wave 
activity, insulin sensitivity, and blood pressure. Sleep health is 
multi-dimensional [82] including aspects of regularity, satis-
faction, alertness, timing, efficiency, and duration. Integrating 
omics-based biomarkers into the larger construct of overall 
sleep health will facilitate translation of such biomarkers, and 
if further developed and validated using independent cohorts, 
could eventually help identify novel countermeasures designed 
to mitigate the negative health consequences of insufficient 
sleep.

Supplementary material
Supplementary material is available at SLEEP online.
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