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Potential biomarkers in septic shock besides lactate
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Abstract
Septic shock can be defined as sepsis with persisting hypotension and is required for

vasopressors after initial unsuccessful fluid resuscitation. Elevated lactate is a biomarker

of tissue perfusion and oxygenation and a useful prognostic tool for resuscitation in septic

shock, as it is a byproduct of anaerobic glycolysis due to inadequate oxygen delivery and

tissue hypoxia. Early and serial systematic lactate measurement will prompt physician more

rapid intervention and lactate normalization, which is associated with better outcome.

However, lactate formation during septic shock is neither entirely related to tissue hypoxia,

nor reversible by increasing oxygen delivery. Meanwhile, lactate can be oxidized via tricar-

boxylic acid cycle after being transferred into mitochondria via lactate shuttle, which indi-

cates elevated lactate can be used rather than only accumulation. Glycolysis and elevated

lactate can be initiated by hypoxia, but persistent hyperlactatemia may not only represent

persistent hypoxia. Some other potential biomarkers have been reviewed in the article

including intermediates of tricarboxylic acid cycle, malate-aspartate shuttle, the nicotin-

amide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NADþ/NADH)

ratio, NADþ, NADH, malate, and malate dehydrogenase from the point of view of energy

metabolism. Among them, malate dehydrogenase participates in both malate-aspartate

shuttle and tricarboxylic acid cycle, and it can also indirectly reflex the NADþ/NADH
ratio. It is reasonable to hypothesize that the combination of lactate and malate dehydrogenase will be more comprehensive

to reflex hypoxia in septic shock.
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Introduction

It is widely accepted that anaerobic glycolysis will take
place upon hypoxia, and then more lactate will be pro-
duced from pyruvate catalyzed by lactic dehydrogenase
(LDH). Overwhelming evidence demonstrates that hyper-
lactatemia and lactic acidosis are common in patients with
severe sepsis or septic shock.1,2 And hyperlactatemia is also
independently associated with significant morbidity and
mortality of patients either with hyperlactatemia after
volume resuscitation according to the Sepsis-3 definition
or with initial hyperlactatemia later normalized after fluid
resuscitation excluded from the Sepsis-3 definition.3

However, whether hyperlactatemia is only attributed to
tissue hypoxia or anaerobic glycolysis is still not clear, as
high serum lactate concentration can occur even when the
whole body oxygen delivery is three times higher than the
critical oxygen delivery point.4 Actually, there are many
other causes leading to hyperlactatemia.5,6 (1) Lactate can
participate in the Cori cycle for gluconeogenesis from
muscle to liver or kidney via circulation. Thus, an array of
biological events such as tissue perfusion, disordered glyco-
lytic flux, and insulin resistance are involved in the concen-
tration of lactate.7 (2) Lactate production can increase
because of the reprogramming mitochondria-dependent
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process to fulfill the elevated energy demands.8 For example,
when the immune cells are exposed to an inflammatory
environment, the activated neutrophils increase oxygen con-
sumption and the activated macrophages and lymphocytes
increase glycolysis to meet their increasing energy needs.9

For cancer energy metabolism, cancer cells gaining energy
mainly via glycolysis have been wildly accepted, leading to
elevated lactate (Warburg effect).10 And it is hypothesized
that the elevated lactate can be further used by the neighbor
cancer cells via the TCA cycle for ATP production.11 (3)
Elevated lactate may facilitate the energy demand of cells.
Lactate shuttle and oxidation via TCA after transforming
lactate to pyruvate can take place inmitochondria. This shut-
tle can deliver protons from cytoplasm to mitochondria, as
the similar role as MAS which is a dominant shuttle in liver
and cardiac mitochondria.12 Furthermore, MAS has been
demonstrated to promote lactate oxidation in mitochondria
by controlling the homeostasis of NADþ and NADH and
maintaining the activity of mitochondrial LDH,13 which
can also facilitate the TCA cycle and electron transport
chain (ETC) by increasing the intermediates of TCA cycle.
Therefore, glycolysis and the elevated lactate can be initiated
by hypoxia, but persistent hyperlactatemia may not only
represent persistent hypoxia. In addition, unchanged tissue
oxygen tension and consumption were found in the skeletal
muscles of septic patients and rodent models of sepsis,
respectively.14 And hypometabolism in rats with endotoxic
shock was also shown not consequential to hypoxia.15

Meanwhile, mitochondria may suffer from increasing pro-
duction of reactive oxygen species (ROS), reprogramming
metabolism of energy, impaired mitochondrial DNA
(mtDNA), and mitophagy during sepsis.16,17 It all indicates
that either delivery of oxygen or consumption sometimes
cannot clearly reflect the real status of mitochondria and
its energy metabolism. Therefore, some other potential bio-
markers have been reviewed in the article including the
intermediates of TCA cycle, MAS, the NADþ/NADH
ratio, NADþ, NADH, malate, and MDH from the point of
view of energy metabolism, which may play a role in eval-
uating the relationship between the delivery and consump-
tion of oxygen of cells and mitochondria.

Can intermediates of TCA cycle be
responsible for hypoxia in septic shock?

One TCA cycle in mitochondria can generate 38 ATP mol-
ecules as well as water and carbon dioxide for each mole-
cule of metabolized glucose with oxygen, electrons, and
protons transferred by ETC.18 During sepsis, lactate
increases, often accompanied with lactic acidosis. Because
the transformation of pyruvate to lactate will consume pro-
tons, and the NADH in cytoplasm will be dehydrogenized
by LDH to NADþ.19 If the pyruvate transferred into mito-
chondria for TCA cycle decreases, the protons in acid and
protons produced in cytoplasm transferred into mitochon-
dria and participating in TCA cycle will decrease.
And decreasing the TCA cycle and increasing the protons
finally contribute to metabolic acidosis, just as the

accumulation of lactate rather than entering the TCA
cycle leading to lactic acidosis. If lactate is transferred
into mitochondria via the lactate shuttle, the TCA cycle
will continue with the transformation of lactate to pyru-
vate, and protons will be consumed.20 Therefore, whether
compensated/decompensated lactic acidosis/metabolic
acidosis exists is useful to estimate the persistent hypoxia.
However, when it is during septic shock, the Cori cycle is
inhibited due to the dysfunction of liver/kidney and
muscle. Lactic acidosis is common, although the body com-
pensatory mechanism of acid–base balance works includ-
ing respiratory carbon dioxide and HCO3

� regulated by
kidney. Thus, the TCA cycle cannot be entirely reflected
by lactic acidosis.21 In theory, intermediates of the TCA
cycle cannot be consumed. Oxaloacetic acid (OAA) and
a-ketoglutarate can be replenished by amino acid. Both of
them are the main components of MASwhich can transport
NADH into mitochondria for ETC. It is reasonable to
hypothesize the components of MAS may be the better
index of hypoxia compared with other final metabolites
and intermediates, because (1) there is overlap transforma-
tion between the MAS and TCA cycle which means the
same enzymes catalyze the reaction; (2) OAA is the initiator
of TCA cycle combined with acetyl CoA to citric acid; (3)
and NADH provides protons to oxygen to generate water
and release energy (Figure 1).

MAS and the overlap with TCA cycle

MAS consists of aspartate, glutamate, OAA, oxoglutarate,
malate, oxoglutarate/malate carrier (OMC), aspartate/glu-
tamate carrier (AGC), glutamic oxalacetic transaminase
(GOT), and MDH.22,23 Aspartate and glutamate as amino
acid can be taken in from food, and further transformed
into OAA and oxoglutarate via GOT. Malate can be taken
in from food and transformed from OAA via MDH.24

In addition, there is overlap between the MAS and TCA
cycle (OAA, oxoglutarate, and malate).25 Oxoglutarate
can also be supplied by other amino acid in TCA
cycle. The crucial function of malate is to transfer cytosolic
NADH into mitochondria. Alcohol dehydrogenase
(ALDH) contributes to a large amount of ATP production
following cytosolic NADH production. Inhibition of ALDH
could result in up to 80% depletion of ATP production in
cancer cells.26 It indicates MAS is required for transporting
cytosolic NADH into mitochondria. AndMASwill be influ-
enced by any part of MAS mentioned above. For example,
levels of OMC and AGC, as two transport proteins, can
regulate the efficiency of MAS.23 Amino oxyacetate acid
(AOAA) can inhibit MAS by inhibiting GOT, and lead to
apoptosis, mitochondrial depolarization, increase in cyto-
solic Ca2þ concentrations, and decrease in intracellular ATP
levels in microglia.27 Malate supplement can increase the
efficiency of MAS further to reduce ROS generation by
increasing the efficiency of electron transport.28 Although
the level of lactate is elevated in septic shock and has been
widely considered as a predominant indicator of glycolysis
and hypoxia, simultaneous glycolysis and TCA cycle other
than in tumor cells have been described in heart and
muscles, which means anaerobic glycolysis and aerobic
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oxidation can be concurrent.29 MAS is a predominant indi-
cator of TCA cycle, as well as contributing to the homeo-
stasis of NADþ and NADH and maintain the activity of
mitochondrial LDH which enables aerobic oxidation of lac-
tate in mitochondria. Therefore, in septic shock, MAS could
be more specific for persistent hypoxia even after increas-
ing the production of lactate induced by initial hypoxia.
However, research on MAS is rather limited.

Can NAD1 and NADH be responsible
for MAS?

MAS is used to transfer electrons from NADH into
cytosolic side to generate NADH in mitochondrial side
and transfer reducing equivalents from cytoplasm into
mitochondrial matrix.30 NADþ is a classical redox coen-
zyme working as a key cellular energy sensor,31 and a pre-
cursor for the phosphorylated dinucleotides NADPþ and
NADPH, which play a key role in protecting cells from
ROS. As a biological hydride acceptor that forms the
reduced dinucleotide NADH, NADþ is regulated by vari-
ous NADþ biosynthetic and degradative enzymes, such as
nicotinamide phosphoribosyl transferase (NAMPT), sir-
tuins, and poly (ADP-ribose) polymerases (PARPs) because
of its synthesized routes.32,33 NADþ is also influenced by
nutritional and environmental conditions.34 NADþ can
decline during aging and senescence of human cells,35

while NADH is produced as a byproduct from the conver-
sion of aldehyde to carboxylic acid by ALDH, contributing
significantly to ATP production.26 For NADH, increasing
cytosolic NADH could lead to the inhibition of glycolysis.
Decreasing NADH availability was showed in severe
sepsis. Fluorescence lifetime imaging was extended to
determine the concentration of NADH.36 The assessment
of mitochondrial activity through NADH autofluorescence
by live cell microscopy gives a range of outputs reflecting

the activity of ETC as well as substrate supply which is
conceptually and practically appealing.37

The NADþ/NADH ratio is crucial for driving a wide
range of reduction and oxidation reactions in cellular bio-
energetics. For example, LDH, MDH, pyruvate dehydroge-
nase (PDH), and enzymes in TCA cycle need NADþ and
NADH to catalyze the oxidation and reduction reactions. If
the ratio is abnormal, the activity of enzymes will be influ-
enced further to impair energy metabolism. The NADþ/
NADH ratio is compartmentalized in cytoplasm and mito-
chondria.31 In cytoplasm and mitochondria of liver, it was
found to be 725 and 8, respectively, which could be influ-
enced by diabetes and change to 208 and 10 in diabetic rats,
respectively.38 It indicates NADþ is much more than
NADH, and the ratio is more susceptible to NADH. A
water-forming NADH oxidase from Lactobacillus brevis
(LbNOX) as a genetically encoded tool was developed for
raising NADþ/NADH ratios and showed it can comple-
ment impaired ETC in human cells.39 It also indicates the
NADþ/NADH ratio is responsible for ETC, transferring
protons to generate water with oxygen and release ATP.40

Therefore, the ratio can reflect TCA cycle. However, it can
be influenced by many factors mentioned above. And also,
its way of determination is indirect and inadequate.
For example, the cytosolic-free NADþ/NADH ratio is
determined by measuring lactate and pyruvate levels.41,42

The mitochondrial free NADþ/NADH ratio is determined
by measuring the concentration of glutamate, oxoglutarate,
and NH3.

43,44

Malate and MDH, indispensable role in
energy metabolism

As an intermediate in TCA cycle, malate is a
C4-dicarboxylic acid and an essential intermediate of cell
metabolism.28 And its synthesis-associated enzymes MDH

Figure 1. During sepsis, the production of lactate increases, and then it crosses cell membrane and enters blood circulation, which will lead to accumulation when

gluconeogenesis is impaired because of the liver/kidney injury, the increase of gluconeogenesis is not sufficient to deal with elevated lactate, or microcirculation

disturbance leads to the retention of lactate, finally resulting in lactic acidosis. Meanwhile, pyruvate entering TCA cycle will decrease due to increasing glycolysis,

without lactate shuttle. Further, the consumption of protons will decrease, because of the decrease of transfer of MAS and transfer of pyruvate into mitochondria.

(A color version of this figure is available in the online journal.)
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and malic enzyme (ME) are also essential in TCA cycle. (1)
Malate is a trigger for the oxidation of acetyl CoA and can
increase TCA cycle.45 Malate is a central kind of component
in some kinds of fluid used for resuscitation that are rec-
ommended to serve as primary volume therapy in emer-
gency medicine and fluid replacement in cases of moderate
acidosis.46 Malate infusion was used to treat rats with mod-
erate and severe acidosis.47 The intragastric administration
of malate was showed to increase mitochondrial respiration
and energy production in rats.28 Resuscitation with malate
could also correct lactic acidosis in severe hemorrhagic
shock rats.48 (2) Malate can be from two crucial pathways
tightly associated with energy metabolism, MAS, and TCA
cycle involving oxidation/reduction of malate/oxaloace-
tate catalyzed by MDH. It is known from kinetic studies
that the reaction frommalate to OAA is an ordered reaction
with NADþ/NADH binding first, followed by combining
OAA/malate.49 Physiologically, the direction of the rever-
sal reaction in cytoplasm is from malate to oxaloacetate,
binding NADþ firstly and transforming it to NADH. And
the direction is opposite in mitochondrial matrix which
binds NADH,22 induces conformational changes, and
results in protons release for TCA cycle.50 So, in order to
ensure the physiological reaction, the condition needs to be

reversal. It means that in different parts of one cell, NADþ,
NADH, OAA, malate, and pH involved in the reaction
should be appropriately reversal to ensure the activity of
MDH. MDH can be regulated by many factors which exact-
ly indicates its responsible role in reflecting the change of its
reactional environment. This enzyme is inhibited by ATP,
ADP, AMP, fumarate, aspartate, and high OAA concentra-
tions.51 It can also be allosterically regulated by citrate.
Citrate inhibits oxaloacetate reduction under all conditions,
and malate oxidation at low malate or NADþ concentra-
tions, while promotes MDH activity at high malate and
NADþ concentrations.52 Studies showed a dramatic reduc-
tion of enzymatic activity on dissociation to monomers at
low enzyme concentration at pH 5.0 and in the absence of
substrates.53 This explains both intermediates in TCA cycle
and pH influence the reaction velocity. Considering the
indispensable role of MDH in energy metabolism, some
of its inhibitors have been under research. A novel MDH2
inhibitor was showed to suppress HIF-1a accumulation via
the reduction of oxygen consumption and ATP produc-
tion.54 In activated T cells, a common MDH2 inhibitor,
LW6 inhibited T cells proliferation and decreased the
level of HIF‑1a, intracellular O2 consumption, and TCA
cycle, and increased the level of pyruvate dehydrogenase

Figure 2. The crucial proceed is shown in Figure 2 including MAS, lactate shuttle, and TCA cycle. MDH participates in both MAS and TCA cycle, and catalyzes

reversible reaction of NADþ and NADH in cytoplasm andmitochondria, which is also necessary for MDH, LDH, and PDH, key enzymes of the three proceeds. And also,

it is like a bridge to facilitate the interaction between energy metabolism of one cell. (A color version of this figure is available in the online journal.)
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leading to decreasing production of pyruvate.55 (3) Another
malate-related enzyme is ME, a member of oxidative decar-
boxylase family catalyzing irreversible oxidative decarbox-
ylation to yield CO2 and pyruvate, with concomitant
reduction of dinucleotide cofactor NADþ or NADPþ.25,56

And ME2, mitochondrial NADþ dependent, is a mitochon-
drial enzyme that catalyzes the conversion of malate to
pyruvate and CO2 in the mitochondria of tumor cells
while absent in non-tumor tissues.57 ME2 can directly inter-
act with MAS and generate NADH in mitochondria.
Depleting ME2 induced an increase in the NADþ/NADH
ratio and ROS, and a significant decrease in ATP levels in
K562 cells.58 So, depletion of ME2 may prevent transferring
malate from cytosol into mitochondria, render less effective
function of MAS, and further prevent transferring reduced
equivalents from extra-mitochondrial compartments into
intra-mitochondrial compartments (Figure 2).

Is it feasible to detect MDH in clinic?

As a crucial enzyme, MDH in cytoplasm and mitochondria
participates in both MAS and TCA cycle, and plays an
indispensable role in ATP generation. Cytosolic MDH
(MDH1) remains in cytoplasm after synthesis, whereas
mitochondrial MDH (MDH2) is translocated into mito-
chondrial matrix.59 MDH1 DNA, mRNA, and its protein
can be detected. And mRNA was expressed at a high
level in heart and skeletal muscle, correlated with changes
in energy metabolism. Increasing expression of MDH1
could be adaptive to support the production of adequate
ATP in relatively hypoxia.60 And MDH2 can be identified
by specific antibodies with higher and higher specificity.61

As research showed, cytosolic and mitochondrial MDH
activities and cytosolic ratio of MDH/LDH activity in leu-
kocytes from the whole blood of race horses were signifi-
cantly higher than those of riding horses. It was considered
to reflect the elevation of energy metabolism in animal tis-
sues.62 Therefore, if MDH of leukocytes from the whole
blood can be detected and combined with the level of lac-
tate to evaluate the hypoxia and TCA cycle in sepsis and
shock, it will be better than one in clinic. For example, the
combination can reflect the feature of energy metabolism
during septic shock, as the level of lactate and MDH is
responsible for anaerobic glycolysis and aerobic oxidation,
respectively. Further, the level of MDH can also reflect MAS
for transferring protons to combine with oxygen and gen-
erate ATP. Therefore, it can help evaluate whether hypoxia
really exists and the degree of hypoxia. And also, dynamic
monitoring of the combination of lactate andMDH can help
estimate the evolution of septic shock. However, research
related to the combination in septic shock is lacking, and
further research is needed.

Conclusions

Elevated lactate is generally considered as a significant hint
of septic shock induced by tissue hypoperfusion and asso-
ciated with poor prognosis. However, lactate formation
during septic shock is not entirely related to hypoxia.
And also, hypoxia cannot be fully responsible for

hyperlactatemia, as aforementioned reasons indicate. ATP
is generated from efficient TCA cycle. Lactate can be trans-
ferred by lactate shuttle and oxidized in TCA cycle. Indeed,
glycolysis and elevated lactate can be initiated by hypoxia,
but persistent hyperlactatemia may not only represent per-
sistent hypoxia. MDH serves as an indispensable role in
TCA cycle. It participates in both MAS and TCA cycle by
catalyzing the transformation between malate and OAA,
and can also indirectly reflex the NADþ/DADH ratio.
Therefore, it is reasonable to hypothesize that the combina-
tion of lactate and MDH will be more comprehensive to
reflex hypoxia in septic shock. For example, if both lactate
and MDH are elevated, it indicates TCA cycle and ATP are
ensured. If lactate is elevated and MDH is inactive, it indi-
cates TCA cycle and ATP are impaired.
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