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Abstract
Study Objectives:  Multisensor wearable consumer devices allowing the collection of multiple data sources, such as heart rate and motion, for the evaluation of sleep 

in the home environment, are increasingly ubiquitous. However, the validity of such devices for sleep assessment has not been directly compared to alternatives 

such as wrist actigraphy or polysomnography (PSG).

Methods:  Eight participants each completed four nights in a sleep laboratory, equipped with PSG and several wearable devices. Registered polysomnographic 

technologist-scored PSG served as ground truth for sleep–wake state. Wearable devices providing sleep–wake classification data were compared to PSG at both an 

epoch-by-epoch and night level. Data from multisensor wearables (Apple Watch and Oura Ring) were compared to data available from electrocardiography and a 

triaxial wrist actigraph to evaluate the quality and utility of heart rate and motion data. Machine learning methods were used to train and test sleep–wake classifiers, 

using data from consumer wearables. The quality of classifications derived from devices was compared.

Results:  For epoch-by-epoch sleep–wake performance, research devices ranged in d′ between 1.771 and 1.874, with sensitivity between 0.912 and 0.982, and 

specificity between 0.366 and 0.647. Data from multisensor wearables were strongly correlated at an epoch-by-epoch level with reference data sources. Classifiers 

developed from the multisensor wearable data ranged in d′ between 1.827 and 2.347, with sensitivity between 0.883 and 0.977, and specificity between 0.407 and 

0.821.

Conclusions:  Data from multisensor consumer wearables are strongly correlated with reference devices at the epoch level and can be used to develop epoch-by-

epoch models of sleep–wake rivaling existing research devices.
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Statement of Significance

Inexpensive and accessible multisensor wearable devices that allow for the collection of data relevant to sleep assessment, such as tri-
axial accelerometer signals and heart rate, are increasingly common. Sleep–wake classifications from several wrist actigraph devices were 
compared against ground truth classifications derived from polysomnography. Machine learning was subsequently used to develop a novel 
classification algorithm of sleep–wake, using data from consumer multisensor wearables. The model that was developed using data from 
wearable devices generated more accurate epoch-by-epoch sleep–wake classifications than existing wrist actigraph devices, suggesting 
that such consumer devices may allow for the study of sleep among a more general population and in more ecologically valid scenarios 
than was previously possible.
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Introduction

The use of wrist-worn actigraphy, or watch-like devices sensi-
tive to motion, to distinguish sleep from wake has been explored 
for over 40  years. The performance of a device to distinguish 
sleep from wake can be considered at two levels of analysis: the 
epoch level, defined as the ability of a device to correctly classify 
each sleep epoch (typically 30 s) within the night, and the night 
level, i.e. the ability of the device to summarize the entire night 
of sleep.

Kupfer et  al. [1] initially observed that at the night level, 
movement counts derived from a wrist-worn actigraphy device 
were highly correlated with movement counts derived from 
polysomnography (PSG). Wrist actigraphy has since emerged as 
a popular alternative to PSG because of the low obtrusiveness, 
more manageable cost, and adequate accuracy for monitoring 
sleep–wake states determined by PSG, the gold standard for 
monitoring sleep [2]. Despite actigraphy’s long history and ex-
cellent ecological monitoring utility, however, devices that focus 
on motion-sensing have common limitations in wake detection 
using current algorithms [3].

Human scorers of PSG or wrist actigraphy generate similar 
night-level summary statistics for sleep–wake, such as the total 
minutes of sleep within the night [4], and can discriminate sleep 
from wake based on actigraphy data for as narrow as 1-min 
sleep durations with high accuracy [5]. Automated staging algo-
rithms using actigraphy data now classify sleep–wake, although 
with the continued need for a human scorer to define the “time 
in bed” period typically corroborated using sleep diaries [6–8].

Common algorithms using wrist actigraphy data appear 
biased toward the classification of sleep [3], with poorer accuracy 
for the detection of wakefulness. In terms of Signal Detection 
Theory treating sleep as the “target” to be detected within a 
sleep–wake classifier, actigraphy tends to be more accurate at 
correctly classifying periods of sleep (classifier sensitivity) than 
correctly classifying periods of wake (classifier specificity) [3]. In 
practice, this detection imbalance means that actigraphy-based 
sleep–wake classifiers misclassify a greater number of wake 
epochs as sleep than vice-versa, leading to an overclassification 
of sleep. As a result, overall classification performance will be 
poorer for nights or individuals with a greater amount of wake-
fulness. For example, among individuals with sleep disorders, 
the bias against detecting wake is especially pronounced, with 
wakefulness detection of only 35%–50% [3, 9–14]. As poor sleep 
impacts many aspects of daily life, including work productivity 
[15–20], the risk of accidents [21–25], chronic disease risk, and 
health care costs [26–30], improving the assessment of sleep–
wake outside of a laboratory environment is critical.

Commonly used actigraphy-based sleep–wake algorithms 
include the “Cole–Kripke” [6] and “Sadeh” [31] approaches, 
which use statistics on the motion from both the epoch being 
classified and from epochs several minutes into the past and 
future. As wrist actigraphy is conventionally implemented on a 
device dedicated to monitoring motion, some of the limitations 
in detecting periods of wake may be attributable to the use of a 
single monitoring modality. Many consumer wearable devices 
such as “smartwatches” contain both triaxial accelerometers 
and other sensor modalities. With their increasing ubiquity, 
there is an opportunity to noninvasively assess the synergy of 
multi-modal or multi-device-informed algorithm performance 
in sleep–wake classification.

Although sleep stages are typically assessed via changes 
in the central nervous system (CNS), as measurable with elec-
troencephalography (EEG), the activity of the autonomic ner-
vous system (ANS) also varies by sleep stage and is measurable 
through changes in heart rate and heart rate variance over time. 
For example, de Zambotti et al. [32] describe in a recent review 
the links between CNS and ANS activity with respect to sleep. 
The newest generation of wearable devices confers monitoring 
capabilities that make an evaluation of ANS activity more ac-
cessible, primarily via the monitoring of cardiac activity via 
photoplethysmography (PPG) optical sensors. For the purpose 
of sleep–wake assessment, these PPG sensors provide a sup-
plement to the accelerometers traditionally found in wrist 
actigraphs.

Some consumer wearables include the Oura Ring, Apple 
Watch, and Fitbit lines of devices. The Oura Ring, Apple Watch, 
and several models in the Fitbit line are capable of measuring 
both user motion and cardiac activity. In addition, some com-
panies such as Oura and Fitbit have developed their own pro-
prietary algorithms to generate measures of sleep quality from 
the raw data collected by their devices. Independent evaluations 
of these devices referenced against concurrently collected PSG 
have suggested accuracy for discriminating sleep–wake that is 
comparable to existing research-grade wrist actigraphy devices. 
For example, the Oura Ring has been reported to have a sensi-
tivity to detect sleep of 96% and a specificity to detect wake of 
48% [33], whereas the Fitbit Charge 2 has been reported to have 
a sensitivity to detect sleep of 96% and a specificity to detect 
wake of 61% [34]. We refer to these new types of devices, which 
contain both accelerometers suitable for motion actigraphy and 
technology to measure cardiac activity (such as a PPG sensor), as 
multisensor wearables.

Beyond the algorithms provided by device manufacturers, 
many wearable devices also allow users or software devel-
opers to access the data from some or all of the sensors in-
cluded on the device, via (for example) an application user 
interface or software development kit. However, as noted by 
de Zambotti et al. [35], there is still room for improvement on 
the part of manufacturers. Specifically, device standardiza-
tion, complete data access, and more algorithmic openness 
would benefit the research, clinical, and consumer com-
munities. Allowing users and developers access to the raw 
sensor data permits the creation of novel algorithms and 
applications; for example, leveraging advances in machine 
learning to develop new classifiers beyond those provided by 
the manufacturer. In some cases, the sensor data from a de-
vice could be used by developers as it is collected to support 
“real-time” detection and innovative interventions designed 
to enhance sleep.

Combining actigraphy with cardiac data has the potential to 
improve consumer-friendly devices beyond those which utilize 
motion data alone. Existing techniques such as the Cole–Kripke 
sleep–wake algorithm use motion alone, necessitating the 
need for the development of new procedures to incorporate 
additional orthogonal data modalities. Supervised machine 
learning techniques are one method to flexibly incorporate new 
measurement modalities, such as the combination of motion 
and heart rate data, to distinguish sleep from the wake. In the 
present study, several analyses were conducted to develop and 
evaluate the performance of a machine learning model relative 
to other common devices.
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Within analysis 1, we first examined the quality of sleep–
wake classification from several wearable devices, including 
common research wrist actigraphy devices and the Oura Ring, 
versus registered polysomnographic technologist (RPSGT) 
scored PSG as ground truth. Each device was evaluated in terms 
of how well it corresponded to PSG scoring at both an epoch-by-
epoch and night level. The Apple Watch was not included within 
this first analysis, as it does not natively output sleep–wake clas-
sifications. Within analysis 2, we evaluated the quality of data 
available from two multisensor wearable devices, the Oura Ring 
and Apple Watch, by comparing their data to those obtained 
from an electrocardiography (ECG) channel of a PSG montage 
and to triaxial motion data from a triaxial wrist actigraph, the 
ActiGraph Link. This analysis was performed to establish the 
suitability of these devices for the development of a sleep–wake 
classifier. Finally, within analysis 3, we used supervised machine 
learning techniques to develop and evaluate a series of sleep–
wake classification algorithms informed by motion and cardiac 
data from the wearable devices. In order to evaluate how well 
similar models would compare using common laboratory data, 
models were also developed using data from the ECG channel 
of the PSG in conjunction with triaxial motion data from a 
common research-grade wrist actigraph, serving as a point of 
comparison.

Methods

Participants

Healthy adults between 35 and 50 years of age with normal color 
vision and normal hearing were eligible to enroll. Participants 
were excluded for chronic or acute medical conditions requiring 
the use of medication with a reasonable likelihood to inter-
fere with sleep or circadian structure, smoking within the past 
year, nocturnal shift work within the last 6  months or travel 
through more than three time zones within the last 3 months, 
substance use (verified with 9-panel urine toxicology screening 
for amphetamines, cocaine, marijuana, opiates, phencyclidine, 
barbiturates, benzodiazepines, methadone, and propoxyphene 
at admission), and sleep disorders (screened during the first in-
patient night). Participants were also asked to refrain from caf-
feine and alcohol for the 3 days immediately prior to inpatient 
admission. All participants provided written informed consent. 
All procedures were approved by the Institutional Review Board 
of the Pennsylvania State University and conducted in accord-
ance with the Declaration of Helsinki.

Screening

Initial screening was conducted to evaluate typical partici-
pant sleep at home using a sleep diary and wrist actigraphy 
(Spectrum Plus; Philips Respironics, Murrysville, PA) worn for 
at least 4  days and nights. Average sleep duration during the 
at-home screening was determined according to a previously 
described algorithm using 30-s epochs of movement count 
[3]; consecutive low-movement epochs were used to approxi-
mate sleep onset and awakening and therefore sleep time each 
night. Each individual participant’s average sleep duration from 
actigraphy was used as an alternate criterion for their minimum 
average sleep opportunity (time in bed) before later inpatient 

admission: participants received instruction to be in bed for 
8 h or their average, whichever was longer, for each of the three 
nights prior to lab admission.

Participants were confirmed to be free of sleep-related 
breathing disorders at home through pulse oximetry (Nonin 
Model 3150; Nonin Medical, Plymouth, MN); specifically, no noc-
turnal oxygenation fluctuations that resulted in substantial 
time spent below 88% peripheral oxygen saturation or five or 
more oxygen fluctuations per hour. Following sleep screening, 
participants underwent a physical examination and medical 
history by a physician or nurse practitioner.

Protocol

Participants in the study completed four consecutive days 
and nights in the laboratory. On the second and fourth night 
of participation, participants received auditory stimulation, de-
signed to either enhance or disrupt sleep, referred to here as 
the Enhancing and Disruptive nights, respectively. The order 
of Enhancing and Disruptive stimulation was counterbalanced 
across participants. No auditory stimulation was presented on 
the first or third night, which is referred to as Habituation and 
Sham, respectively. The results of the auditory stimulation are 
outside the scope of this report, which is focused on the ability 
of various wearable devices to dissociate sleep from the wake, 
and have been discussed elsewhere [36]. None of the devices or 
classification algorithms in this report had knowledge of the ex-
perimental condition or the presence of auditory stimulation.

Participants were admitted to the Clinical Research Center 
at the Pennsylvania State University (University Park campus) 
and provided a biospecimen (urine) for toxicology screening. 
Participants were maintained in a light and sound-attenuated 
sleep laboratory suite and instrumented with PSG (TrackIt 
v2.8.0.8; Lifelines Ltd, Irvine, CA and Polysmith v10.0 build 7956; 
Nihon-Kohden, Tokyo), comprised of EEG, electrooculography, 
electromyography, and ECG, all sampled at 200 Hz. The EEG 
montage contained 11 channels: ground at location FPz, left 
mastoid (M1), right mastoid (M2), F3, Fz, F4, C3, Cz, C4, O1, and 
O2. Midline electrodes were referenced to the left mastoid, while 
lateral electrodes were referenced to the contralateral mastoid. 
ECG electrodes (two) were placed according to the American 
Academy of Sleep Medicine (AASM) standard [37].

In addition to PSG, participants were outfitted with sev-
eral wearable devices, including an Apple Watch (wrist of 
nondominant hand; distal), Oura Ring (best fitting finger per 
participant), ActiGraph Link (wrist of dominant hand), and 
Philips Respironics Spectrum Plus (wrist of nondominant hand; 
proximal) (Table 1). Although the ActiGraph Link was placed on 
an alternate hand from the other two wrist devices, prior work 
has reported a high correspondence for wrist actigraphy concur-
rently collected from dominant and nondominant wrists [38].

Participants were scheduled for a 9-h time in bed sleep op-
portunity in darkness; due to technical and time constraints, ac-
tual sleep opportunity in the laboratory ranged from 8h 41m to 
9h 13m (according to PSG, lights out to lights on).

Polysomnography processing and sleep staging

PSG data were staged in 30-s epochs according to the AASM 
standards by the RPSGT (author MMS). During staging, the 
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RPSGT was blinded to the auxiliary data channel that included 
information regarding the timing presence of auditory stimula-
tion. In some cases of discontinuous nocturnal recording due to 
unreadable EEG data (e.g. poor data quality or participant dis-
connected for restroom use), sections of data were considered 
“unscorable” and were excluded from epoch-level analyses.

Analysis 1: Evaluation of device classification

Sleep–wake classification from devices was compared to 
RPSGT-derived sleep staging to establish a point of reference for 
evaluating our machine learning model performance. Philips 
Actiware software v6.0.9 was used to export the Actiwatch 
Spectrum Plus sleep–wake output at 30-s intervals. When clas-
sifying each 30-s sleep epoch, the Actiware software computes 
a weighted sum of activity counts within the current epoch, the 
prior four epochs, and the following four epochs. If this sum ex-
ceeds a predefined threshold, the epoch is classified as a wake. 
Classifications were exported from the Actiware software using 
the default wake threshold of “Medium,” corresponding to an 
activity count sum threshold of 40. ActiGraph ActiLife software 
v6.11.8 was used to export the ActiGraph Link sleep–wake output 
at 60-s intervals. The ActiLife software allows the selection of one 
of two algorithms, which are based upon (but may not be imple-
mented identically to) existing sleep–wake algorithms: “Cole–
Kripke” [6] or “Sadeh” [31]. These two algorithm selections were 
separately output for comparison to our RPSGT staging. The Oura 
Ring (version 1) provides sleep staging with four categories (wake, 
“light” sleep, “deep” sleep, rapid eye movement) at 30-s intervals. 
To compare the Oura output to other sleep–wake output, the four-
category staging was discretized into sleep and wake.

While the Actiwatch and ActiGraph devices score data con-
tinuously, the Oura Ring stores data when it determines the 
wearer is in bed. In some cases, the Oura Ring did not fully cap-
ture the period that the participant was in bed and thus did not 
begin to provide staging information by the time the experi-
mental lights-out period began or stopped providing staging 
information before the experimental lights-out period ended. 
In these cases, those missing sleep epochs were filled to the 
bounds of the experimental in-bed period with the classifica-
tion of “wake.” In addition to the device classifications, a naïve 
“model” was constructed that always predicts sleep (because 
the “time in bed” period is typically skewed toward sleep rather 
than wake), serving as a point of reference for the performance 
of a theoretical classifier that provides no information.

The intervals used by each device for classification are not 
necessarily aligned to the intervals which define a 30-s sleep 
epoch labeled by the RPSGT. For example, even if the device pro-
vides classification in 30-s time windows, the start of the 30-s 
period may not be aligned to the start of the epoch used by the 
RPSGT for staging. For the purposes of comparison, each RPSGT-
staged epoch was compared to the epoch from each device with 
the closest timestamp. In the case of data from the ActiGraph 
Link, while the device epochs are at 60-s intervals, the nearest 
labeled epoch to each 30-s RPSGT-staged reference epoch was 
used. If a device lacked a staged epoch within 30 s of a given PSG 
epoch due to missing data, that epoch was not evaluated for that 
device. Any epochs that could not be staged by the RPSGT (la-
beled “unscorable”) were excluded from the comparison. In add-
ition, in order to mitigate the influence of clock offsets between 
each device and the PSG, which can especially influence the 
epoch-by-epoch comparisons, the sleep–wake output from each 
device was shifted ±5 min relative to the PSG output, to identify 
the lag (if any) that optimized the sleep–wake correspondence 
between the device and PSG, for each night. This shifted ver-
sion was subsequently used to compute both epoch-by-epoch 
and night-level statistics on data correspondence. A similar pro-
cedure (also with a ±5 min window) has been previously used to 
mitigate potential time offsets between actigraphy counts and 
sleep–wake staging [3].

Analysis 1A: Epoch-by-epoch correspondence 
between devices and PSG

Several metrics were computed using the Caret package for R 
[39] to evaluate the performance of the classifications from each 
device, treating the RPSGT-staged PSG as the correct or “ground 
truth” label for comparison, with sleep as the “positive” class 
to be detected. These comparisons were performed after re-
stricting to the complete cases of epochs that were present for 
both a given device and for the PSG-derived staging; epochs that 
were missing for a given device or deemed unscorable by the 
RPSGT were not included in the comparison. The following met-
rics were evaluated:

Accuracy: the percentage of epochs correctly classified.
Balanced accuracy: the mean of wake epochs correctly classified and 
sleep epochs correctly classified.
Sensitivity: also known as recall, the percentage of sleep epochs 
correctly classified.
Specificity: the percentage of wake epochs correctly classified.

Table 1.  Manufacturer, Device Name, and Data Details for Wearable Devices Used Within the Study

Manufacturer Device Data Reference

ActiGraph 
(Pensacola, FL)

Link Wrist-worn device, triaxial accelerometer sam-
pling at 80 Hz.

http://actigraphcorp.com/products/ 
actigraph-link/

Apple (Cupertino, CA) Watch (Series 2) Wrist-worn device, triaxial accelerometer sam-
pling at 1.33 Hz, PPG sensor provides BPM 
estimates at approximately 0.2 Hz.

http://www.apple.com/watch/

Oura (Oulu, Finland) Ring (Version 1) Finger worn device, accelerometer internally 
sampling at 50 Hz, providing motion counts at 
30 s intervals, PPG sensor internally sampling 
at 250 Hz, providing R–R intervals.

http://ouraring.com/

Philips Respironics 
(Murrysville, PA)

Spectrum Plus Wrist-worn device, accelerometer internally 
sampling at 32 Hz, providing motion counts at 
30-s intervals.

http://www.actigraphy.com/devices/ 
actiwatch/actiwatch-pro.html

http://actigraphcorp.com/products/actigraph-link/
http://actigraphcorp.com/products/actigraph-link/
http://www.apple.com/watch/
http://ouraring.com/
http://www.actigraphy.com/devices/actiwatch/actiwatch-pro.html
http://www.actigraphy.com/devices/actiwatch/actiwatch-pro.html
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Precision: also known as a positive predictive value, the percentage 
of epochs classified as sleep that are correctly classified.
Cohen’s kappa (κ): classifier agreement with PSG, relative to chance 
[40]. Specifically, kappa is calculated via (po−pe)/ (1−pe), where po is 
the percentage of observed classifications with agreement, and is 
the percentage of classifications that would be expected by chance.
Signal detection theory d-prime (d′): the difference in standard de-
viation between theoretical signal and noise distributions [41]. 
Computed by first transforming the percentage of sleep epochs 
correctly classified as sleep (classifier sensitivity, or “hit rate”) and 
the percentage of wake epochs incorrectly classified as sleep (clas-
sifier “false alarm rate”) into z-scores via the inverse of the normal 
cumulative density function and then computing the difference.

Analysis 1B: Night-level correspondence between 
devices and PSG

For some applications, especially clinical, night-level summaries 
of sleep quality may be of greater interest than epoch-by-epoch 
sleep staging. For this reason, several metrics of sleep quality were 
also calculated, first using the ground truth values from the RPSGT-
derived sleep staging and then using the classifications provided 
by each device. These metrics were computed after restricting to 
the complete cases of epochs that were present for both the device 
being evaluated and the PSG-derived sleep staging:

Sleep efficiency: the percentage of the in-bed period classified 
as sleep.
Sleep onset latency (SOL): the latency, in minutes, from Lights Out 
until the first epoch of sleep occurs.
Total sleep time (TST): the total number of minutes of staged sleep.
Wakefulness after sleep onset (WASO): the number of minutes spent 
awake following the first epoch staged sleep.

For each device and classifier, these metrics were computed for 
all epochs present in the dataset and compared against the PSG 
staging data with the same epochs present.

Analysis 2: Evaluation of motion and heart rate data 
obtained from wearables

PSG preprocessing
The ECG channel of the PSG was processed to serve as a point 
of comparison to the PPG data collected by the Apple Watch 
and Oura Ring, which each provide data that has already had 
some processing applied. The PSG data files were imported into 
MATLAB (Natick, MA), the ECG channel was selected, mean cen-
tered (removing any direct current offset), and bandpass filtered 
between 0.05 and 40 Hz, with a filter of order 20. The filtered time 
series was further decomposed using a symlet wavelet (sym4) 
to 5 levels, with the data at the fourth and fifth levels retained. 
In order to identify the R-peaks of the ECG QRS waveform, the 
square of the absolute value of the resulting wavelet-filtered time 
series was entered into a peak finding algorithm (the MATLAB 
function “findpeaks”) with a minimum peak distance of 100 sam-
ples (0.5 s) and a minimum peak height of 5 mV. Finally, the iden-
tified R-peaks were converted into R–R intervals by labeling each 
peak by the latency in seconds from the previous peak.

ActiGraph Link preprocessing
Triaxial accelerometer data from the ActiGraph Link, sampled 
at 80 Hz, were used as a point of comparison to actigraphy data 
derived from the Apple Watch and Oura Ring. In order to reduce 

the influence of gravity on accelerometer measurements, each 
dimension (x,y,z) in the accelerometer time series was high-pass 
filtered at 0.1 Hz with a third-order Butterworth filter. Following 
filtering, each three-element (x,y,z) sample was then converted 
to the magnitude of the three-dimensional acceleration vector 
(
√
x2 + y2 + z2 ).

Apple Watch preprocessing
Although the Apple Watch contains a PPG sensor, access to the 
raw PPG signal was not available. Instead, an estimate of heart 
rate in beats per minute (BPM) is provided by the device ap-
proximately every 5  s (at a rate of 0.2 Hz). The degree of pro-
cessing performed by the device to transform the PPG signal 
to heart rate, or the time window used to compute each heart 
rate sample, is not documented by Apple, though it may be pre-
sumed that some temporal filtering is performed. As the Apple 
Watch provides values corresponding to heart rate, and not 
interbeat interval (IBI), heart rate values were transformed to 
pseudo-IBI for consistency with the other devices, by dividing 
60 s by the reported heart rate. Each Apple Watch sample was 
time-stamped as it was collected from the device for synchron-
ization with other devices in the study.

Triaxial accelerometer data, corrected for the force of gravity, 
were additionally collected via the Apple Watch, sampled at 1.33 
Hz (40 samples/30  s sleep epoch). Although the device can be 
configured to sample at a higher rate, a higher sampling rate 
also requires more power, reducing battery life. A  lower rate 
was used to ensure that the battery in the device would last 
through each night of data collection. The Apple Watch con-
tains a triaxial gyroscope, which allows the force of gravity to be 
separated from the raw accelerometer measurement, via know-
ledge of device orientation at each sample. The triaxial, gravity-
corrected time series was converted into a time series of vector 
magnitude.

Oura Ring preprocessing
The Oura Ring contains a PPG sensor (raw sensor signal un-
available). This signal is processed on the device to extract the 
R-peaks of the QRS waveform. When an R-peak is identified, the 
device logs the interval from the previous peak (the R–R interval) 
along with a timestamp.

The Oura Ring additionally contains a triaxial accelerom-
eter; however, the raw accelerometer data were not made 
available for the present study. Instead, a set of values sum-
marizing the motion data were provided by the Oura device 
at 30-s intervals. Provided summary values included “motion 
seconds,” “motions low,” and “motions high.” Motion seconds 
is defined by Oura as the number of seconds in which an ac-
celeration greater than 64 mg (where g is the acceleration due 
to gravity) occurs on any of the three accelerometer channels. 
Motions low and motions high are defined as counts, refer-
encing the number of times the acceleration vector exceeds 
a predefined threshold within the epoch; however, the actual 
thresholds exceeded are not provided by Oura. For each staged 
epoch, the summary value “motion seconds” was used from 
the closest 30-s Oura provided epoch.

Temporal alignment of data
Data from each device were time-stamped during the time of 
recording. In order to reduce the possibility of poor temporal 
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alignment between devices, an additional alignment step was 
performed to align the cardiac activity data between the ECG, 
Apple Watch, and Oura Ring. For each recording and data source, 
outlier samples were removed, defined as an IBI outside the 
range of 0.4286 and 2 s (corresponding to an instantaneous heart 
rate range of 30–140 BPM), or more than four SDs from the mean 
IBI for a given recording and data source.

Comparing device data using raw samples is problematic, as 
a single missed IBI could shift all subsequent samples in the 
time series. In order to directly compare the timing of the de-
vices, the IBI values derived from each device were linearly in-
terpolated to a common sampling interval of integer seconds 
within the recording. To reduce the influence of outliers on the 
timing evaluation, an 11-sample median filter was applied to 
each interpolated time series. Following the median filter, any 
chunk of data in which 10 or more contiguous seconds were 
missing (interpolated across) for either time series under com-
parison was removed from both time series. For the ECG and 
Apple Watch comparison, an average of 8.49 min of data was ex-
cluded per night, while for the ECG and Oura Ring comparison, 
an average of 18.93 min of data was excluded per night. Finally, 
the cross-correlation was performed between the ECG and de-
vice data at lags between 1000 and 1000 s to identify the timing 
offset that produced the highest correlation between the time 
series pair, separately for each recording.

A similar alignment process could not be performed for 
the actigraphy data, because unlike the ECG data, which is 
recorded as a channel within the PSG, no single source of 
actigraphy data could serve as ground truth with respect to 
PSG staging.

Data comparison
The data from the Apple Watch and Oura Ring were compared 
to the data derived from the ECG or ActiGraph Link in order to 
evaluate how accurately the devices could capture variations in 
heart rate or motion across the night. To determine the quality 
of heart rate measurement, the mean IBI, SD of IBI, and root 
mean square of successive differences of IBI within each 30-s 
sleep epoch were correlated within each night between the ECG 
and Apple Watch and separately between the ECG and Oura 
Ring. To determine the quality of motion actigraphy, the mean 
and SD of actigraphy vector magnitude within each 30-s sleep 
epoch were correlated within each night between the ActiGraph 
Link and the Apple Watch. The magnitude of the three-element 
vector was used to compare accelerometer data instead of the 
three-coordinate time series because the vector magnitude 
is invariant to coordinate rotation between the devices under 
comparison. As raw motion actigraphy was not available for the 
Oura Ring (version 1) used here, the “motion seconds” variable 
instead correlated with the mean and SD of vector magnitude as 
derived from the ActiGraph Link.

Analysis 3: Development and evaluation of machine 
learning approach

Feature extraction
Each 30-s sleep epoch was labeled with the RPSGT sleep–wake 
determination as well as a set of features for the supervised 
machine learning model. The term “features” refers to a set of 
computed values that are used as the input to the classifier. 
Features were extracted separately for each of three model 

variants constructed: (i) a model informed by PSG-derived ECG 
and actigraphy from the ActiGraph Link, (ii) a model informed by 
cardiac activity and actigraphy from the Apple Watch, and (iii) a 
model informed by cardiac activity and motion from the Oura 
Ring. In addition to the features derived from each device, a fea-
ture encoding the amount of time that has elapsed since the 
start of the “lights out” period was included, as the prior prob-
ability of a given epoch being sleep or wake was not assumed to 
be constant across the night.

Feature extraction began with the original data, not the in-
terpolated data that was used to determine the cardiac temporal 
offsets. Temporal offsets for each recording (discussed earlier) 
were applied to both the Oura Ring and Apple Watch data. 
Outlier rejection was again performed according to the guide-
lines mentioned previously.

For the combination of PSG and Link, and for the Apple 
Watch, the features within each epoch include the number of 
seconds that have elapsed since the “lights out” period began, 
the mean IBI in the epoch, the SD of IBI in the epoch, and the 
mean of actigraphy vector magnitude in the epoch. For the 
data derived from the Oura Ring, the variable “motion sec-
onds” as output by the device were used in place of the mean 
of actigraphy vector magnitude. In addition to data from the 
current epoch, the mean IBI, SD of IBI, and mean actigraphy 
vector magnitude from the prior eight epochs (4 min) were used 
as features within each current epoch, resulting in 27 cardiac 
or motion features and one time feature (the seconds elapsed 
since the in-bed period began) per epoch. The use of data from 
prior epochs when evaluating the current epoch was inspired 
in part by the Cole–Kripke actigraphy algorithm [6], which uses 
a weighted average of past and future epochs to determine the 
sleep–wake state of the current epoch. Here, only past and not 
future epochs are used in order to support the desired “real-
time” prediction of sleep state.

Machine learning approach
Our machine learning approach used a gradient boosting clas-
sifier [42] as implemented within the Python package Scikit-
learn [43]. Models were constructed and evaluated using nested 
leave-one-participant-out cross-validation. Within any machine 
learning paradigm, the data used to train the model should not 
be used to evaluate the model, motivating separate training and 
test partitions of the data [44]. In the case of grouped data, such 
as the present report where sleep epochs are grouped or clus-
tered into nights and nights are grouped into participants, it is 
ideal if the test set contains more than a single or few partici-
pant instances, which may not be representative of the dataset 
as a whole. This leads to a leave-one-participant-out cross-
validation structure, in which each of the n participants serves 
as the test set within one of n model runs, and each model is 
trained on the remaining n−1 participants. The mean and SD 
of performance across the n model runs are then collected, re-
sulting in a value that is not biased toward any particular test 
participant.

However, many common machine learning methods contain 
parameters that are not adjusted as part of the model, which 
instead govern the structure of the model itself. For example, 
for gradient-boosted decision trees as used within the present 
report, such model structure parameters, or hyperparameters, 
include the number of decision trees within the ensemble, the 
number of observations within the final terminating nodes, and 
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others. A particular set of hyperparameters may be optimal for a 
given dataset but are often unknown a priori. Iterating through 
model parameters to minimize the test set error generates a 
biased estimate of model performance, as test set performance 
is no longer outside of the training procedure [45, 46].

Within the nested leave-one-participant-out cross-validation 
procedure employed here (Figure  1), the selection of model 
parameters is implemented inside each outer cross-validation 
fold, via a separate series of (n−1) cross-validation folds per par-
ticipant. Within each fold of the interior cross-validation, one of 
the (n−1) participants serves as a validation test for tuning the 
model hyperparameters. For each outer cross-validation fold, 
the best candidate model from the interior cross-validation is 
then evaluated on the held-out test data. The final results re-
ported are the mean and SD of performance measures across 
the eight outer cross-validation folds. In the present report, 
hyperparameters and their options selected in the interior 
cross-validation include the learning rate (0.01, 0.1), the number 
of estimators (50, 100, 150), the maximum decision tree depth 
(1, 2, 3, 4), and the minimum number of samples per tree split 
(2, 10, 20, 30). Other model hyperparameters were fixed: loss, 
fixed at deviance, criterion, fixed at Friedman mean square 
error, and the minimum number of samples per leaf, fixed at 
1. During training, models are optimized for the area under the 
curve (AUC).

Models were separately trained and tested for each of the 
three datasets (PSG ECG channel in combination with ActiGraph 
Link accelerometer data, Oura Ring, and Apple Watch). For each 
dataset, gradient boosting classifier models were trained and 
tested with and without night-level normalization, and with 
and without class balance, totaling four variations per dataset. 
In all cases, the target of the classifier for each 30-s epoch was a 
binary classification of sleep or wake.

Normalizing data is a common preprocessing step within a 
machine learning paradigm, serving to place both features and 
datasets on a common scale. While scaling features is not re-
quired for a decision tree approach as described here, scaling 
between datasets can still provide a benefit when using physio-
logical data such as heart rate, where dataset shift [47] may 
occur between training and test sets due to individual differ-
ences in mean heart rate. Here, night-level normalization refers 
to transforming each feature within each night by transforming 
to a z-score via subtracting the mean and dividing by the SD of 
that feature within the night. However, normalizing at the night 
level only allows classifications to be made once the full night is 
completed, as the distribution of values across the night is not 
known until the entire night of data is collected. Here, models 
were also run without normalization to simulate model per-
formance when classifications are made in “real time,” epoch-
by-epoch, prior to the completion of the night.

“Class balance” refers to the balancing of sleep and wake 
instances used for model training (but not evaluation). Models 
were developed either with or without balanced classes during 
training. Class balance was achieved via random oversampling 
over the minority class (Wake) during training, via the Python 
package imbalanced-learn [48].

Classifier evaluation
The output of each classifier was evaluated in the same manner 
as the device output previously described within sections 1A and 
1B, by restricting to complete cases between a given classifier 

and PSG-derived staging, at both the epoch-by-epoch and night 
level analyses 3A and 3B respectively. All of the epoch-by-epoch 
metrics previously described in the context of evaluating device 
output were calculated. In addition, classifier output probabil-
ities were used to calculate the AUC of the receiver operating 
characteristic (ROC) curve. AUC could not be calculated for de-
vice output, such as from the Actiwatch Spectrum, etc. as these 
devices only provide discrete classifications, rather than class 
probabilities.

Results

Participants

Nine participants were enrolled in the protocol. One partici-
pant was excluded during the inpatient portion for medical 
attention not related to experimental interventions. The eight 
remaining participants completed the full, four-night protocol 
(five female, M = 40.75 years, SD = 4.84). Participants were ad-
herent in maintaining their typical sleep schedule during the 
Pre-Inpatient period (mean TST = 514.2 min, SD = 59.8 min), rela-
tive to Screening (M = 496.7 min, SD = 44.4 min), according to 
actigraphy, t(7) = 0.95, p = .374, d = 0.33.

Missing data

Data from some of the 32 total nights of participation (eight 
participants with four nights each) were missing or corrupted 
for some datasets. Missing values were not imputed but were 
instead excluded from analyses. For data from the Apple 
Watch, three participants were each missing one night of data 
due to data corruption. In addition, the Apple Watch failed to 
accurately measure heart rate for two nights of a single par-
ticipant, often oscillating between a value close to ECG-derived 
heart rate, and a value approximately twice the ECG-derived 
heart rate. These two nights were additionally removed from 
the analysis. For Oura Ring data, two participants were each 
missing one night due to data corruption. In addition, two 
nights were missing large amounts of data, possibly due to an 
issue with the device’s detection of the in-bed period, as de-
scribed in the Methods section. For one night, the device did 
not begin collecting data until approximately 2.5  h following 
lights out. For a second night, the device was missing a con-
tiguous chunk of approximately 2 h of data within the night. 
These two nights were excluded from the comparison of night-
level metrics for the Oura Ring but were included in the epoch-
by-epoch sleep–wake comparison, after excluding only the 
missing periods.

Epoch-by-epoch and night-level statistics were computed 
using the complete cases of epochs present for both a given 
device or classifier, and the PSG-derived sleep staging. For 
the Oura Ring staging output, no epochs were missing be-
yond the two datasets each missing 22%–27% of data as de-
scribed above. As previously described, while the Oura Ring 
sometimes began staging late, or ended staging early relative 
to the in-bed period, these periods were considered to have 
an Oura Ring classification of wake and thus were not con-
sidered missing. No epochs were missing from the ActiGraph 
Link or Actiwatch Spectrum device output datasets. For the 
classification datasets, the Apple Watch datasets were missing 
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a mean of 0.85% of epochs (SD = 2.15%), the ECG-Link datasets 
were missing a mean of 0.23% of epochs (SD = 0.34%), while the 
Oura Ring datasets were missing a mean of 4.01% of epochs 
(SD = 4.82%).

Data from one night of participation had a high per-
centage of epochs that were unscorable by the RPSGT (28%) 
due to a disconnected EEG electrode. This night was excluded 
from  the  comparison of night-level metrics. However, this 
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The full dataset contains 8
participants, each with 4
nights of data.

In each 'outer' fold of cross-
validation, one participant is
held out for testing while the
remaining 7 participants are
used to train the model. This
entire process is repeated
with each participant in the
test set of the 'outer' fold.

Optimal hyperparameters are
identified within the 'inner'
fold of cross-validation. Each
of the 7 participants in the
training set are separately
held-out to serve as
validation data, while models
are trained using data from
the remaining 6 participants,
separately for each
combination of
hyperparameters. This
process is repeated for all 7
participants in the Training
data set.

The model trained via the
inner-cross validation fold is
used to make predictions on
the held out test data.
Predictions are made
separately for each night in
the test set.
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Figure 1.  The nested cross-validation procedure used.
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night was included in epoch-by-epoch staging device com-
parisons and in our machine learning models, as these com-
parisons exclude any unscorable epochs from the analysis. 
For the remaining 31 nights, the mean percentage of epochs 
marked unscorable by the RPSGT was 0.41% (SD = 0.64%).

Analysis 1: Evaluation of device classification

Analysis 1A: Epoch-by-epoch correspondence between devices 
and PSG
The sleep–wake classifications provided by several devices 
were compared to the values scored by the RPSGT (Table 2). For 
healthy individuals without a sleep disorder, the in-bed period 
is dominated by periods of sleep. In this case, overall classi-
fication accuracy (%  of epochs correctly classified) can be a 
misleading performance metric. As an illustration, Table 2 dis-
plays the epoch-by-epoch “performance” that can be obtained 
by simply classifying every epoch within the in-bed period as 
Sleep, the “naïve” model. The sleep–wake classification accuracy 
of this no-information model is near to each of the other devices 
used within the study. For metrics such as balanced accuracy 
or d-prime, the ActiGraph Link exported with the “Sadeh” algo-
rithm produced the highest concordance with RPSGT-derived 

staging. All classifiers perform better on the detection of sleep 
(sensitivity) than the detection of wake (specificity), as has been 
previously observed [3]. This bias was most pronounced for clas-
sifications from the Actiwatch Spectrum Plus, which produced 
both the greatest sensitivity for sleep epochs and the poorest 
specificity for wake epochs. Despite this imbalance, as epochs 
within the in-bed period are predominantly sleep, the classifi-
cations from the Actiwatch Spectrum Plus produced the highest 
overall accuracy.

Analysis 1B: Night-level correspondence between devices 
and PSG
The sleep–wake classifications provided by each device were 
used to compute several night-level metrics, including sleep 
efficiency, SOL, WASO, and TST, which were compared to 
the same metrics computed from the PSG-derived staging. 
Measures of device error are displayed in Table 3. Figure 2 dis-
plays a scatterplot of the correspondence between the device 
and PSG-derived staging for each metric, while Figure 3 displays 
the bias of each device relative to PSG-derived staging for each 
metric. No device consistently outperforms the other across all 
metrics, and the best performing device in terms of root mean 
squared error for a given metric is not necessarily the same 

Table 2.  Comparison of Device Sleep–Wake Classification Relative to Ground Truth Sleep–Wake Classification Derived From PSG Staging

Source Accuracy
Balanced 
accuracy d′ Kappa Precision Sensitivity Specificity

Naïve Model (result of always 
predicting Sleep, for reference)

0.876 (0.064) 0.500 (0.000) 0.646 (0.204) 0.000 (0.000) 0.876 (0.064) 1.000 (0.000) 0.000 (0.000)

ActiGraph Link with “Cole–Kripke” 
algorithm

0.891 (0.046) 0.752 (0.070) 1.807 (0.375) 0.482 (0.120) 0.940 (0.042) 0.936 (0.050) 0.568 (0.163)

ActiGraph Link with “Sadeh” al-
gorithm 

0.880 (0.054) 0.779 (0.071) 1.874 (0.463) 0.487 (0.146) 0.949 (0.041) 0.912 (0.064) 0.647 (0.163)

Actiwatch Spectrum Plus algo-
rithm

0.904 (0.050) 0.674 (0.065) 1.831 (0.327) 0.424 (0.121) 0.914 (0.055) 0.982 (0.012) 0.366 (0.136)

Oura Ring 0.899 (0.046) 0.686 (0.075) 1.771 (0.502) 0.423 (0.150) 0.923 (0.042) 0.963 (0.039) 0.410 (0.165)

The “naïve” model is not a device but is instead the performance that is obtained by classifying every in-bed epoch as sleep, included here for reference. Values dis-

played within each cell are the mean and SD across nights.

Table 3.  Comparison of Night-Level Metrics Derived From Device Data to Those Derived From RPSGT Staging

Metric Device Mean error MAE RMSE R2

Sleep efficiency (%) ActiGraph Link (Cole–Kripke) −0.99 4.04 5.47 0.40
ActiGraph Link (Sadeh) −4.03 5.25 7.58 0.35
Actiwatch Spectrum 5.86 5.86 7.10 0.33
Oura Ring 2.89 3.93 4.86 0.61

Sleep onset latency (min) ActiGraph Link (Cole–Kripke) −4.16 5.00 6.89 0.45
ActiGraph Link (Sadeh) −1.53 3.92 5.44 0.59
Actiwatch Spectrum −7.87 7.87 10.52 0.13
Oura Ring −1.46 5.31 8.86 0.30

WASO (min) ActiGraph Link (Cole–Kripke) 9.61 20.61 29.25 0.47
ActiGraph Link (Sadeh) 23.37 27.50 41.00 0.43
Actiwatch Spectrum −23.65 24.13 30.42 0.44
Oura Ring −14.10 20.75 23.67 0.67

Total sleep time (min) ActiGraph Link (Cole–Kripke) −5.45 21.84 29.68 0.39
ActiGraph Link (Sadeh) −21.84 28.39 41.10 0.34
Actiwatch Spectrum 31.52 31.51 38.19 0.39
Oura Ring 15.56 21.21 26.22 0.62

Displayed are the mean error, mean absolute error (MAE), root mean squared error (RMSE), and R2.
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as the best performing device in terms of R2. The Actiwatch 
Spectrum Plus results demonstrate the device’s bias toward the 
classification of sleep. For example, Figure 2 illustrates that the 
Spectrum underpredicts SOL and WASO, while overpredicting 

TST and SE. The device biases within Figure 3 further demon-
strate that this bias is not constant; for example, sleep effi-
ciency is overpredicted to a greater extent for nights with lower 
sleep efficiency.

Figure 2.  Comparison of PSG-derived and device-derived night-level sleep metrics. Points depict the PSG and device-derived values for each night of data within the 

study (except nights previously described as excluded). Lines depict the linear fit between PSG value and device value for each device.
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Analysis 2: Evaluation of motion and heart rate data 
obtained from wearables

The Apple Watch failed to accurately measure the heart rate 
for two nights of a single participant. The Apple Watch data for 
those nights for that participant were excluded. Within these 
nights, the Apple Watch-derived heart rate fluctuated between a 
value that was either correct or twice the rate of the participant’s 
ECG-derived heart rate. For the remaining recordings, the heart 
rate data from each device was aligned based on the identified 
offsets from the ECG time series. For the Oura Ring, the offset 
relative to the ECG ranged between −2 and 4  s (mean  =  1.53, 
SD  =  1.69) where negative values represent the device time 

leading the ECG, and positive values represent the device time 

lagging the ECG. For the Apple Watch, the offset relative to the 

ECG ranged between 0 and 12  s (mean  =  8.43, SD  =  3.31). The 

greater timing offset on the part of the Apple Watch may result 

from temporal smoothing of PPG data performed on the device, 

though the details of any preprocessing performed are not pro-

vided by Apple.

IBIs (or pseudo-IBIs in the case of the Apple Watch) that 

were outliers or extreme values were removed prior to feature 

extraction. For the ECG datasets, an average of 0.06% of sam-

ples was rejected (SD = 0.19%). For the Oura Ring datasets, an 

average of 2.47% of samples was rejected (SD = 2.53%). For the 
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Figure 3.  Bland-Altman [49] plots comparing PSG-derived sleep metrics to the difference between each device-derived sleep metric and the PSG-derived sleep metric. 

Points depict difference values for each night of data within the study (except nights previously described as excluded).
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Apple Watch datasets, an average of 0.01% of samples was re-
jected (SD = 0.03%).

The epoch-level feature values were compared between the 
ECG (for cardiac activity features) and ActiGraph Link (for mo-
tion feature) and the two wearable devices in order to determine 
the wearable device data quality. For the comparison of the Oura 
Ring with ActiGraph Link motion, the “motion seconds” pro-
vided by the Oura Ring within a given epoch was compared to 
the mean and SD of vector magnitude from the ActiGraph Link, 
as raw accelerometer data were not available from the Oura 
Ring. For both the Apple Watch and Oura Ring, both heart rate 
and motion data from the wearables were reasonably correlated 
with data from the reference devices at the epoch level (Table 4). 
For example, the correlation of IBI with the ECG channel of the 
PSG montage averaged 0.92 and 0.85 for the Apple Watch and 
Oura Ring, respectively.

Analysis 3: Evaluation of machine learning approach

Analysis 3A: Epoch-by-epoch correspondence between classifier 
output and PSG
Epoch-by-epoch sleep–wake classifications collected from the 
outer loop of the nested cross-validation procedure were com-
pared to PSG derived staging, for each classifier variation under 
evaluation. Classifiers varied in their dataset, whether data were 
normalized within a night, and whether class oversampling was 
performed, resulting in 12 separate models. Table 5 displays the 
epoch-by-epoch performance of all model variations on several 
performance metrics. Datasets using heart rate data from the 
ECG channel of the PSG in combination with actigraphy data 
from the ActiGraph Link generally outperform classifiers using 
data from either the Apple Watch or Oura Ring. Normalization of 
data within a night generally improves classifier performance. 
Oversampling of wake epochs during training reduces much 

of the bias toward the classification of sleep epochs, which im-
proves specificity to detect wake epochs while decreasing sensi-
tivity to detect sleep epochs.

Figure 4 displays the mean ROC curve across nights, for the 
three datasets under study, both with and without night-level 
normalization. Model variations with class oversampling are not 
displayed, as AUC is largely unaffected by class oversampling.

Analysis 3B: Night-level metrics derived from classifier output
The sleep–wake output provided by each classifier was used to 
compute several night-level metrics, including sleep efficiency, 
SOL, WASO, and TST, which were compared to the same metrics 
computed from the PSG-derived staging. Measures of classifier 
error are displayed within Table 6. While the classifiers perform 
reasonably well at reproducing sleep efficiency, WASO, and TST, 
they perform poorly at reproducing SOL. Figure  5 displays a 
scatterplot of the correspondence between classifier and PSG-
derived staging for each metric, most evident is the difficulty of 
capturing the variance of SOL across nights. Figure  6 displays 
the bias of each classifier relative to PSG-derived staging for 
each metric.

Discussion
Both epoch-by-epoch and night-level measures of sleep–wake 
detection were evaluated for two wrist devices and one ring de-
vice, relative to “gold standard” RPSGT-scored polysomnography. 
Consistent with past work that evaluated actigraphy for sleep–
wake detection [3], typical actigraphy and multisensor algo-
rithms were of high sensitivity (%  of sleep epochs correctly 
classified) but low specificity (% of sleep epochs correctly clas-
sified). Sleep, the more prevalent class within the in-bed period 
(approximately 88% of staged epochs in the present experiment), 

Table 4.  Standardized Correlation Coefficients (r) for Correlation of PSG ECG or ActiGraph Link-Derived Features, With Features Derived From 
the Wearable Devices Under Study

Device

Mean of vector magnitude 
(Apple Watch) or motion 
seconds (Oura Ring)

SD of vector magnitude (Apple Watch) 
or motion seconds (Oura Ring) Mean of IBI SD of IBI

RMSSD 
of IBI

Apple Watch 0.83 (0.08) 0.79 (0.08) 0.92 (0.04) 0.76 (0.09) 0.58 (0.18)
Oura Ring 0.53 (0.16) 0.47 (0.13) 0.85 (0.14) 0.78 (0.15) 0.62 (0.17)

Values within each cell represent the mean and SD across nights. IBI, interbeat interval.

Table 5.  Performance of Machine Learning Classifiers

Dataset Normalization Oversampling AUC Accuracy

Balanced 

accuracy d′ Kappa Precision Sensitivity Specificity

Apple Watch FALSE None 0.918 (0.040) 0.918 (0.040) 0.753 (0.083) 2.228 (0.319) 0.544 (0.117) 0.936 (0.050) 0.974 (0.029) 0.532 (0.187)

FALSE Oversampling 0.917 (0.037) 0.872 (0.077) 0.825 (0.060) 2.154 (0.377) 0.514 (0.145) 0.962 (0.038) 0.890 (0.095) 0.760 (0.156)

TRUE None 0.926 (0.040) 0.928 (0.029) 0.789 (0.063) 2.347 (0.373) 0.602 (0.102) 0.943 (0.039) 0.976 (0.022) 0.602 (0.136)

TRUE Oversampling 0.922 (0.041) 0.882 (0.039) 0.853 (0.048) 2.237 (0.398) 0.533 (0.154) 0.967 (0.033) 0.898 (0.049) 0.807 (0.105)

Oura Ring FALSE None 0.897 (0.053) 0.914 (0.045) 0.692 (0.083) 1.926 (0.428) 0.441 (0.149) 0.929 (0.050) 0.977 (0.021) 0.407 (0.176)

FALSE Oversampling 0.888 (0.063) 0.839 (0.075) 0.780 (0.079) 1.855 (0.451) 0.404 (0.135) 0.960 (0.039) 0.853 (0.096) 0.707 (0.208)

TRUE None 0.892 (0.063) 0.906 (0.050) 0.689 (0.082) 1.827 (0.454) 0.418 (0.135) 0.925 (0.051) 0.971 (0.031) 0.407 (0.174)

TRUE Oversampling 0.896 (0.062) 0.844 (0.057) 0.805 (0.067) 1.876 (0.462) 0.422 (0.153) 0.964 (0.030) 0.855 (0.071) 0.755 (0.143)

ECG + Link FALSE None 0.924 (0.039) 0.917 (0.049) 0.755 (0.070) 2.321 (0.330) 0.560 (0.112) 0.938 (0.047) 0.970 (0.049) 0.540 (0.170)

FALSE Oversampling 0.923 (0.037) 0.870 (0.082) 0.830 (0.055) 2.191 (0.350) 0.521 (0.140) 0.966 (0.035) 0.883 (0.105) 0.776 (0.144)

TRUE None 0.926 (0.041) 0.922 (0.043) 0.788 (0.065) 2.383 (0.436) 0.595 (0.113) 0.943 (0.040) 0.968 (0.045) 0.607 (0.147)

TRUE Oversampling 0.924 (0.042) 0.878 (0.048) 0.856 (0.043) 2.253 (0.372) 0.536 (0.156) 0.970 (0.029) 0.890 (0.059) 0.821 (0.096)

Values in each cell are the mean and SD across nights.
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was overclassified, while wake was underclassified. This imbal-
ance in performance is consistent with previous reports for the 
sleep–wake output of the Actiwatch Spectrum [3] and Oura Ring 
[33].

The night-level analysis, comparing how accurately data 
from each device can be used to derive measures of sleep ef-
ficiency, SOL, WASO, and TST, provides a complementary view 
of device performance. For example, although no single device 
was consistently optimal for all measures, the Oura Ring gen-
erated the highest R2 relative to PSG-derived staging for three 
of the four measures under study, despite not necessarily 
generating the lowest mean error, and having lower perform-
ance than the ActiGraph Link in terms of the epoch-by-epoch 
performance measures of balanced accuracy or d′. While poor 
time synchronization between a given device and PSG could 
contribute to a discrepancy between epoch-by-epoch and night-
level performance, a posthoc synchronization process was per-
formed within the present experiment to correct for any static 
time offsets between each device’s sleep–wake output and PSG. 
Specifically, the sleep–wake output from each device was shifted 
±5 min relative to the PSG-derived staging, to identify the op-
timal correspondence.

Following analysis of the sleep–wake classifications output 
from the wrist actigraphy devices and Oura Ring, we evaluated 
the raw data quality from the Oura Ring and Apple Watch and 
developed our own novel machine learning models of sleep–
wake. We also developed a classifier using data assumed to be 
of higher quality, using heart rate data derived from the ECG 
channel of the PSG in conjunction with triaxial actigraphy data 
from the ActiGraph Link, for comparison.

In terms of raw data quality, we observed moderate to strong 
correlations between the data from the wearables and data from 
clinical measurement tools at the level of the 30-s sleep epoch. For 
example, despite the Apple Watch providing heart rate estimates 
approximately every 5  s, the mean pseudo-IBI within a sleep 
epoch computed from the Apple Watch had an average correlation 
of 0.92 to the mean IBI derived from the ECG channel of the PSG. 
Similarly, the mean IBI from the Oura Ring has an average cor-
relation of 0.85 to the mean IBI from the ECG channel of the PSG.

Actigraphy features were also reasonably correlated despite 
some differences in the underlying data collection parameters. 
For example, the mean vector magnitude within an epoch de-
rived from the triaxial accelerometer collected from the Apple 
Watch at 1.33 Hz had an average correlation of 0.83 to the mean 
vector magnitude collected from the ActiGraph Link at 80 Hz. 
Similarly, the “motion seconds” value provided by the Oura Ring 
at 30-s intervals had an average correlation of 0.53 to the mean 
vector magnitude from the ActiGraph Link. The lower corres-
pondence for the motion feature derived from the Oura Ring 
does not necessarily suggest that the Oura Ring is poorer at cap-
turing motion than the Apple Watch, but likely reflects the lower 
granularity of the data that was available for export from the 
Oura Ring (“motion seconds” at 30-s intervals) during the time 
of the study. In general, the high correspondence of data from 
these multisensor devices relative to PSG or high-resolution tri-
axial actigraphy is promising with respect to using the devices 
when PSG is not available and is applicable to the goal of longi-
tudinal, noninvasive measurement of the sleep.

We trained and tested variations of our classifier, using data 
from either the Apple Watch, Oura Ring, or for a point of com-
parison, data from the ECG channel of the PSG in combination 
with actigraphy data from the ActiGraph Link. In addition to 
the data features from each device, a temporal feature encoding 
the number of seconds that had elapsed into the in-bed period 
was included. Our temporal feature is linear, increasing in 30-s 
increments with each epoch. Other recent reports have also in-
cluded temporal features in sleep staging models. For example, 
Fonseca et al. [50] used a linear time feature, while Walch et al. 
[51] used a mathematical model of the circadian clock specific 
to each participant. Each model was additionally trained with 
variations that incorporated class balancing via random over-
sampling of the minority class (wake), and/or normalization 
of datasets at the night level via transformation of each fea-
ture to a z-score within the night. Oversampling was intended 
to ameliorate the common behavior of sleep–wake classifiers 
in the performance imbalance between the sensitivity and 
specificity.

Oversampling to balance classes during training did im-
prove specificity (20%–35%), but at a cost of reducing sensitivity 
(8%–12%). Whether sensitivity or specificity is more favored may 
depend on the application of the researcher. For example, be-
cause the oversampling procedure detects a greater percentage 
of wake epochs, it may be more appropriate to use in popula-
tions who have a sleep pathology. Practically, as oversampling 
did not affect AUC for the paradigm used here and our classifier 
natively outputs probabilities, a similar result could be achieved 
by shifting the probability threshold.

Night-level normalization resulted in a small improvement 
in model performance for all models with the exception of 
the model using Oura Ring data without oversampling. While 
normalizing data at the night level can only be performed once 
the night has ended and the distribution of values across the 
night is known, using the distribution of data for a given user 
from the prior session may allow for both data normalization 
and real-time classification.

The devices included in Analysis 1 vary along several di-
mensions, including the type of physiological data they use, 
their hardware implementation, and the algorithm internally 
used to generate sleep–wake classifications. However, despite 
these variations, they serve as a useful point of comparison for 
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evaluating the performance of the alternative sleep–wake clas-
sifier we developed within Analysis 3.

The best performing research device for measuring epoch-
by-epoch sleep–wake within the experiment as evaluated by d′ 
was the ActiGraph Link running the Sadeh algorithm (d′ = 1.874, 
sensitivity = 0.912, specificity = 0.647). For comparison, the clas-
sifier we developed, which was trained and tested using data 
from the Apple Watch with our normalization algorithm over 
the night achieved epoch-by-epoch sleep–wake classification 
performance (d′  = 2.347, sensitivity = 0.976, specificity = 0.602, 
AUC = 0.926). The same model with the addition of balancing 
classes prior to training results had a similar d′, but a shift 
in a bias away from sleep and toward wake (d′  = 2.237, sensi-
tivity = 0.898, specificity = 0.807, AUC = 0.922).

Comparison of the performance of each device, and our 
models, on night-level summary measures such as sleep effi-
ciency, SOL, WASO, and TST revealed that the best performing 
device in terms of epoch-by-epoch sleep–wake classification is 
not necessarily the best for each summary measure. This is es-
pecially the case when considering that these measures can 
be evaluated in terms of either absolute accuracy (mean error) 
or their ability to capture variance across nights (R2). For ex-
ample, while the Oura Ring was not the most accurate device 
in terms of epoch-by-epoch accuracy among the research de-
vices, it tended to capture the most variance relative to RPSGT-
derived ground-truth metrics (R2), for all metrics except SOL. 
One caveat is that four nights were excluded from the Oura 
comparison; two nights were excluded due to corrupted re-
cordings, and two were excluded due to a seeming failure of 
the device to detect the wearer was in bed and begin to provide 
classifications.

Similarly, while our models performed favorably in com-
parison to the research devices in terms of the epoch-by-epoch 
analysis, they were not more effective at deriving night-level 
summary values. As these summary values are not “known” by 
the classifier during training, the optimal epoch-by-epoch clas-
sifier may not generate the optimal night summary, though in 
theory a perfect epoch-by-epoch classifier would reproduce all 
summary values precisely. One illustration of this discrepancy is 
that the classifier we developed using data from the Oura Ring 
often captured more variance between nights in terms of R2 rela-
tive to the classifiers we developed using data from the Apple 

Watch or ECG-Link, despite having lower epoch-by-epoch per-
formance. The data from our classifiers had particular trouble 
reproducing RPSGT staging-derived measures of SOL. As SOL ac-
cording to AASM criteria is the time between “lights out” and 
the first epoch scored as sleep, misclassification of a single early 
epoch can have a large influence on the accuracy of the measure.

A recent report by Walch et al. [51] also used data collected 
from an Apple Watch to develop classifiers for sleep–wake and 
sleep stage. Additionally, as previously described, this recent re-
port also used a feature that encoded information about time 
within the night. However, there are several differences between 
this prior report and the present result. While Walch et al. col-
lected triaxial accelerometer data from the Apple Watch, accel-
erometer data were subsequently converted into movement 
counts using an algorithm developed to approximate Actiwatch 
movement counts from microelectromechanical systems accel-
erometers [52]. However, because the accelerometer contained 
within the Actiwatch is most sensitive to movements along a 
single axis (palmar–dorsal) [52], this approach utilizes only one 
axis of the original triaxial accelerometer data, in support of ap-
proximating Actiwatch style movement counts. In contrast, our 
approach uses the vector magnitude of the triaxial accelerom-
eter data, the exception being the Oura Ring, for which we were 
only able to obtain count-level motion data from the device.

An additional distinction is that the approach described by 
Walch et al. [51] uses data from a 10-min window around each 
sleep epoch being scored, while our approach uses only histor-
ical data, namely, data from the 30-s epoch being scored in add-
ition to data from the prior eight epochs (4 min). Using data from 
the near future is common for sleep–wake staging, for example, 
the Cole–Kripke [6] and Sadeh [31] algorithms utilize movement 
counts from both the recent past and near future when classi-
fying a given epoch, and is a reasonable approach if sleep–wake 
state is going to be evaluated retrospectively, after the night 
has completed. However, our approach instead facilitates each 
30-s epoch to be classified immediately, allowing for real-time 
applications.

Many multisensor wearable devices, such as the Apple 
Watch, allow data to be processed in real time, as opposed to 
conventional actigraphy devices, which are designed to log 
the data on the device, and make the raw data accessible only 
after the sleep session has occurred. This precludes utility to 
inform real-time interventions that are delivered during moni-
toring with PSG. For example, ECG data collected in PSG were 
combined with pulse oximetry to detect sleep stage and sleep 
apnea during sleep for the purpose of administering interven-
tions to mitigate breathing obstruction [53–55]. The real-time 
availability of data in multisensor devices like the Apple Watch 
creates the possibility of delivering interventions during sleep 
for enhancing or manipulating sleep quality. Real-time sleep 
staging on accessible consumer wearables has several potential 
applications, including the treatment of sleep disorders [53–55], 
enhancement of sleep with deep sleep stimulation [56], and en-
hancement of memory through targeted memory reactivation 
[57–59].

There are also notable limitations to the use of consumer 
wearable devices, in their present form. The battery life on a 
device such as the Apple Watch, while sufficient to collect data 
throughout a night of sleep, is currently not capable of 24 h of 
continuous recording of high-resolution data without needing 
to be recharged. Full access to raw sensor data from consumer 

Table 6.  Estimation of Night-Level Metrics, Using Data From 
Classifiers Built on Various Data Sources

Metric Device Mean error MAE RMSE R2

Sleep efficiency 
(%)

Apple Watch 2.55 4.24 4.72 0.33
Oura Ring 3.58 4.55 5.44 0.43
ECG + Link 1.84 4.64 5.48 0.27

Sleep onset la-
tency (min)

Apple Watch −2.15 5.89 8.70 0.00
Oura Ring −1.38 3.79 5.02 0.04
ECG + Link −0.87 6.52 9.08 0.00

WASO (min) Apple Watch −11.58 18.27 20.49 0.51
Oura Ring −16.90 21.51 25.42 0.48
ECG + Link −8.95 19.11 23.79 0.42

Total sleep 
time (min)

Apple Watch 13.73 22.69 25.29 0.35
Oura Ring 18.28 23.28 27.64 0.76
ECG + Link 9.82 24.92 29.48 0.31

Here, the values reported are for the models computed with night-level nor-

malization, but without class oversampling.
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wearables is often not available but could further improve the 
accuracy and transparency of sleep detection models. For ex-
ample, the Apple Watch is equipped with a PPG heart rate 
sensor, but Apple does not currently allow developers to access 

the PPG sensor data. Instead, the PPG data are processed by the 
device and an estimate of the instantaneous heart rate is pro-
vided at intervals of approximately 5  s. If the raw PPG sensor 
data were available from the Apple Watch, additional measures 

Figure 5.  Comparison of PSG- and classifier-derived night-level sleep metrics. Points depict the PSG- and classifier-derived values for each night of data within the 

study (except nights previously described as excluded). Lines depict the linear fit between PSG and classifier-derived values.
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could be derived from the time series [60], such as arterial blood 
pressure [61], which could be used to improve the classification 
of sleep stage [62].

There are several limitations to the present study. It in-
cluded a relatively small sample of eight healthy participants, 
all in early midlife, sleeping in a highly controlled laboratory 
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environment. While it was important to include only healthy 
participants when investigating a small sample, additional work 
is required to identify how well sleep–wake models trained on 
healthy participants generalize to participants with sleep dis-
orders and in outpatient settings. A potential solution is to add 
wearable devices to sleep studies already occurring, facilitating 
the relatively easy procurement of generalizing data to a broader 
cross-section of individuals.

Additionally, although several data sources were included 
in the present report to demonstrate the relative performance 
that can be obtained with different sources of data, models 
were trained and tested within a given data source. More effort 
on data standardization may be required, for example, to train 
a model on PSG data and implement it using a wearable like 
the Apple Watch. Similarly, some devices provided sleep–wake 
classifications at 60-s intervals rather than the 30-s intervals in 
which the RPSGT staged the data, requiring alignment. Another 
limitation of the present study was that models were developed 
over the course of the night, as opposed to over a 24-h period. 
A  model developed on 24-h data which contains a greater 
number of periods of wakefulness may be useful to decrease 
the bias toward the classification of sleep that is common in 
sleep–wake classification. Furthermore, while the present report 
focuses on the classification of sleep–wake, a similar approach 
may be used to classify the sleep stage.

The results of the study highlight the potential for using 
multisensor wearables to measure sleep in not only research 
and clinical contexts, but also in ecologically valid in-home 
study settings. Relative to many research-grade and clinical-
grade actigraphy devices, consumer devices like the Oura Ring 
and Apple Watch are more affordable and accessible. Such 
devices are capable of sleep monitoring in the outpatient en-
vironment, which may be more reimbursable by healthcare 
companies than the expensive inpatient setting. The longi-
tudinal, repeated, and multisensor quality of these devices 
makes them ideal for evaluating insomnia or circadian rhythm 
disorders and can be further developed to provide users with 
tailored interventions that examine the cause of their sleep 
issues. Clinicians can then use these new tools to facilitate be-
havior change and administer more effective cognitive behav-
ioral therapy for insomnia [63].
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