Skip to main content
. 2020 Jun 25;10(6):959. doi: 10.3390/biom10060959

Figure 2.

Figure 2

Functions of ethylene in the regulation of photosynthesis under salinity stress. In the absence of ethylene, salinity stress results in an imbalance of Na+/K+ homeostasis, which leads to the production of ROS. This salinity-induced ROS production, in turn, exerts oxidative stress on plants, resulting in stomatal closure and reduced activity of CO2-fixing enzymes, resulting in a decrease in photosynthesis. In the presence of ethylene, Na+/K+ homeostasis and nutrients homeostasis are maintained, and the antioxidant defense mechanism is activated, which limits ROS production, thereby preventing ROS-induced oxidative stress. In the absence of oxidative stress, the rate of photosynthesis is maintained even during salinity stress.