Skip to main content
. 2020 Jul 13;7(4):613–628. doi: 10.1007/s40745-020-00305-w

Table 3.

RMSE, number of input and hidden layers for the best fit based on each neural network architecture by times series. M stands for multiplicative and A for additive. tX stands for the number of lagged input variables

PETR4 ITUB4
Test Validation Input Hidden Test Validation Input Hidden
ELMAN 0.67 0.83 M.t5 2 0.60 0.69 A.t4 20
JORDAN 0.67 0.83 M.t5 2 0.60 0.71 A.t4 20
MLP-TANG. 0.67 0.83 A.t10 2 0.60 0.69 A.t7 20
MLR 0.67 0.79 A.t8 1 0.61 0.69 A.t4 1
RBF 2.06 4.75 M.t10 2 1.98 3.46 M.t10 2
BBDC4 BOVA11
ELMAN 0.52 0.70 M.t3 15 1.14 2.09 M.t3 15
JORDAN 0.53 0.71 M.t5 2 1.14 2.09 M.t3 15
MLP-TANG. 0.52 0.73 M.t6 2 1.14 2.11 A.t1 5
MLR 0.52 0.71 M.t1 1 1.14 2.10 A.t2 1
RBF 2.10 2.40 M.t10 2 3.61 6.28 M.t10 2
B3SA3 VALE3
ELMAN 0.54 1.33 A.t1 2 1.38 1.38 A.t9 15
JORDAN 0.54 1.33 M.t4 20 1.38 1.40 A.t10 20
MLP-TANG. 0.54 1.36 M.t5 15 1.38 1.41 A.t9 20
MLR 0.54 1.33 A.t4 1 1.38 1.40 A.t8 1
RBF 1.96 3.43 A.t9 15 2.48 1.83 M.t7 2

Bold represents the best solution for each stock