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Abstract. Dengue fever and other febrile mosquito-borne diseases place considerable health and economic burdens
on small island nations in the Caribbean. Here, we used two methods of cluster detection to find potential hotspots of
transmission of dengue and chikungunya in Barbados, and to assess the impact of input surveillance data and meth-
odologyonobservedpatternsof risk.UsingMoran’s I andspatial scan statistics,weanalyzed thegeospatial and temporal
distribution of disease cases and rates across Barbados for dengue fever in 2013–2016, and a chikungunya outbreak in
2014. During years with high numbers of dengue cases, hotspots for cases were found with Moran’s I in the south and
central regions in 2013 and 2016, respectively. Using smoothed disease rates, clustering was detected in all years for
dengue. Hotspots suggesting higher rates were not detected via spatial scan statistics, but coldspots suggesting lower
than expected rates of disease activity were found in southwestern Barbados during high case years of dengue. No
significant spatiotemporal structurewas found in cases during the chikungunya outbreak. Spatial analysis of surveillance
data is useful in identifying outbreak hotspots, potentially complementing existing early warning systems. We caution
that these methods should be used in a manner appropriate to available data and reflecting explicit public health
goals—managing for overall case numbers or targeting anomalous rates for further investigation.

INTRODUCTION

Dengue fever threatens the health of communities
throughout Latin America and the Caribbean, where all four
serotypes of dengue virus (DENV 1–4) are in circulation fol-
lowing a regional resurgence of the pathogen in the 1980s.1,2

The Caribbean island of Barbados is challenged with man-
aging endemic dengue fever andother febrilemosquito-borne
diseases including emerging chikungunya and Zika viral
diseases.3–6 In small island nations such as Barbados,
outbreaks translate into increased morbidity and mortality,
high costs to healthcare systems, and lost economic
productivity.7–10 With approximately 40%of employment and
gross domestic product linked to the tourism industry, Bar-
bados is particularly vulnerable to the economic impacts of
arbovirus outbreaks.11 In addition to lost domestic pro-
ductivity, travel-related cases and negative health percep-
tions associated with outbreaks deter potential visitors,
further impacting the livelihoods of island residents.12,13 The
emergence and subsequent establishment of novel arbovi-
ruses in the Caribbean exacerbates matters by complicating
disease management while further impacting sources of
income.3,14 In response to these social and economic bur-
dens, the Ministry of Health (MoH) and Wellness of Barbados
has a long history of engaging in public mosquito control and
active disease surveillance, where suspected human cases
are laboratory confirmed, and vector control interventions
are conducted in response to both laboratory results and

mosquito surveillance. Interagency collaborations arepart of a
comprehensive effort tomitigate the toll of endemic dengue.15

Previous studies performed in Barbados have described
climatological and seasonal drivers of dengue transmission,
vital components of early warning systems, and forecasting
models.16,17 Although large-scale climatological factors
undoubtedly play a dominant role in driving outbreaks of
mosquito-borne illness, this plays out at the local scale as
a function of the human landscape.18,19 Therefore, un-
derstanding the local distribution of human cases is also
necessary for understanding patterns of exposure risk
and guiding vector abatement strategies.
Aedes aegypti is the primary mosquito vector of medical

concern throughout the Caribbean. Public health vector
control programs are widely acknowledged as cost-effective
in controlling arboviruses transmitted by Ae. aegypti, relative
to costs associated with the delivery of health services and
supportive care.20,21 Nevertheless, public health resources
are finite, calling for efficient intervention strategies to target
mosquito populations and suppress transmission pathways.
Ae. aegypti is a container-breedingmosquito andsuccessfully
exploits anthropogenic environments for oviposition and lar-
val rearing. The role of household-level characteristics, such
as housing condition and water storage habits, in promoting
mosquito production has been repeatedly demonstrated.18,19

In some instances, favorable microhabitats enable mosqui-
toes, and subsequently disease transmission, to persist de-
spite general unfavorable environmental conditions.22 Thus,
identifying spatial clusters of high disease activity, or “hot-
spots,” can prove invaluable when prioritizing the delivery of
abatement and outreach services. Further additional chal-
lenges, although not unique in the context of integrated vector
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control, are essential to address formanagement ofmosquito-
borne diseases in Caribbean islands. Vector-borne disease
risk can shift rapidly on small islands like Barbados because of
many factors, including insecticide resistance, climate vari-
ability, climate change, high disease prevalence, and variable
mosquito control efforts in response to herd immunity dy-
namics. Small island developing states in the Caribbean also
face challenges to the elimination of Ae. aegypti, as reintro-
ductions of vectors are frequent because of interregional
travel, unplanned urbanization, and limited resources for
vector control.23 Frequent reintroductions of pathogens are
also problematic for elimination campaigns, particularly in
locations with high volumes of regional and international
travel, as humans are the reservoir host for both epidemic
dengue and chikungunya.24,25 These management chal-
lenges demand strategies that incorporate spatially and
temporally sensitive methods of detecting transmission
activity.
Geographic information systems (GISs) offer a powerful tool

in the visualization and incorporation of spatial epidemiologi-
cal data into public health programs.26 Although many health
departments and ministries have readily adopted GIS meth-
ods into their surveillance and reporting activities, fewer have
extended these methodologies to incorporate statistical tests
of spatial dependency in human case data. Local indicators of
spatial association (LISA) statistics are routinely used in an
exploratory framework to quantitatively describe patterns of
spatial dependence and clustering, or dispersion, of disease
cases within a defined area of study.27 Identifying spatially
discrete areas of significantly high (i.e., hotspots) or low (i.e.,
coldspots) disease activity within functional administrative
boundaries is a useful framework for crafting responses to
outbreak events and future interventions, enabling agencies
to focus their effortsmore efficiently. Global and localMoran’s
I tests have been applied in public health contexts to describe
spatial distributions of mosquito-borne disease outbreaks,
including dengue fever, and to detect the location of disease
clusters.19,28,29

Although LISA methods give us insight into the spatial
structure of disease activity within a given time period, these
analyses are temporally static. In instances where georefer-
enced disease surveillance data are available at regular time
intervals, spatial scan statistics can be used to identify local
areas of clustering in multiple dimensions (i.e., space, time, or
space–time). Spatial scan statistics are capable of detecting
possible disease clustering in surveillance data, using a series
of variable search windows to evaluate spatial and temporal
trends in the dataset.30,31 Application of space–time scan
statistics can be a powerful tool in disease surveillance and
outbreak detection, where we are interested in describing not
only where but also when clusters of events occur over a
continuous period of time.
To our knowledge, no previous efforts have described the

spatial and temporal distribution of dengue or chikungunya
outbreaks in Barbados. Using epidemiological case data
collected by the MoH in Barbados from 2013–2016, we used
exploratory LISA and space–time scan statistics to test for
spatial and temporal autocorrelation of dengue and chi-
kungunya cases within operational health districts. The ob-
jectives of this study were to perform the following: 1) detect
global spatial dependency, or clustering, of surveillance ar-
bovirus cases reported in Barbados within each year of the

study period; 2) when global spatial dependency is detected,
identify the locations of hotspots (i.e., clustered) and cold-
spots (i.e., dispersed) of diseaseactivity; 3) assess theeffect of
different input data onobserved spatial patterns; and 4) detect
spatiotemporal patterns in disease rates at finer temporal
resolutions via spatial scan statistics. This also provides an
important opportunity to discuss and showcase the implica-
tions of how these methods are implemented in situations
where data are limited, simply as a function of small pop-
ulations, as seen in small island nations.

METHODS

Study area and epidemiological data.Barbados, situated
in the Caribbean, has an estimated residential population of
more than 277,000.32 The most densely populated areas are
found on the southern side of the island, with the highest
population density found around Bridgetown, the capital
city.32 Transmission of mosquito-borne diseases in Barbados
is seasonal, with peak transmission typically associated with
high numbers of mosquitoes during the rainy season (June–
November) and fewer disease cases reported during the dry
season (December–May).16,33 The MoH of Barbados per-
forms active and passive surveillance for dengue and other
mosquito-borne diseases via nine polyclinics. These serve
seven polyclinic administrative catchment (PAC) areas
(Branford Taitt, David Thompson, Eunice Gibson, Maurice
Byer, Randall Philip, St. Philip, and Winston Scott), which are
further divided into 63 health districts (Figure 1). Public vector
control and health services are delivered at the level of health
districts, which range in size from 0.40 km2 to 26.62 km2. The
MoH oversees arbovirus sureveillance activities, where sus-
pected human cases of dengue and chikungunya are recor-
ded by the ministry and confirmed in the National Reference
Laboratory by reverse transcriptase polymerase chain re-
action (RT-PCR) or ELISA. De-identified, monthly case totals
for dengue fever in each health district were provided by the
MoH for the years 2013–2016, and we defined the location of
cases as the centroid of a given district. Georeferenced data
on laboratory-confirmed chikungunya cases, aggregated to
health districts, were also made available for this study, but
were only available for the 2014 outbreak. Additional GIS data
were provided for this study by the MoH, including shapefiles
of the administrative boundaries for health districts in
Barbados.
Global and LISA. Annual case totals for dengue and chi-

kungunya in each health district were aggregated from
monthly case data provided by the MoH for each year of the
study. Annual per capita disease rates were derived from an-
nual totals and population data from the most recent national
census, conducted in 2010.32 The population of each health
district ranged from 68 to 12,743, according to census data.
Because of low population in some health districts, raw dis-
ease rates may be susceptible to instability due to high vari-
ance associated with small numerators or denominators (i.e.,
the “small number problem”).34 Performing spatial analyses
on raw rates with high instability can result in incorrectly
identifying artefacts of the small number problem as statisti-
cally significant outliers. We performed empirical Bayes (EB)
smoothing, where the variance of rate estimates is globally
reduced via a priori probability functions on raw disease rates
in Geoda (v. 1.12.0) to compensate for high variability in rates

150 LIPPI AND OTHERS



due to lowhealthdistrict population.EmpiricalBayessmoothed
rates were compared with raw disease rates, verifying the
overall reduction of variance from smoothing.
Global Moran’s I with inverse distance weighting (ArcMap,

v. 10.4) was used to test for spatial autocorrelation in both
case counts and smoothed disease rates for dengue and
chikungunya in Barbados for each year of the study. A global
indicator of spatial dependence, the Moran’s I statistic, pro-
vides a measure of the degree of statistically significant
clustering or dispersion in disease measures for the entire
island. Local Moran’s I is a LISA statistic for identifying loca-
tions (e.g., health districts within the study area) with statisti-
cally similar spatial patterns (e.g., clustering or dispersion) of
high and low values (i.e., hotspots or coldspots) on the
island.35 This statistic is also useful for the detection of spatial
outliers, locations with significantly extreme values compared
with neighboring areas.35 Local Moran’s I with inverse dis-
tance weighting was performed for each reported year in
ArcMap (v. 10.4) to identify health districts that were hotspots,
or coldspots, of dengue or chikungunya activity.
Spatial scan statistics. We compared the spatial distri-

bution of dengue and chikungunya found via LISA statistical
analyses, calculated for each year of the study, to patterns of
clustering and dispersion in continuous aggregated cases
over the study period. Patterns of spatiotemporal clustering in
monthly case totals within each year were tested using the
univariate Kulldorff’s spatial scan statistic in SaTScan (v.

9.4.4), where we performed retrospective analyses under the
space–time permutation model, scanning for both clustering
and dispersion.36 A circular search window was specified to
test for spatiotemporal clustering, comparing cases at each
location (i.e., centroids of health districts) with neighboring
areas within a variable window, using a time precision of
1month. Clusterswere constrained to amaximumcluster size
of 50% of case data and a maximum temporal window of
50% of the study period, as recommended in Kulldorff.36,37

Geographic overlap with other clusters was allowed, pro-
vided that no neighboring cluster centers were included in a
given cluster. Likelihood ratios and associated P-values
were reported for each identified cluster, where maximum
likelihood values were calculated via Monte Carlo simulation
(999 replications). Statistically significant clusters (α = 0.05)
from the SaTScan analyses were mapped with LISA results
for each year in ArcMap (v. 10.4) for visual comparison.

RESULTS

The number of dengue cases in Barbados reported by the
MoH fluctuated greatly during the study period, with large
outbreaks occurring in 2013 (n = 526) and 2016 (n = 386), and
lower case numbers in 2014 (n = 147) and 2015 (n = 58).
Georeferenced cases of chikungunya (n = 57) were only
available for 2014. We detected statistically significant (α =
0.05) global clustering (i.e., Moran’s I values > 0) in aggregated

FIGURE 1. Health districts and polyclinic administrative catchment (PAC) areas in Barbados. This figure was produced in ArcMap 10.4 (ESRI)
using shapefiles from the GADM database of Global Administrative Areas, v. 2.8 (gadm.org), and shapefiles provided by the Ministry of Health,
Barbados. This figure appears in color at www.ajtmh.org.
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case counts during the years of large dengue outbreaks, 2013
and 2016 (Table 1), whereas significant global clustering of EB
smoothed rates was found in every year for dengue (Table 2).
No significant clustering was detected during the 2014 chi-
kungunya outbreak.
Local Moran’s I revealed shifting the locations of dengue

hotspots and coldspots at the health district level between
years in both case totals (Figure 2) and EB smoothed disease
rates (Figure 3). Localized spatial autocorrelation in dengue
case counts was found during large outbreak years, whereas
significant patterns of clustering in EB smoothed rates of
dengue were found in every year. The locations of hot and
coldspots differed for case counts versus rates (Figures 3). In
years where both cases and rates had significant spatial au-
tocorrelation (i.e., the 2013 and 2016 outbreaks), the highest
disease rates were clustered in health districts in the north of
the island, whereas dengue case counts had hotspots and
clustered outliers (i.e., health districts with a high number of
cases relative to neighboring districts with low counts) in
central and southern health districts. Statistically significant
spatial autocorrelationwas only detected in smoothed rates in
years of lower dengue burden (i.e., 2014 and 2015). During low
burden years, hotspots were generally identified in northern
health districts, whereas coldspots were detected in southern
health districts (Figure 3).
In years with large outbreaks of dengue, health districts in

the southernmost Randall Philip PAC area were identified as
hotspots of cases in 2013 (n=4) and in the centrally locatedSt.
Philip PACarea in 2016 (n=1) (Figure 2). Coldspots for dengue
cases were detected in health districts located in the Maurice
Byer (n = 5), Branford Taitt (n = 4), and Eunice Gibson (n = 2)
PACareas in 2013. In 2016, only three districts, in theBranford
Taitt (n = 2) and Winston Scott (n = 1) administrative regions,
were significant coldspots of cases (Figure 2). Three health
districts, located in Branford Taitt, Eunice Gibson, and David
Thompson catchment areas, were found to be clustered
outliers in both 2013 and 2016 (Figure 2). When performing
LISA analyses on smoothed dengue rates, the northern
Maurice Byer PAC area contained all health districts that were
hotspots of disease rates in 2013 (n = 4) and 2016 (n = 4)
(Figure 3). Significantly, low rates of dengue were consistently
found in southern health districts throughout the study period
(Figure 3).
Analysis of monthly case data in Barbados via spatial scan

statistics did not identify statistically significant clustering of
high rates for either dengue or chikungunya. However, spa-
tiotemporal locations with low rates of dengue were found in
years with high case counts, indicating the duration and lo-
cation of low disease activity during outbreak years (Table 3).
In 2013, an areawith low relative risk (RR=0.08) spanning nine

health districts across threePACareaspersisted fromJanuary
to March (Table 3, Figure 2). A large area with low relative risk
(RR=0.44)was also identified in 2016 fromAugust toOctober,
comprising 29 health districts across five PAC areas, with a
smaller overlapping area of low risk (RR = 0.39) found in June
to September of the same year.

DISCUSSION

In this study, we found that cases of dengue fever in Bar-
bados detected via surveillance in 2013–2016 exhibit both
spatial and temporal structure. Dengue cases clustered in the
central and southwestern health districts in years with ele-
vated case counts. By contrast, smoothed rates of
population-derived incidence revealed clustering in all years
for dengue, with many hotspots found in northern health dis-
tricts. The identification of spatial dependence in disease
cases is highly relevant for public health professionalsworking
to suppress arbovirus transmission in Barbados, where there
is a call to allocate public health resources efficiently.
Spatial discrepancies in data inputs (i.e., case numbers vs.

population-derived rates) were driven in part by the small and
spatially heterogeneous population density of Barbados.
Consequently, any analyses performed on this system are
susceptible to the “small numbers problem,”where estimates
of disease prevalence and incidence rates can dramatically
fluctuate as an artefact of either low-density underlying pop-
ulations or relatively low case detection in high density pop-
ulations.34 Procedures to reduce variance in rates, such as EB
smoothing, are recommended to reduce the effect of unstable
rates in disease mapping and tests for spatial autocorrela-
tion.38 However, broad geospatial prescriptive remedies for
the small number problem may unintentionally subvert public
health agency management priorities, particularly in small
island systemswith extreme spatial population heterogeneity.
Even after smoothing, we observed consistent hotspots of
disease activity in northern health districts, where population
densities are very low. Health districts with significantly high
disease rates in low populations may not represent pragmatic
management targets, especially in years where resources are
limited or outbreaks are focused in urban centers. Although
statistically sound, practical application of such analyses
should be tempered by the expectations and priorities of
public health agencies. In this context, raw case counts may
give us a better understanding of operational disease burden
on Barbados despite the problems typically associated with
disregarding underlying population in morbidity metrics,
where we would expect to detect more cases in densely
populated areas regardless of true risk.

TABLE 1
Global Moran’s I values for dengue and chikungunya case totals,
aggregated to health district, in each year in the study
Arbovirus Year Total cases Moran’s I* Z-score P-value

Dengue 2013 526 0.23 4.40 < 0.001
Dengue 2014 147 −0.04 −0.51 0.610
Dengue 2015 58 0.04 1.06 0.291
Dengue 2016 386 0.11 2.29 0.022
Chikungunya 2014 57 0.06 0.84 0.400
P-values in bold indicate statistically significant results.
*Moran’s I values range between -1 and 1, where negative values indicate dispersion and

positive values indicate clustering.

TABLE 2
Global Moran’s I values for dengue and chikungunya empirical Bayes
(EB) smoothed disease rates, aggregated to health district, in each
year in the study
Arbovirus Year Total cases Moran’s I* Z-score P-value

Dengue 2013 526 0.290 5.77 < 0.001
Dengue 2014 147 0.103 2.22 0.026
Dengue 2015 58 0.166 3.35 < 0.001
Dengue 2016 386 0.330 6.43 < 0.001
Chikungunya 2014 57 0.06 1.30 0.192
P-values in bold indicate statistically significant results.
*Moran’s I values range between -1 and 1, where negative values indicate dispersion and

positive values indicate clustering.
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The differences observed in the spatial distribution of
cases versus rates have critical implications with regard to
intervention strategies and management goals. Although we
accounted for inflated variance in rates by performing EB
smoothing, hotspots in northern districts still reflect lower
absolute caseloads than those found in densely populated
areas in the south, especially in the vicinity of Bridgetown, the
capital city. It is therefore imperative that management ob-
jectives are clearly specified before using spatial analyses on
health surveillance data for planning purposes. Prioritization
of goals is particularly important in a small island with high
heterogeneity in population density, where making man-
agement decisions based on unstable rates could drive
misallocation of resources. When responding to endemic
transmission or emerging pathogens, such as chikungunya,
targeting areas with the highest transmission rates (i.e., high
numbers of cases relative to the underlying population)
should be prioritized to prevent further spread. Conversely,
when considering large outbreaks of endemic diseases,
such as dengue, the management focus may be instead on
reducing the total number of infections, regardless of pop-
ulation density, to mitigate hyperendemic peak years and
reduce costs associated with the delivery of health services.
In Barbados, these fundamental management distinctions
may be subtle, but as our analyses demonstrate, it can re-
quire vastly different spatial representations of disease
clustering in the study area. This would directly translate to
choices of where to allocate resources in particular health
districts.

Although we observed shifts in the clustering and disper-
sion of disease activity in Barbados between years, therewere
nevertheless consistencies in the location of health districts
with clustered dengue cases or rates, especially in outbreak
years. In particular, health districts identified as high clustering
outliers during peak years were identical in 2013 and 2016,
suggesting that some areas may have an underlying sus-
ceptibility to localized outbreaks when transmission is high
(Figure 2). Although the analyses presented here represent a
reactive management approach, in which there is lagged
decision-making in response to previously reported case
data, spatial methodologies can also be incorporated into
proactive strategies as part of an early warning system
framework. Predictive climatological models of dengue risk
have been developed for Barbados, enabling the anticipation
of large outbreak events driven by environmental factors.16

Although useful in terms of triggering agency response ahead
of major island wide outbreak events, current probabilistic
forecast models do not provide information on where to in-
tervene. Here, our spatial analyses point to consistent areas
of transmission peaks, providing complementary analyses
to predictive climate modeling efforts, which can be in-
corporated into MoH decision-making, targeting discrete lo-
cations for mosquito control ahead of anticipated outbreak
events.
We did not identify significant spatiotemporal clustering of

dengue or chikungunya with spatial scan statistics within
surveillance years, although locationswith lowdengueactivity
were found during some months in years with higher case

FIGURE 2. Patterns of clustering (red) and dispersion (blue) of annual dengue case totals were found at the level of health district in Barbados in
2013 and 2016, as determined by Local Moran’s I. Spatiotemporal areas of low disease risk in monthly cases (blue circles), found via Kulldorff’s
spatial scan statistic, were found in both years. This figure was produced in ArcMap 10.4 (ESRI). This figure appears in color at www.ajtmh.org.
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totals. Previous studies have indicated that spatial scan sta-
tistics are often more sensitive to the detection of hotspots,
particularly when relative risk is low, than other exploratory
methods of spatial analysis.39,40 Spatial scan statistics have
also been used to successfully identify hotspots of mosquito-
borne diseases at fine temporal resolutions in systems where
diseases are endemic.41,42 Our inability to detect disease
clustering at higher temporal resolutions, even in years with
high case counts, perhaps points to a lack of within-season
localized clustering. The areas of low risk detected in 2016 for

dengue coincide with the rainy season in Barbados, when we
would expect to see increased transmission (Table 3). Areas
with significantly low disease rates arise as a result of spatial
uniformity in risk outside these locations of unexpectedly low
transmission. Our ability to detect spatial clustering at sub-
season scales may alternatively be hindered by human
movements, reflecting the difficulty of performing local dis-
ease surveillance in transient populations (e.g., commuters
and international travelers).43 Although the inability to detect
monthly clustering of arbovirus cases may limit the utility of

FIGURE 3. Patterns of clustering (red) and dispersion (blue) of EB smoothed annual dengue rates were found at the level of health district in
Barbados for all years of the study, as determinedby LocalMoran’s I. Spatiotemporal areas of lowdisease risk inmonthly cases (blue circles), found
viaKulldorff’s spatial scan statistic, were found in 2013 and 2016 for dengue. This figurewasproduced in ArcMap10.4 (ESRI). This figure appears in
color at www.ajtmh.org.

TABLE 3
Statistically significant coldspots in monthly disease counts, calculated using the space–time permutation spatial scan statistic in SaTScan

Arbovirus Year PAC areas Health districts Duration Radius (km) Observed cases Expected cases Relative risk P-value

Dengue 2013 SP, WS, and EG 9 January 2013–March 2013 3.03 1 11.89 0.08 0.034
Dengue 2016 WS, RP, SP, and BT 29 August 2016–October 2016 5.90 24 54.18 0.44 < 0.001
Dengue 2016 BT, EG, and WS 17 June 2016–September 2016 4.63 12 30.40 0.39 0.055
BT = Branford Taitt; EG = Eunice Gibson; PAC = polyclinic administrative catchment; RP = Randall Philip; SP = St. Philip; WS = Winston Scott. P-values in bold indicate statistically significant

results.
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spatial scan statistics to direct mosquito control activities at
fine temporal scales in Barbados, our identification of loca-
tions with lower risk during active transmission seasons war-
rants investigation and future research into potential drivers.
Aggregated surveillance data are routinely collected in a

public health context, but are not free from limitations. The
MoHverifiesdengue andchikungunya cases in the laboratory,
but underreporting of cases is a commonly encountered issue
with passive surveillance data in Latin America and the Ca-
ribbean, resulting in an underestimation of true disease risk in
some areas.44 This is particularly true on islands with large
transient populations, where travelers with mild or asymp-
tomatic cases may not be detected by local surveillance net-
works, yet still serve tomaintain local transmission cycles. The
availability of current population data for calculating disease
rates is also a limitation of this work. Although the projected
population growth for Barbados is quite low, the most recent
census data were collected in 2010, nearly a decade ago.32 In
a spatial analysis context, the aggregation of cases to health
districts prevents us from drawing conclusions at finer scales.
Although this limits our ability to inform household-level in-
terventions within disease clusters, identifying health districts
with high level of disease transmission is nevertheless relevant
to the operational scale of health services delivered by the
MoH in Barbados. Despite these limitations, the data used in
this study represent the most accurate and up-to-date esti-
mates of population and disease risk in Barbados.
Public health implications. These initial results serve as

the foundation for incorporating spatial analyses into the
existing arbovirus surveillance network in Barbados. Moving
forward, these methodologies provide us not only with a
means of guiding ministry responses to outbreaks of
mosquito-borne diseases but also with the impetus for future
geospatial analytical health studies in Barbados. Exploratory
spatial analyses allow us to test hypotheses related to domi-
nant social-ecological drivers of spatial clustering in health
districts. Understanding the human characteristics that un-
derlie observed spatial patterns can contribute to the devel-
opment of better intervention methods.
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