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Abstract

The dysregulation of alternative splicing (AS) has emerged as a mechanism of acute myeloid leukemia (AML). However, the prog-
nostic impact of AS events remains under-explored in AML. Here we report the prognostic value of AS events and associated splicing
factors based on three datasets of AML patients. We defined the landscape of AS events in AML and identified 7033 AS events
associated with the survival of AML patients. Based on these events, we further developed a composite 15 AS event-based prognostic
signature, which was independent of the cytogenetic risk stratification and patient age, and showed a better performance than known
gene expression signatures. More importantly, our new signature markedly improved the European LeukemiaNet (ELN) risk clas-

sification, indicating a broad applicability in the clinical management of AML. Furthermore, the splicing-regulatory network estab-
lished the correlations between prognostic AS events and associated splicing factors. The finding was validated by CRISPR-based
data, which indicated that the increased expression of RBM39 contributed to the higher exon inclusion of SETD5 and conferred
a poor outcome. Together, AS events may serve as a novel assortment of prognosticators for AML and could refine the ELN risk
stratification. The splicing regulatory network provides clues regarding the splicing factor-mediated mechanisms of AML.
Neoplasia (2020) 22 447–457
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Introduction

Acute myeloid leukemia (AML) is the most common form of acute
leukemia in adults. This disease represents a heterogeneous entity charac-
terized by the aggressive proliferation of immature myeloid progenitor cells
primarily caused by an interplay of genetic and epigenetic aberrations [1].
Because the 5-year overall survival rate of AML patients remains as low as
30% [1,2], there is an urgent need to improve the risk stratification of
AML so as to prolong survival. Advances in high-throughput sequencing
technology make it realistic to develop molecular parameter-based signa-
tures to improve risk stratification of AML patients [3–6]. However, these
studies would have missed capturing an important intrinsic biological fea-
ture of AML, alternative splicing (AS). The consideration of AS could the-
oretically further improve the risk stratification and prognosis of AML
patients.

As a critical determinant of transcriptome and proteome diversity, AS is
a major driver of regulatory complexity and functional versatility in
eukaryotes [7]. According to the GENCODE annotation, approximately
95% of multi-exon human genes are alternatively spliced, and around
20,000 human protein-coding genes produce more than 80,000 distinct
mRNA variants [8]. Subtle changes in protein-coding genes owing to
AS can generate profound effects on the biological characteristics of trans-
lated proteins, which may alter protein localization signals and functional
protein domains, thereby modifying protein–protein interactions [9,10].
Indeed, AS-related alterations are emerging as important events in the
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development and progress of cancer and, if fully characterized, could be
promising biomarkers with prominent prognostic values.

A recent study discovered a distinct AML subgroup, defined by muta-
tions in genes encoding chromatin and/or the spliceosome, that has a poor
prognosis [11]. These spliceosomal gene mutations or their deregulated
expressions can recurrently generate effects on specific amino acid residues,
resulting in altered splice sites and perturbed exon recognition, which
finally leads to mis-splicing [10,12,13]. These findings strongly support
the hypothesis that aberrant AS is a fundamental aspect of AML pathogen-
esis. However, a systematic analysis of AS events has not been undertaken
nor has their utility as prognostic markers been thoroughly explored for
AML.

In the present study, we used an unbiased genome-wide approach to
investigate the prognostic values of AS events in AML. We first created
a catalog of prognostic AS events, from which we further developed prog-
nostic signatures that had improved performances compared with fre-
quently used signatures based on other genetic events, including
mRNA, long non-coding RNA (lncRNA) and microRNA (miRNA).
We also proposed a splicing-regulatory network to understand the mech-
anisms underlying the splicing factor-mediated AS events and used loss-of
function experiment data to validate these correlations.
Materials and methods

Data collection and preprocessing

The RNA-seq raw data and clinical data of three AML cohorts includ-
ing the TCGA-LAML cohort [2] (N = 151, training set), the BeatAML
cohort [14] (N = 430, validation set) and the TARGET-AML cohort
[15] (N = 179, validation set) were downloaded from Genomic Data
Commons. RNA-seq reads aligned to the human reference genome
(hg38) were applied to analyze AS events using rMATS [16], which rec-
ognizes five types of AS events, skipped exons (SE), alternative 50 splice
sites (A5SS), alternative 30 splice sites (A3SS), mutually exclusive exons
(MXE) and retained introns (RI), and unambiguously calculates the
Percent-Spliced-In (PSI) values for splicing events. Functional enrichment
analysis was performed using metascape [17]. Genome-wide sgRNA raw
counts for 12 human AML cell lines (P31/FUJ, NB4, OCI-AML2,
OCI-AML3, OCI-AML5, SKM-1, EOL-1, HEL, Molm-13, MonoMac1,
MV4;11 and PL-21) were available and downloaded from http://sabatini-
lab.wi.mit.edu/wang/2017/ [18]. The fold-change of each splicing factor
gene was calculated according to the below formula:

Fold change ¼ average
initial sgRNA abundance
f inal sgRNA abundance

� �� �
;

where a gene with a larger fold change demonstrates more essentiality. The
expression data of splicing factor genes in AML (N = 477) and healthy con-
trol subjects (N = 33) were downloaded from the Genomic Data Com-
mons (BeatAML project level 3 data). RNA-seq data before and after
knocking out RBM39 was obtained from [13] (GSE114558).
Identification of prognostic AS events

AML patients were divided into two groups using the median PSI val-
ues of AS events, and the associations between AS events and the overall
survival times of patients were subjected to a univariate Cox regression
analysis in the Survival R package [19]. Candidate AS events were those
with p-value <0.05. All candidate AS events were categorized by type.
For each type, robust likelihood-based survival (RBSURV) models were
built to identify the key AS events influencing the prognosis of AML uti-
lizing the RBSURV package [20]. The detailed procedure was as follows:
(i). We randomly divided samples into the training set and the valida-
tion set (sample size, training set: validation set = 2:1). An AS event was
first fitted to the training set of samples to generate the estimated param-
eters for this event. Then we evaluated log-likelihood based on the esti-
mated parameters and the validation set of samples. This evaluation was
repeated for each AS event. (ii). We performed the above procedure 10
times, thus obtaining 10 log-likelihoods for each event. The best AS event,
a(1), with the largest mean log-likelihood was selected. (iii). We searched
the next best event by evaluating every two-event model, a(1) + a(2), and
selected an optimal one with the largest mean log-likelihood. (iv). We con-
tinued this stepwise forward AS event selection procedure, generating a
series of models: a(1), a(1) + a(2), a(1) + a(2) + a(3), . . .. We computed
Akaike information criterions (AICs) for all the candidate models and
finally selected an optimal model with the minimal AIC.

To build the composite prognostic predictor containing all types of AS
events, five types of prognostic AS events (p-value <0.05) were further
combined and subjected to the RBSURV modeling to jointly leverage
the information of AS events across types and search for the optimal num-
ber without being trapped in the type-specific marginal optimal events.
Development of prognostic splicing signatures

Risk-based models were established according to the following formula:

Risk Score ¼
Xn

i¼1
PSIi � Coef ið Þ

where n represents the number of AS events, PSIi represents the exon-
inclusion level of the AS event (PSI value), and Coefi represents the esti-
mated regression coefficient value.

The prediction capabilities of the splicing signatures were assessed by a
time-dependent receiver operating characteristic (ROC) curve with the
area under the curve (AUC) value using the survivalROC package [21].
Prediction on the protein function affected by alternative splicing

We first mapped the chromosomal coordinates of each prognostic AS
event (original splice junction, e.g., skipped exon, upstream exon and
downstream exon) to the respective transcript, which was determined as
the canonical isoform. Next, we removed the alternatively spliced exon
(e.g. the skipped exon in the case of a skipped exon event) from the canon-
ical transcript to generate the alternative spliced isoform. Then, we
retrieved the FASTA sequences of the canonical isoform and the alterative
isoform using GffRead (https://github.com/gpertea/gffread). The FASTA
sequences were then translated, and were used to predict functional struc-
tures and important sites using InterProScan [22] (run in nucleotide
mode). Finally, we parsed and compared the InterProScan outputs to
identify loss/gain of protein structures and functional sites after splicing.
To determine whether the alternatively spliced isoform is a previously
identified or a novel isoform, we removed the alternatively spliced exon
(e.g. the skipped exon in the case of a skipped exon event) from the orig-
inal splice junction, which was defined as the alternative splice junction. If
the alternative splice junction is not mapped to a known transcript, indi-
cating that the alternatively spliced isoform is novel, otherwise it was a pre-
viously identified isoform.
Computing previously published AML prognostic scores

To validate the performance of the splicing signature, three recently
reported gene expression-based prognostic scores were calculated as previ-
ously described: the Gene-24 [4], the Gene-7 [5], and the LSC-17 [6].

http://sabatinilab.wi.mit.edu/wang/2017/
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Regulatory network combining splicing factors with AS events

Differential expression analysis on genes involved in the mRNA-
splicing was performed using DESeq2 [23] (477 AML versus 33 healthy
control subjects) to find out the dysregulated splicing factor genes in
AML, and the genes with significantly altered expression were further
screened out using CRISPR-based screening data in a panel of AML cell
lines. We determined the essentiality of splicing factor genes as the average
fold-change of sgRNA abundance in the 12 AML cell lines and used a
stringent cut-off value of average fold-change >1.5 to identify essential
splicing factor genes. Spearman's rank correlation analysis was carried
out to correlate gene expression of splicing factors with quantifications
of AS events. The splicing regulatory network was visualized using Cytos-
cape [24].
Statistical analysis

All the statistical analysis was performed using the R/Bioconductor sta-
tistical environment. The Wilcoxon rank-sum test was used to determine
the statistical significance of differences between groups, and p-values
<0.05 indicated significant differences. Data were presented as the
means þ standard deviations.
Results

AS events are informative for AML prognosis

To systematically identify prognostic AS events in AML, we first defined
the landscape of AS events expressed in AMLusing the RNA-seq data of 151
AML patients from TCGA. Totally, we identified over 300,000 different
cassette exons across AML patients, including SE, MXE, A3SS, A5SS and
RI (Fig. 1a). We also observed that a single gene could produce multiple
types of AS events (Fig. 1b), confirming the importance of AS in diversifying
the AML transcriptome. A set of 100,185 high-confidence events were
finally generated after filtering for commonality (events detected in �80%
of all samples) and cross-sample variance (range of PSI > 5%; averaged skip-
ping or inclusion level >5%) (Fig. 1a). We focused on the prognostic values
of these high-confidence events.

Next, we integrated the clinical data of TCGA-LAML patients and
identified 7,033 significant prognostic AS events (p-value <0.05) that
were derived from 3,861 host genes (Fig. 1c). We found that the
expression of the corresponding host genes was much less informative
than AS events in prognosis (Fig. 1d), indicating that the identified
prognostic AS events were not the result of the expression level alter-
ations of host genes. Further pathway and process enrichment analysis
suggested an enrichment of genes in tumor-related functional categories
such as DNA repair, cell cycle and histone modification (Fig. 1e). As
an example, we performed more detailed analysis on the exon skipping
of HDAC7 in prognosis. We divided the patients into two groups using
the median cut of the exon 9 inclusion level (PSI value) of HDAC7
(Fig. 1f–g). The Kaplan–Meier curve and log–rank test showed that
the higher inclusion level of this exon was associated with poorer prog-
nosis (Fig. 1h).

Finally, we observed that four types of prognostic AS events could
occur in one single gene (Supplementary Fig. S1a). For example, in the
PILRB gene, there were A3SS, A5SS, MXE and SE events that were sig-
nificantly associated with the overall survival of AML patients, but the
expression of the gene itself was not associated with survival (Supplemen-
tary Fig. S1b–f). Collectively, we identified a rich source of AS events that
can act as novel prognostic markers for AML patients.
Establishment of an AS-15 splicing signature having a prognostic value
in AML

We next investigated the prognostic impact of each type of identified
AS event. We used RBSURV to identify key AS events and prognostic
functions for each type. Five signatures were developed, namely for
A3SS, A5SS, MXE, RI and SE, consisting of 12, 12, 18, 10 and 13 key
prognostic AS events, respectively (Fig. 2a–e, left panel). Using the key
prognostic AS events specific to the AS event types, we performed a mul-
tivariate Cox regression analysis to comprehensively evaluate their collec-
tive prognostic use. Risk scores calculated from type-specific key
prognostic AS events were capable of distinguishing the high-risk AML
group having a relatively shorter survival time from the low-risk group
having a relatively prolonged survival time (Fig. 2a–e, right panel, p-
value <0.0001).

To reduce the bias caused by the use of a specific AS event type, a
robust prognostic predictor should contain as many AS patterns/types as
possible. We performed RBSURV modeling that considered all types of
significant AS events (p-value <0.05) and identified a composite prognos-
tic splicing signature that included 15 AS events (Fig. 2f, left panel). The
schematic illustration of the 15 AS events were shown in Supplementary
Fig. S2. Using an in-silico prediction (detailed in Methods), we found that
73% (11/15) of the 15 AS events altered protein structures or functional
sites (Supplementary Table 1), suggesting the potential functional rele-
vance of prognostic AS events. It was noteworthy that several AS events
in the composite signature, such as SE of SETD5 and FBRSL1 and
MXE of PCBP1-AS1, were not enrolled into the prognostic model for
the individual type. Those type-specific top events were redundant and
their information had already been captured by other first selected events.
The forward gene selection strategy employed in RBSURV ensured that
the combined splicing values of these 15 AS events were identified to min-
imize the model complexity while maintaining the maximum fit of the
model to the data.

Finally, to interpret the prognostic value of these 15 AS events, an AS-
15 risk score was generated using the PSI values and the coefficients from
the multivariable Cox regression model. This score markedly distinguished
high-risk and low-risk patients, and a further ROC analysis illustrated that
the AS-15 signature resulted in a higher AUC, at 0.931 for 5-year overall
survival, than the type-specific AS event-based SE, A3SS, A5SS, RI and
MXE signatures (Fig. 2g). AS-15 remained significantly prognostic in
the validation set, having AUC value of 0.785, which suggested a promis-
ing clinical application of AS events for AML patients (Fig. 2h–i).

The AS-15 signature is an independent prognosticator for AML

We further performed a multivariable Cox regression analysis to deter-
mine if AS-15 was an independent prognostic signature for AML patients.
After the well-established factors, such as the cytogenetic risk stratification
and patient age, were adjusted, the AS-15 score remained significantly
associated with overall survival (adjusted p-value <0.001, hazard ratio
(HR) = 2.505, 2.772 in the training and validation set, respectively, Sup-
plementary Table 2). Within the three cytogenetic risk subgroups, the AS-
15 score could substantially distinguish the high-risk patients from the
low-risk patients (Supplementary Fig. S3). Similar results were observed
when these analyses were performed separately for patients younger or
older than 60 years of age in the training set and validation set (Fig. 3a–b).

To broaden the applicability of the AS-15 score in the clinical manage-
ment of AML and determine whether the AS-15 score was also of clinical
interest in pediatric AML, we analyzed the AS profiles of 179 pediatric
AML patients and calculated the AS-15 score. As shown in Fig. 3c, the chil-
dren having lower AS-15 scores had significantly better overall survival
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outcomes compared with children having higher AS-15 scores. This prog-
nostic relevance was also present in the infant (<3 years) and adolescent
(3–24 years) subgroups (Fig. 3d–e), suggesting that the AS-15 score may
provide important clinical information in pediatric AML.Collectively, these
findings demonstrated that the AS-15 score was a highly reliable indepen-
dent prognosticator in both adult and pediatric AML patients.

The AS-15 splicing signature outperforms gene expression-based scoring
models

Next, we compared the performance of the splicing signature with that of
frequently used gene expression-based signatures. First, comparisons were
conducted between the AS-15 score and the expression signatures based
onmRNA, lncRNA andmiRNAusing the expression profiles from the same
cohort. Both the Kaplan–Meiermodel and ROC analysis demonstrated that
AS-15 score performed better than those based on other genetic events
(Fig. 4a–d). Second, we compared the AS-15 score with other rigorously
tested powerful gene expression signatures, including Gene-24 [4], Gene-
7 [5] and LSC-17 [6], whichwere indeed capable of predicting AML survival
in a univariate analysis (Supplementary Fig. S4). The ROC curves showed
that the AS-15 score outperformed these three gene expression-based signa-
tures both in the training and validation sets (Fig. 4e–f). When combining
these three gene-expression-based prognostic scores with our AS-15, as well
as, cytogenetic risk stratification and patient age into one multivariate Cox
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regression model, only AS-15 remained independently predictive of the
prognosis in the training set and validation set (Supplementary Table 3).
Collectively, these findings illustrated that AS events are ideal clinical param-
eters for the risk stratification of AML and that the AS-15 signature was a
highly reliable clinical tool.

The AS-15 signature substantially improves the European
LeukemiaNet (ELN) risk classification of AML

The ELN classification considers a combination of cytogenetic and
mutational data and is currently regarded as the gold standard for risk
stratification in AML [25]. A multivariable Cox regression analysis
revealed that the AS-15 score was independent of the patient age and
ELN classification (adjusted p-value <0.001, HR = 2.546, 2.705 in the
training set and validation set, respectively, Supplementary Table 4). To
further enhance the clinical applicability of this splicing signature, we first
divided the entire study population having available ELN risk classification
information into AS-15high and AS-15low groups using maximally selected
rank statistics. Patients in the AS-15high group had significantly shorter
overall survival times than patients in the AS-15low group (Supplementary
Fig. S5a–b). Next, we investigated whether the AS-15 score could dichot-
omize survival within the ELN risk groups. Stratifying the patients within
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the ELN favorable, intermediate and adverse groups into AS-15high and
AS-15low subgroups resulted in a clear separation of patients having longer
and shorter overall survival times, respectively, in the ELN risk groups
(Fig. 5a–c, Supplementary Fig. S5c–e).

Based on the above findings, we proposed to improve the ELN classi-
fication by including the AS-based signature. We combined the patients
from the six groups generated in the previous analysis into three new
groups as follows: ELN favorable/AS-15high and ELN adverse/AS-15low

patients were re-assigned to the ELN intermediate risk group, and ELN
intermediate/AS-15high patients were re-assigned to the ELN adverse risk
group (Fig. 5d). Based on the median overall survival, the resulting
ELN plus AS-15 score allowed improved risk segregation and successfully
refined the ELN classification (Fig. 5e–f). Similar results were obtained
when these analyses were performed independently in the validation set
(Fig. 5g–i).
Splicing factors responsible for the prognostic AS events

The AS process is highly organized and regulated by both trans-acting
factors and cis-regulatory elements. Splicing factors act as trans-acting fac-
tors to influence the exon selection and the splicing site choice by recog-
nizing cis-regulatory elements within pre-mRNAs [26,27], and are
extensively dysregulated in AML [13]. We thus hypothesized that
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prognostic AS events in AML are mediated by certain splicing factors,
which have potential influences on cancer survival. To do so, we first com-
pared mRNA expression of splicing factor genes in AML patients with
normal human bone marrow/peripheral blood samples. We found approx-
imately 61% (359/584) of the genes to be differentially expressed. Among
the dysregulated splicing factors in AML, 188 splicing factor genes were
significantly upregulated, whereas 171 genes were downregulated (ad-
justed p < 0.05, Fig. 6a, Supplementary Table 5). Next, using the
genome-wide CRISPR screening data from 12 AML cell lines and a strin-
gent average 1.5-fold change of sgRNA abundance as the cut-off value, we
identified the splicing factor genes that were required for the survival of
AML cells. A total of 103 splicing factors were identified, including previ-
ously reported RBM39, PCBP1, SRSF2 and RBMX (Fig. 6b, Supplemen-
tary Table 6). We then focused on splicing factors that were both
differentially expressed in AML and essential for the survival of AML cells
(Supplementary Fig. S6a). Of these splicing factors, we determined those
potentially responsible for AS-15 by calculating the correlations between
the splicing factors' expression levels and the exon-inclusion levels of these
15 AS events. This correlation analysis defined a splicing network with
132 edges/intercorrelations (p-value <0.05, |Spearman's correlation coeffi-
cient| > 0.25) between AS-15 and splicing factors (Fig. 6c). On average,
one AS event was correlated with �9 splicing factors, suggesting the fre-
quent cross-regulation among splicing factors.

Finally, to validate the roles of splicing factors in AS-15, we retrieved
RNA-seq data of Molm13 leukemia cells before and after the knockout
of RBM39. The elevated expression of RBM39 in AML contributed to
the higher exon inclusion of SETD5 (Fig. 6d, Supplementary Fig. S6b–
d), an essential regulator of histone acetylation during gene transcription
[28]. After knocking out RBM39, the exon inclusion level significantly
decreased (Fig. 6e). Collectively, the co-expression network analysis
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provided further clues on dysregulated splicing factor-mediated AS mech-
anisms in AML.
Discussion

Alternative splicing is a highly regulated and coordinated molecular
mechanism involved in multiple physiological processes, and its perturba-
tion has gained substantial attention in diverse pathological and disease
contexts, including AML [10,29–32]. However, there is limited knowl-
edge regarding their applicability as prognosticators for AML. In this
study, through a comprehensive integration analysis of high-throughput
RNA-seq datasets, we demonstrated the presence of extensive AS events
in AML transcriptome, supporting their role as drivers of regulatory com-
plexity and functional versatility in cells [7]. We also revealed the prognos-
tic value of AS events, providing a rich source of novel prognostic markers
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for the prognosis of AML patients. Critical genes in AML, such as
RUNX1, DNMT3A, BAX and NOTCH2, were included in these prognos-
tic events. Previous studies mainly focused on the functional and clinical
implications of variations and the dysregulation of these genes [2,11],
while AS events that directly orchestrate transcript architecture have been
largely overlooked.

While cytogenetic and mutational status have been regarded as the
clinical standard for risk stratification and prognosis in AML, the remark-
able heterogeneity remains unresolved [1,11,25]. Therefore, assessing
additional genetic parameters including gene expression [3–6,33] and
DNA methylation [34] has become an efficient strategy for better prog-
nostic risk stratification of patients. As a fundamental aspect of AML
pathogenesis [13], AS events captured the splicing programs of leukemic
cells and could serve as the prognostic signatures in clinic. Also, a recent
study has developed prognostic models for AML patients using a single
cohort from the TCGASpliceSeq database [35]. Although there is no over-
lap of AS events in identified signatures between two studies due to the
different feature selection methods, both studies provide evidence for
the applicability of AS events in AML prognosis. Furthermore, we found
that the AS event-based splicing signature could predict prognosis even
better than other well-established signatures based on gene expression
[4–6] in two independent datasets. A possible explanation is that AS is
not only related to expression of corresponding genes, but also reflects
upstream regulations. Collectively, we and others confirm that AS events
are an important molecular feature of AML with clinical relevance. Also,
the prognostic value of AS events has been uncovered in multiple cancer
types, including non-small cell lung cancer [36], ovarian cancer [37], eso-
phageal carcinoma [38], colorectal cancer [39], renal cell carcinoma [40]
and pancreatic ductal adenocarcinoma [41]. Notably, a recent study has
revealed a pan-cancer view of AS events with consequences for the possible
relevance in immunotherapy [42], suggesting that more efforts could be
made to uncover the pan-cancer AS signatures, serving as biomarkers or
therapeutic targets across cancer types.

In RBSURV, a forward gene selection strategy was employed and the
optimal predictive model was selected by using the smallest AIC, an
approach to minimize the complexity of predictors while maintaining
the maximum fit of the predictor to the data [20]. By subjecting all the
five types of AS events to RBSURV, we constructed an optimal composite
signature, AS-15, by jointly leveraging the information of AS events across
types without being trapped in the type-specific marginal optimal events.
By incorporating the splicing information of AS-15 into the ELN classifi-
cation schema, we improved the accuracy of ELN stratification, which
could contribute to treatment decisions in the clinic. These prognostic
events may be key to understand the remarkable prognostic heterogeneity
of the disease that has hindered prediction based on cytogenetic and muta-
tional analyses only [25]. Furthermore, although pediatric AML represent
a genetically distinct disease entity [15], when the AS-15 score was applied
to pediatric AML, a highly significant prognostic power was observed in
both infants (<3 years) and adolescents (3–24 years). Thus, the splicing
signature may have captured the common splicing programs both in adult
and pediatric AML patients, representing a common transcriptome feature
in AML. However, because of the limited available raw RNA-seq data of
AML patients with complete clinical information, a much broader cohort
of AML patients is required to confirm the prognostic value of the AS-15
score in future studies.

Because splicing factors are major executors of AS processes [43], we
further explored those potentially responsible for the AS-15 splicing pro-
cess. Our differential analysis revealed that aberrant expression of splicing
factor genes occurs ubiquitously in AML, which are consistent with previ-
ous findings [13]. Next, CRISPR-based screening system further helped us
to focus on splicing factors that were also essential for the survival of AML
cells. A splicing regulatory network correlating splicing factors and AS-15
events suggested potential regulatory relationships that could be experi-
mentally validated. Noteworthy, a single splicing factor usually recognizes
and regulates splicing of many pre-mRNA targets, and that cross-
regulation ubiquitously occur among splicing factors [44]. Our data were
consistent with this, where one AS event was correlated with �9 splicing
factors. Finally, based on the prognostic value of the AS of SETD5, an
essential regulator of histone acetylation during gene transcription, and
the significant regulatory correlation with dysregulated RBM39, future
work, including RIP-seq/CLIP-seq studies and in-depth functional exper-
iments, is needed to confirm these findings and explore the detailed regu-
latory mechanisms. Thus, the results of the systematic survival analysis of
AS events combined other computational methods led to a hypothetical
regulatory mechanism underlying AML and provided further clues regard-
ing dysregulated splicing factor-mediated AS mechanisms in AML.

In conclusion, we performed a comprehensive identification and prog-
nostic interpretation of AS events in AML. We identified a 15 AS event-
based splicing signature as a powerful prognostic indicator that has the
potential to refine the ELN risk stratification, which is beneficial for
patient's treatment decisions. Furthermore, the splicing-regulatory net-
work correlating prognostic AS events and associated dysregulated splicing
factors provided clues regarding the splicing factor-mediated mechanisms
of AML.
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