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Abstract

Background: Primary neuronal cell cultures are useful for studying mechanisms that influence 

dendritic morphology during normal development and in response to various stressors. However, 

analyzing dendritic morphology is challenging, particularly in cultures with high cell density, and 

manual methods of selecting neurons and tracing dendritic arbors can introduce significant bias, 

and are labor-intensive. To overcome these challenges, semi-automated and automated methods 

are being developed, with most software solutions requiring computer-assisted dendrite tracing 

with subsequent quantification of various parameters of dendritic morphology, such as Sholl 

analysis. However fully automated approaches for classic Sholl analysis of dendritic complexity 

are not currently available.

New Method: The previously described Omnisphero software, was extended by adding new 

functions to automatically assess dendritic mass, total length of the dendritic arbor and the number 

of primary dendrites, branch points, and terminal tips, and to perform Sholl analysis.

Results: The new functions for assessing dendritic morphology were validated using primary 

mouse hippocampal and rat cortical neurons transfected with a fluorescently tagged MAP2 cDNA 

construct. These functions allow users to select specific populations of neurons as a training set for 

subsequent automated selection of labeled neurons in high-density cultures.

Comparison with Existing Semi-Automated Methods: Compared to manual or semi-

automated analyses of dendritic arborization, the new functions increase throughput while 

significantly decreasing researcher bias associated with neuron selection, tracing, and 

thresholding.
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Conclusion: These results demonstrate the importance of using unbiased automated methods to 

mitigate experimenter-dependent bias in analyzing dendritic morphology.
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Dendritic arborization; high-content image analysis; neurite outgrowth; quantitative morphometric 
analyses; Sholl analysis

1. Introduction

Dendritic morphology is a critical determinant of neuronal connectivity that influences the 

processing and distribution of information within neural circuits (Libersat and Duch, 2004; 

Menon and Gupton, 2016; Scott and Luo, 2001). Aberrant dendritic morphology is strongly 

associated with neurodevelopmental disorders (Bourgeron, 2009; Fukuda et al., 2005; Garey, 

2010; Keown et al., 2013; Supekar et al., 2013) and neurodegenerative diseases (Cochran et 

al., 2014; Kweon et al., 2017). Thus, there is great scientific interest in analyzing dendritic 

morphology.

Currently, a wide variety of tools exist for morphometric analysis of dendrites. Open source 

software, including Neurite–Tracer (Pool et al., 2008), CellProfiler (Kamentsky et al., 2011), 

NeurphologyJ (Ho et al., 2011), and NeuronCyto (Yu et al., 2009) provide semi-automated 

approaches for analyzing parameters of dendritic morphology such as the number of primary 

dendrites, total length of the dendritic arbor, number of dendritic branch points and the 

number of terminal dendritic tips. However, only a few of the currently available analytical 

approaches automatically extract morphological features like Omnisphero (Schmuck et al., 

2017) or the GAIN algorithm (Long et al., 2017). Here, the definition of automatic means 

that only the input image is required and all following steps, including isolation of single 

cells, segmentation from the background, transformation into a center line representation 

(skeletonization of the cell), and location of the center point (middle of the cell somata) for 

placement of the Sholl rings are performed by the software. This is in contrast to existing 

semi-automatic methods, such as the Bonfire program (Kutzing et al., 2010) and the Sholl 

Fiji plugin, in which these steps must be performed manually. This information is required 

to perform Sholl analysis (Sholl, 1953), a classic approach for quantifying dendritic 

complexity both in vitro and in vivo that counts the number of dendritic intersections with 

concentric rings superimposed on the soma as a function of distance from the cell soma.

The Sholl analysis ImageJ Plugin (Ferreira et al., 2014) is an example of semi-automatic 

Sholl Analysis. In this case, individual neurons are chosen manually, a center point defined 

and thresholds set manually to generate a binary image. Next, the Sholl Analysis ImageJ 

Plugin superimposes concentric rings around the center point, determines the number of 

dendritic intersections with each ring, and generates a distribution plot. With this data, the 

researcher can obtain important information, such as the number of dendritic intersections at 

increasing radii from the soma (referred to as area under the curve [AUC]), the radius at 

which the largest number of intersections occurs (Peak X), and the greatest number of 

intersections that occurs at any radius (Peak Y). However, neuron selection, manual 

thresholding and selection of the center points within a neuron can result in significant inter-
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researcher differences that critically affect data reproducibility (Nobis and Hunziker, 2005), 

and this approach is time-consuming, which limits the number of cells that can be analyzed 

due to time and labor constraints.

A method that automates the pre-processing steps for analyzing dendritic morphology by 

Sholl analysis would be highly desirable in that it would minimize investigator bias and 

enable medium-to-high throughput screening. While common annotation data can be used 

for deep learning approaches, such as automatically identifying specific neuronal subtypes 

(Shen et al., 2017), self-learning approaches demand a high number of annotated objects, 

usually several thousand, to allow for a successful prediction (Shen et al., 2017). Obtaining 

these sample sizes can be challenging, and manual annotation by a few researchers as well 

as archiving these annotations is challenging.

Here, we present a new algorithm that addresses some of these challenges using an 

extension of the Omnisphero software (Schmuck et al., 2017). The algorithm automates 

identification of neuronal cells, extraction of image data from the background, selection of 

center points for the Sholl rings and quantitative analysis of these structures for standard 

morphological features, such as total neurite length, number of primary processes, and 

number of terminal tips. In addition, this algorithm performs automated Sholl analysis. 

Omnisphero’s graphical user interface (GUI) allows the user to display binary images, cell 

centroids, skeleton structures, terminal tips, and branch points, as well as Sholl masks (rings 

with dendritic intersections) and overlays obtained from the new extension. The GUI gives 

the user the power to judge the quality of structure isolation and the accuracy of structures. 

The new extension is the first algorithm to automatically perform all pre- and post-

processing for Sholl analysis and can be run in two different modes: manual or automated 

object selection, with the later based on a training set of images. If objects are manually 

selected, the algorithm automatically extracts neuronal structures and determines their 

centroid. Consequently, the researcher can annotate objects of interest or delete unwanted 

structures. The extraction of the named features described above is completely automatic.

In this study, various parameters of dendritic morphology were analyzed from images of 

primary mouse hippocampal and rat cortical neurons grown in high cell density cultures that 

had been transfected at low efficiency with a fluorescently tagged MAP2B cDNA construct 

to visualize the dendritic arbors of individual neurons. Data obtained using manual 

annotation or the new Omnisphero extension were compared. Two researchers manually 

labeled structures of interest, and objects labeled by both were used as a training set. This 

allowed for a completely unbiased automated approach to thresholding and selection. The 

overall goal of this study was to establish a fully automated approach for classic analyses of 

dendrite morphology similar to other algorithms while eliminating researcher bias in neuron 

selection and thresholding. We used two experimental sets of neurons to recapitulate 

common challenges to analysis of dendritic arborization in high-density cell cultures: high 

signal-to-noise ratios, which make thresholding difficult (mouse cultures), and selection of 

individual neurons with overlapping dendritic arbors (rat cultures).
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2. Materials and Methods

2.1 Primary mouse or rat cortical cell culture

All procedures involving animals were conducted in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals and were approved by the University of California, 

Davis, Institutional Animal Care and Use Committee. Timed-pregnant Sprague Dawley rats 

were purchased from Charles River Laboratories (Hollister, CA, USA). Timed-pregnant 

C57BL/6J wild-type mice were purchased from Jackson Labs (Bar Harbor, ME, USA). All 

animals were housed in clear plastic cages containing corn cob bedding in a room with a 

constant temperature (22 ± 2 °C) and a 12 h light-dark cycle. Food and water were provided 

ad libitum.

Primary hippocampal or cortical neuron-glia co-cultures were prepared from postnatal day 0 

mouse or rat pups, respectively, as previously described (Sethi et al., 2017). Dissociated cells 

were plated on glass coverslips (BellCo, Vineland, NJ, USA) pre-coated with 500 μg/ml 

poly-L-lysine (Sigma-Aldrich, St. Louis, MO, USA) and maintained at 37 °C in NeuralQ 

Basal Medium (MTI-GlobalStem, Gaithersburg, MD, USA) supplemented with 2% GS21 

(MTI-GlobalStem) and GlutaMAX (ThermoScientific, Waltham, MA, USA) under 5% CO2. 

Neurons were plated at 83,000 cells/cm2 in 24-well tissue culture plates for analyses of 

dendritic morphology. At 4 days in vitro (DIV), cultures were treated with cytosine β-D-

arabinofuranoside (Sigma-Aldrich) at 2.5 μM to limit glial growth.

2.2 Manual morphometric analyses of dendritic arborization

To visualize dendrites, cultures were transfected with a Map2B-pCAG-FusRed or a Map2B-

pCAG-GFP plasmid (Wayman et al., 2006) at DIV6 using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer’s protocol. Neurons were fixed with 4% 

paraformaldehyde (Sigma-Aldrich) in 0.2 M phosphate buffered saline (PBS) at DIV9. 16bit 

tiff images were acquired in an unbiased manner using an ImageXpress Micro XL high 

content imaging system (Molecular Devices, Sunnyvale, CA, USA) with a plan fluor 10x 

objective (numerical aperture 0.3) and a 4.66 megapixel CMOS camera. Approximately 50 

to 75 images were acquired from each well and exported as 16-bit tiff stacks. Neurons were 

chosen for analysis using previously described criteria (Keil et al., 2017). Manual 

quantification of dendritic arborization was performed by counting the number of primary 

dendrites for each neuron and the number of corresponding dendritic tips using ImageJ 

software (Schneider et al., 2012) with Sholl analysis plug-in v3.4.2 (Ferreira et al., 2014) 

and with NeuronJ plug-in (Meijering et al., 2004). Researchers were blinded to experimental 

groups prior to performing all morphometric analyses. Neurons from two different sets of 

mouse cultures and two different sets of rat cultures, referred to as experimental groups A 

vs. B and C vs. D, respectively, were examined.

2.3 Image pre-processing using the new Omnisphero extension

Omnisphero, was originally designed to analyze neurons in neurosphere cultures. In addition 

to automatic identification of neurons, it provides a graphical user interface that allows the 

user to overlay image analysis results with the original image. We describe here a new 
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function we added to the GUI of Omnisphero to analyze cortical neurons and to show an 

overlay of the segmentation as well as Sholl-Analysis rings.

Image pre-processing (Fig. 1) started with 16-bit tiff image stacks of rat or mouse neurons 

imported into the new extension, split into individual images, converted to 8-bit and saved as 

individual images in ‘portable network graphics’ (png) format (Fig. 1e). Binary images of 

the original grey scale images were generated using the imopen function with a non-flat 

structuring element (ball) to estimate the uneven background, which was subtracted from the 

original image. The resulting image was thresholded using the isodata algorithm (Fig. 1f), 

and binary particles were analyzed for their ratio of major and minor axes. Round small 

structures were considered artifacts and removed from further analysis. In addition, different 

edge detection algorithms (Canny, prewitt, sobel, Roberts and log) were applied to the 

background-corrected grey scale image and filtered for small objects considered originating 

from artifacts (Fig. 1g).

Resulting binary images were added to the binary image acquired using the isodata 
algorithm. The resulting image (Fig. 1h) was further processed by morphological closing of 

gaps in fragmented dendrites using the bridge function and consequent filling of the 

structures with the imfill holes function (Fig. 1i). In order to circumvent filling of spaces 

enclosed by cellular processes, only small holes not exceeding 50 pixels (pixel size can be 

defined by the user and is dependent on the optical setup, see Supplementary Information) 

were filled. The resulting binary image was filtered for objects larger than 2000 pixels (can 

be parametrized by the user) to maintain neuronal structures (Fig. 1j). Next, neuronal 

structures were masked out from the original image using the generated binary image. The 

median pixel value multiplied by 1.5 was calculated, and used as a threshold value. Only 

pixels equal or brighter than these values were masked, resulting in masks of only the 

brightest structures. Resulting structures were filled with the imfill function and eroded until 

only the thickest part, the cell soma, remained. Soma centroids were identified (Fig. 1k), and 

their coordinates were saved in a matrix. Particles identified as cell somata were used to 

mask the respective region from the original grey scale image. Binary images and cell soma 

images were saved and centroids returned to the GUI of Omnisphero (Fig. 1l).

Since images of mouse neurons tend to be noisy, an additional run of the same edge 

detection algorithms was performed without filtering small artifacts, and an image dilation 

of the binary image was done to check whether dilation was able to close gaps in broken 

neurites. Lastly, the binary image obtained from filtered edge detection was subtracted from 

the unfiltered approach. Remaining structures were validated to be an extension of the 

neuron by analyzing the weight factor, which was calculated as the ratio of the area of the 

binary particle to a spanned rectangle (obtained by identifying the smallest surrounding 

rectangle) multiplied by the number of endpoints of the structure, divided by the particle 

skeleton length and normalized to the area of the particle.

In the case of rat neurons, a particular challenge was separating neurons with overlapping 

dendritic arbors. This was achieved by using isodata to determine the number of binary 

structures located within a structure obtained by combination of isodata and edge detection. 

If more than one structure was found with edge detection, the connecting neurite was split. 
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Additionally, the majority function was used to identify structures connected by one pixel 

and to separate the structures. If two neuronal structures were connected via multiple 

neurites, the binary particles were excluded from further analysis because a reliable 

separation was not possible. These structures were identified with a binary mask, which 

subtracted only neuronal structures from the original grey level image, and then thresholded 

via the isodata method. If the area of the resulting binary image exceeded a certain 

threshold, then the threshold was doubled. If the threshold reduced the area below 20%, the 

threshold was reduced to 1.5 times the original threshold. The binary image was 

consequently dilated with a disk element to combine binary particles close together because 

two neuronal somata should have a certain distance from each other, due to the overall low 

transfection efficacy. Next, the number of individual particles was determined. In some 

instances, the intensity of the two overlapping neurons strongly differed, and a second 

approach was taken in which the image was thresholded with only half of the initial 

threshold and checked for particles not overlapping with those from the hard threshold. 

Overlapping particles were considered outside the main neuron soma and to overlap with a 

dimmer neuron (which is dimmer because of lower transfection efficacy).

To identify air bubbles, which are very bright and can erroneously be identified by both 

isodata and edge detection, all binary structures were analyzed for their ratio of area to 

spanned rectangle (obtained by identifying the smallest surrounding rectangle) and the ratio 

of length (obtained via infinite thinning of the particles) to branches. Structures having a 

very small ratio of area to rectangle and length to branches are usually linear, very long, and 

thus, highly likely to originate from air bubbles. These structures were removed from the 

analysis. In addition, all structures touching the edge of the image were excluded from 

analysis.

2.4 Morphometric analyses of dendritic arborization using the new Omnisphero 
extension

The new Omnisphero extension provides a choice of two different modes: semi-automated 

or automated. In the semi-automated mode, auto-thresholding is performed and centroids of 

binary structures are identified during image preprocessing but selection of which neurons 

should be analyzed is determined by the user. The user can select which structures within the 

GUI of Omnisphero to analyze (illustrated using rat cultures) or to exclude (illustrated using 

mouse cultures), with the decision usually based on the overlap of neurons. Marked objects 

are saved in a separate matrix for further analysis.

2.4.1 Semi-automated mode—Following manual annotation of binary structures, all 

non-annotated objects were deleted, and binary structures were smoothed by applying a 

canny edge detection algorithm to each particle (Fig. 1m). Remaining particles were further 

analyzed by generating a raw skeleton via morphological thinning (Fig. 1n). The skeleton 

was postprocessed by identifying all endpoints and branches and deleting all branching less 

than one pixel from the endpoints. This commonly occurred when very small processes, less 

than 10 pixels, originated from imperfections of the binary image. Next, all branches from 

the skeleton were pruned and checked for small extensions by measuring the length of each 

resulting skeleton fragment and verifying that endpoints were located on each fragment (Fig. 
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1o). This was done to prevent the generation of holes within the skeleton. If branching points 

were located directly next to each other, they were eliminated since this is most likely 

attributed to imperfections in the skeleton line. The skeleton was checked for gaps by 

assessing the number of newly introduced endpoints and reconnecting them. Next, the cell 

soma was subtracted from the skeleton (Fig. 1p). Endpoints and branching points were saved 

in separate matrices (Fig. 1q), and the corresponding images were created displaying the 

endpoints as solid dots and the branching points as circles (Fig. 1r). Results were displayed 

in the Omnisphero GUI.

A Sholl analysis was performed using the preprocessed skeleton (Fig. 1s). The inner ring 

centered on the cell soma was set to a radius of 10 μm. Within the inner ring, the skeleton 

was deleted and the numbers of intersections with the ring were counted. Additional rings 

were added in a nested loop at a distance of 10 μm for quantification of intersections, added 

length of processes, and added number of branches, all of which were saved in a separate 

matrix. This process was terminated when there were no new intersections. Resulting ring 

masks with intersections, visualized as circles, were saved as a png file for visualization in 

the Omnisphero GUI (Fig 1t). Lastly, matrices of morphological endpoints and Sholl results 

were written to an xlsx file.

2.4.2 Fully automated mode—In the fully automated mode, a “gold-standard” of 

selected neuronal structures, obtained by manual annotation of six experiments by two 

different researchers, was used to automatically identify specific neuronal subtypes. Only 

those structures selected by both researchers were used, and Sholl plots of these neurons 

were created to generate a model function, utilizing a polynomial fit. Respective y-values 

were calculated for each ring distance and compared to the expected y-values for each 

neuronal structure. The sum of squared errors (SSE) was calculated to estimate how similar 

the Sholl plot of an individual neuron was compared to the model function. This method was 

first applied to the gold-standard to estimate the SSE by calculating the median and standard 

deviation. The median plus one standard deviation served as a boundary for similar neurons. 

The complete source code as well as sample image stacks are provided in supplementary 

material.

2.5 Statistical analyses

Statistics were performed using GraphPad Prism 7 (San Diego, CA, USA). Data in each 

experimental group were obtained from 3–4 independent dissections and were plotted as the 

mean ± standard error of the mean (SEM). Each data set was tested for normal distribution 

using the D’Agostino-Pearson omnibus and the Shapiro-Wilk normality test. Normal data 

were analyzed by comparison of two groups using an unpaired t-test with a post hoc Sidak 

test (p < 0.05). Data that did not pass normality tests were compared using the Mann-

Whitney test with a post hoc Sidak test (p < 0.05). Differences in variance were determined 

using the F-test
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3. Results

3.1 Automated thresholding of images of primary mouse neurons reduced inter-
researcher variability

Manual estimations of thresholds using ImageJ by two researchers using images from the 

same set of primary mouse neuronal cell cultures resulted in very different binary images 

(Fig. 2a). For example, the average AUC of binary images was significantly higher for 

researcher 1 compared to researcher 2 (Fig. 2b). Thresholding not only affected obtained 

areas, but was also crucial for excluding background signal, which can negatively influence 

morphological endpoints and Sholl analysis. A challenge to thresholding neuronal cells is 

variability in fluorescence intensity throughout the dendritic arbor of a single cell (i.e., the 

fluorescent signal is typically very bright in the cell soma and proximal dendritic branches, 

but very dim in the distal dendritic arbor). An additional challenge is staining imperfections 

that result in gaps after thresholding. Therefore, thresholding using a fixed value is a trade-

off between maintaining dim structures and not introducing too much background signal to 

the binary image. For Sholl analysis, background structures can lead to artificial 

intersections (Fig. 2c), resulting in different Sholl plots (Fig. 2d) and a significant difference 

in AUC, Peak X (the radius at which the largest number of intersections occurs in Sholl 

analysis) and Y (the highest number of intersections that occurs at any radius in Sholl 

Analysis) for manual evaluation as occurred between the two researchers for different 

populations of mouse neurons (experimental groups A and B).

Using the semi-automated approach (manual neuron selection, but automated thresholding) 

significantly reduced inter-researcher differences in Sholl plots (Fig. 2e). Comparison of 

AUC, Peak X and Y (Fig. 2f–h, respectively) revealed identical statistical differences 

between both experimental groups, but no statistical significances between both researchers. 

Furthermore, results from the semi-automated analysis were highly comparable to those of 

the manual analysis of researcher 2, as indicated by the absence of statistical difference 

between methods except for Peak Y (Fig. 2h). Only researcher 1 found significant 

differences between group A and B and only for Peak Y manual evaluation.

Researcher results with the semi-automated analysis are most likely more similar than with 

the manual approach because of a high overlap in neuron selection (94%/89%) compared to 

only a 50% overlap with manual analysis (Fig. 2i), and due to the fact that automated 

thresholding estimates thresholding biases. Because inter-researcher variance is a known 

pitfall of morphological analyses, each experiment was manually analyzed by the same 

person to minimize user-introduced thresholding variability.

3.2 Automated neuronal thresholding of neuronal images from primary rat neuronal cell 
cultures introduced inter-method variation

Using ImageJ to manually threshold neuronal images from primary rat neuronal cell cultures 

resulted in smaller differences between the results of the two researchers compared to 

manual thresholding of neuronal images from primary mouse neuronal cell cultures (see 

overlays in Fig. 2a vs. Fig. 3a). Still, a significant difference was observed for AUC values 

between the two researchers (Fig. 3b, c). Similarity of results with the rat data may be due to 
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a higher signal-to-noise ratio in images of transfected rat neurons. Both researchers detected 

significant differences between experimental groups C and D, as shown by Sholl analysis 

(Fig. 3d); however, the absolute peak height for the respective conditions was higher for 

researcher 1 compared to researcher 2 (Fig. 3f). However, since the trend of differences in 

Sholl curve heights between experimental conditions was preserved for both researchers, 

significant differences for AUC, Peak X and Peak Y were found between experimental 

groups C and D by both researchers (Fig. 3f, g, h). Due to the differences in the height of the 

Sholl curves, there was a statistically significant difference between researchers for AUC, 

Peak X, and Peak (Fig. 3f, g, h).

The semi-automated approach (manual neuron selection but automated thresholding) did not 

negate differences between researchers. However, the effects between experimental groups 

completely disappeared in the Sholl plot for researcher 1 (Fig. 3e). Although this was not 

observed for researcher 2, the overall peak height of experimental condition was comparable 

between the two researchers. As a result, significant differences between the two researchers 

for AUC, Peak X and Peak Y were only found for experimental group C (Fig. 3f, g, h, 

respectively).

AUC and Peak Y manual ImageJ analyses of both researchers (Fig 3f, h) revealed significant 

differences between experimental groups, but only for researcher 2 using the semi-

automated approach. For Peak X, only researcher 2 found significant differences using either 

manual or semi-automated analysis (Fig. 3g). The differences observed in the numbers of 

selected neurons between manual and semi-automatic method were much more pronounced 

in rats than in mice (Fig. 2i), which is attributed to a higher transfection efficacy in rat than 

in mouse. While in mouse the total number of neurons is usually around 80–100, there can 

be found almost 10-fold more rat neurons. For both researchers, the number of primary rat 

neurons chosen using the semi-automated approach was roughly 2-fold higher compared to 

the manual assessment (Fig. 3i). The overlap between the two researchers was 51% towards 

researcher 1 and 35% towards researcher 2 for manual assessment, and 59% towards 

researcher 1 and 49% towards researcher 2 for the semi-automated analysis (Fig. 3i). 

Collectively, inter-researcher differences using the semi-automated analysis can be attributed 

to different selection of neurons by the researchers, with researcher 2 choosing larger and 

more branched neurons.

3.3 Automated neuronal selection reduces inter-researcher variability in analysis of 
neuronal images from primary rat neuronal cell cultures

To overcome selection bias, a training set of rat neuronal structures from the same image set 

were manually selected by both researchers. Sholl curves were generated (Fig. 4a), and the 

mean and standard deviation of the sum of squared errors (SSE) of each neuron in the image 

set was used to calculate a Fit curve. Neurons with an SSE smaller than the mean plus one 

standard deviation of the training data were considered similar to the training set Fit curve 

and included in the analysis (Fig. 4a: blue circles represent neurons with high similarity to 

the fitted curve, red squares represent neurons with low similarity). When the same criteria 

were applied to the entire image set, researcher 1’s semi-automated analysis was similar to 

the fully automated process (Sholl plots, Fig. 4b). Unlike the semi-automated approach, the 
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fully automated approach resulted in no significant differences between the experimental 

groups for AUC, Peak X and Y (Fig. 4c, d, e, respectively). Differences for AUC, Peak X 

and Peak Y were more pronounced with the semi-automated approach of researcher 2 than 

1, suggesting a difference in neuron selection.

The percentage of overlap for semi-automated and fully automated methods was determined 

using the training set. Since the training set was derived from the combined neuron selection 

of the two researchers, both researchers identified 100% of the training set (Fig. 4f, gray 

squares for researchers). The fully automated method identified 81% of the neurons (gray 

square for Auto), selected by both researchers. Both researchers and the fully automated 

method identified additional neurons (Fig. 4f, black circles), with researcher 2 having the 

highest additional identification. The fully automated method possessed the lowest variance 

towards the training set, with significantly lower variability than researcher 2 (Fig. 4f).

3.4 Morphometric analysis of mouse and rat cortical neurons reflects inter-researcher 
differences observed Sholl analysis and are comparable using semi-automated analysis 
for mouse and fully automated analysis for rat

Morphological parameters of neurite mass, number of primary dendrites, total dendritic 

length, number of dendritic branch points and number of terminal dendritic tips were 

obtained from the skeleton binary image. Inter-researcher variability occurred with manual 

evaluation of both experimental groups of mouse neurons, as demonstrated by researcher 1’s 

finding of a significantly higher neurite mass than researcher 2 (Fig. 5a).

Both researchers found a significant difference between the two experimental groups for 

neurite mass, total dendritic length, number of branches and terminal tips using the semi-

automated approach (Fig. 5a, e, g, i, respectively). No statistically significant difference was 

observed by the researchers when they evaluated the number of mouse primary processes 

using the semi-automated approach (Fig. 5c). This reassembles the results shown in Fig. 2, 

since the differences in Sholl plots were found to be attributed to the difference in 

thresholding and thus to obtained cell skeletons, which are used to calculate the 

morphometric attributes neurite length, branching and number of terminal tips.

Analysis of total dendritic mass in rat neurons revealed statistically significant higher values 

for semi-automated analysis compared to the manual analysis for both researchers and 

experimental groups (Fig. 5b). Comparable to the endpoints obtained by Sholl analysis, 

researcher 2 alone found significant differences for the number of primary processes, total 

neurite length, number of branching points and number of terminal tips between the 

experimental conditions (Fig. 5f, h, j). It is important to note that those endpoints were only 

evaluated utilizing the semi-automated approach. These variances can therefore be explained 

by the selection of neurons.

The fully automated analysis showed no differences between the experimental groups for 

any of the analyzed morphological endpoints (Fig. 6a–e). Neither the semi-automated 

approach of researcher 1 nor the fully automated approach revealed significant differences 

among experimental groups. Finally, we determined the accuracy of the training set’s 

produced by researchers 1 and 2 by examining the difference of the fully automated 
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approach to the direct observations made by the researchers (ground truth annotation) 

(Cardoso et al., 2014; Wiesmann et al., 2017). Significant differences in neuron selection 

were observed between researcher 2 and the fully automated approach. Similarly, data 

variance was found significant between the fully automated approach and researcher 2, but 

not researcher 1. The fully automated method was able to identify approximately 80% of the 

neurons most comparable with researcher 1.

4. Discussion

Immunocytochemical approaches for visualizing the dendritic arbor of neurons in cell 

culture create challenges for analyzing dendritic morphology. When plated at high densities 

to better reflect the in vivo situation, the dendritic arbors of individual neurons can be more 

readily visualized by transfection of neurons with cDNA encoding fluorescently-tagged 

MAP2B. Because lipid-based transfection efficiencies range from 5–30% in primary 

cultured neurons (Ohki et al., 2001), only a small percentage of the neuronal cell population 

is labeled. While entire dendritic arbors of individual cells can be seen in fluorescent images 

(Wayman et al., 2012a; Wayman et al., 2006; Wayman et al., 2012b), overlapping dendritic 

arbors are a major issue and isolated neurons still need to be manually extracted. 

Thresholding dendritic arborization images is quite difficult and requires manual annotation 

until now.

Modern image analysis tools have increased the number of features that can be rapidly 

extracted from cells, allowing for a more comprehensive evaluation of cell morphology (Ho 

et al., 2011; Kamentsky et al., 2011; Long et al., 2017; Pool et al., 2008; Schmuck et al., 

2017; Yu et al., 2009). However, for dendritic tracings, almost all of the available algorithms 

rely on manual annotations or parameter settings (Ferreira et al., 2014; Ho et al., 2011; 

Kamentsky et al., 2011; Pool et al., 2008; Yu et al., 2009), which can introduce unintentional 

variability or bias. Traditional endpoints like dendritic length, number of primary dendrites, 

number of dendritic branch points and number of terminal dendritic tips are assessed by first 

removing the cell soma followed by skeletonizing of dendritic structures. Pixels of the 

resulting dendritic skeleton can be analyzed in reference to neighboring cells to determine 

whether they are starting points or terminal tips, branching points, crossing points or line 

points (Ferreira et al., 2014). Fully automated skeletonizing algorithms rely on a good 

signal-to-noise ratio and often lose distal dendrites that are dimly fluorescent, and introduce 

gaps due to staining imperfections (Long et al., 2017). Therefore, computer-assisted manual 

tracing tools, such as NeuronJ and NeuronCyto, are often used (Pool et al., 2008; Yu et al., 

2009), but they are extremely time-consuming. Thus, the number of cells that can be 

analyzed is limited within typical time constraints.

Another widely used method for analyzing dendritic complexity is Sholl analysis, for which 

a completely automated method has been lacking to date. While the Sholl plugin in ImageJ 

is frequently used for Sholl analysis (Ferreira et al., 2014), it requires multiple user 

interactions. First, thresholding has to be performed by the user, and the center of the cell 

soma has to be marked. Subsequently, the plugin fits concentric rings around neuron soma 

and counts the number of intersections of dendritic structures with each ring. The outcome is 

highly dependent on the applied threshold. For example, the lower the threshold, the higher 
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the numbers of intersections, since more parts of the cell remain intact. At the same time 

background signal will be added to the binary image (Fig. 2a, c) due to a lower signal-to-

noise ratio (Fig. 2b). Since this method is also time consuming, only a subset of cells 

acquired with a slide scanner can be analyzed, which increases the possibility of researcher 

bias in cell selection. Bias occurred for both species (mouse and rat) investigated here (Fig. 

2i, Fig. 3i). Therefore, a software solution that can identify neurons, analyze morphological 

characteristics and perform Sholl analysis is highly desirable to eliminate potential user bias 

and to minimize manual annotation time.

The newly introduced extension to the Omnisphero software eliminates user interaction, 

automatically assesses morphological features, and performs Sholl analysis, after labeling an 

initial data set for similarity. This step has to be performed only once or when image 

acquisition, staining or cell type changes. Here, we described two experimental sets of 

neurons used to recapitulate common challenges to neuron analysis such as high signal-to-

noise ratios (i.e., difficulty in thresholding), and selection of neurons (i.e., dealing with 

overlapping dendritic arbors of neighboring neurons).

With the mouse neurons, a significant difference was observed between manual researcher 

results for average dendritic area and Sholl plots. The differences are most likely due to the 

low signal-to-noise ratio of the images and dissimilar thresholding between researchers. 

High thresholds eliminate dim structures, and low thresholds capture background 

information. Due to the low signal-to-noise ratio, it is not surprising that the researchers’ 

results varied with regards to the obtained dendritic area because small changes in 

thresholding values result in large increases in area. Automated analysis completely removed 

inter-experimenter differences in Sholl plots of the mouse neurons (Fig. 2e), and led to the 

same significant difference between experimental groups A and B for AUC (Fig. 2f) and 

Peak Y (Fig. 2h) for both researchers.

With the rat cortical neurons, the two researchers still produced significantly different results 

for AUC even though the signal-to-noise ratio was better than with the mouse neurons. 

Semi-automated thresholding did not deliver comparable Sholl plots, as was observed for 

mouse neurons, but led to a loss of effect for researcher 2 compared to researcher 1 (Fig. 3e). 

Most likely, the two researchers selected different objects because thresholding of the same 

cells with the automated approach delivered the same values. Rat neurons are transfected 

with a much higher efficacy compared to mouse neurons (10-fold), which leads to strong 

selection bias for both the Fiji App as well as Omnisphero.

Automated selection of neurons based on a training set derived by both researchers revealed 

that thresholding (in the case of mouse) and selection criteria (in the case of rat) of different 

researchers can highly influence conclusions. Therefore, a fully unbiased method is 

desirable to obtain higher reproducibility among different researchers (Versi, 1992). The 

training set used in this study was derived from three experiments, but can be continuously 

enlarged with new manual annotations of neurons. Upon collecting 2000 to 5000 annotated 

neurons, the SSE approach could be supplemented with artificial intelligence solutions 

(U_Net (Ronneberger et al., 2015) for segmentation and transfer learning from pretrained 
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networks such as resnets for classification (He et al., 2015) to get even more robust 

automated selection criterions (Shen et al., 2017).

While Sholl analysis offers a graphical representation of altered dendritic arborization, the 

reason for the alteration is not easily extractable. For example, the number of intersections is 

dependent on the number of primary processes, the number of branching points or a 

combination of both. Therefore, analysis of morphological characteristics, such as total 

dendritic length, number of primary processes, number of branch points and number of 

terminal tips, is essential to further understand the effect of experimental manipulations on 

dendritic arborization. The new extension of Omnisphero allows a fast and unbiased analysis 

of dendritic morphology. Novel aspects compared to existing methods are complete 

automated identification of neuronal subtypes, automated thresholding, identification of cell 

somata and skeletonization, allowing or an implementation into a fully automated screening 

cascade. This method will increase throughput, the number of cells analyzed, and the 

robustness of observed effects. To date, this automated method has markedly decreased time 

associated with data analysis and improved experimental quality in ongoing neurotoxicity 

screens in our laboratory.
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Abbreviations

AUC area under the curve in Sholl Analysis

GUI graphical user interface

MAP2 microtubule associated protein 2

Peak X the radius at which the largest number of intersections occurs in Sholl 

analysis

Peak Y the highest number of intersections that occurs at any radius in Sholl 

Analysis

SEM standard error of the mean

SSE sum of squared errors
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Highlights

• OmniBrain performs manual, semi- and fully automated Sholl analysis

• Manual cell selection and tracing increases inter-researcher variability

• OmniBrain eliminated researcher bias from neuron selection and image 

thresholding

• OmniBrain provides medium to high throughput analysis of dendritic 

morphology
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Figure 1. Semi- and fully-automated morphological features and Sholl analysis.
(a, b) Overall preprocessing of raw images involves crucial thresholding prior to post-

processing examination of (c) morphological features and (d) Sholl analysis. (e, f) 8-bit raw 

images were thresholded. (g, h) Artifacts were removed by using different combinations of 

edge detection algorithms that were applied and combined with the thresholded image. (i) 

Gaps and holes were closed, and (j) non-dendritic structures were removed. (k, l) To obtain 

the centroid of the cell soma, an erosion was performed, and the centroid (red) of the 

resulting particle computed. Post-processing was performed in a semi-automated way by 

manually selecting neurons of interest, or in a fully automated approach in which the 

software calculates similarities towards a training set of selected neurons. (m, n) Selected 

neuronal structures were smoothed and skeletonized. (o) Resulting skeletons were pruned to 

remove artificial branching points and small branches. (p-s) For analysis, the cell soma was 

removed and endpoints like the number of primary processes, total dendritic length, number 
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of terminal tips, number of branching points were computed and Sholl analysis was 

performed. (t) Results can be visualized in the graphical user interface of Omnisphero and 

data are stored as .xlsx files.
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Figure 2. Automated thresholding reduces inter-researcher variability in mouse neuronal cell 
cultures.
(a) Overlay of the same neuron manually thresholded by two researchers (blue and red) and 

the automated thresholding (green). b) respective average neuronal areas of all neurons of 

the experiment. (c) Imperfect thresholding introduces artificial intersections when 

background structures are located on the ring mask in the ImageJ Sholl Analysis plugin 

(Ferreira et al., 2014, Nature Methods 11(10): 982–984). (d) As a result, there is a high inter-

researcher variability in the Sholl plots and (e) significant inter-researcher variability for the 

area under the curve (AUC) for the same set of images. (e) Automated thresholding 

significantly reduced inter-researcher variability and (f-h) delivered results comparable to 

those obtained using manual evaluation by researcher two (Res. 2). (i) The reason for 

reduced inter-researcher variability was that with automated thresholding, the overlap 

between selected neurons was 89–94% compared to 50–94% overlap between the two 

researchers using the manual approach. Data are shown as mean ± SEM (n=4 independent 

dissections). *Significantly different (p<0.05) between experimental groups for the same 

researcher, # between evaluation methods for the same researcher and & for the same 

experimental group and evaluation method between different researchers as determined 

using unpaired student’s t-test.
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Figure 3. Automated thresholding did not reduce inter-researcher variability in rat neuronal 
cultures.
(a) The overlay of two manually thresholded rat neurons (blue and red) and the automated 

thresholding (green). b) the inter-researcher variability in neuronal area, and (c) artificial 

intersections from imperfect thresholding. (d) Sholl plots of primary rat neurons manually 

thresholded and (e) semi-automated analysis (manual selection but automated thresholding) 

reveal inter-researcher and inter-methodological differences. These differences are reflected 

in the (f) AUC, (g) Peak X and (h) Peak Y. (i) Inter-researcher variance originated from low 

overlap of manually selected neurons of 35–59%. Data are shown as mean ± SEM (n=3 

independent dissections). *Significantly different (p<0.05) between experimental groups for 

the same researcher, # between evaluation methods for the same researcher, & for the same 

experimental group and evaluation method between different researchers as determined 

using unpaired student’s t-test.
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Figure 4. Automated neuron selection decreases researcher bias in rat neuronal cultures.
(a) Using neurons identified by both researchers, a Fit curve was generated and used to 

calculate the sum of squared errors (SSE) for individual neurons contained in this data set. 

We considered neurons if their SSE was smaller than the mean plus one standard deviation 

of our training data set. (b-e) Data generated using this fully automated method were more 

similar to researcher 1 than researcher 2. (f) The automated method was able to identify 81% 

of neurons from the ground truth annotation and additional identified neurons percentages 

were comparable to researcher one with a significantly lower variance than researcher 2. 

Data are shown as mean ± SEM (n=3 independent dissections). *Significantly different 

(p<0.05) between experimental groups for the same researcher, && significant differences 

between the fully automated method versus semi-automated method as determined using 

unpaired student’s t-test. ## Significant differences between variations as determined using 

the F-test.
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Figure 5. Morphological endpoints analyzed by the semi-automatic approach.
(a, b) Our software is capable of analyzing neural mass (area of the entire neuronal 

structure), (c, d) the number of primary processes, (e, f) total dendritic length, (g, h) number 

of dendritic branch points, and (i, j) number of terminal dendritic tips for both primary 

mouse hippocampal and rat cortical neurons. Experimental groups A and B for mouse and 

groups C and D for rat neuronal cultures were analyzed by two independent researchers. 

Data are shown as mean ± SEM (n=3 (rat) or 4 (mouse) independent dissections per 

condition). *Significantly different (p<0.05) between experimental groups for the same 

researcher; # between evaluation methods for the same researcher, & for the same 
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experimental group and evaluation method between different researchers, using unpaired 

student’s t-test.
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Figure 6. Morphological endpoints analyzed by the fully automated approach.
(a) Comparison of neural mass (area of the entire neuronal structure, (b) number of primary 

processes, (c) total dendritic length, (d) number of dendritic branch points and (e) number of 

terminal dendritic tips for primary rat cortical neurons obtained by (f) semi-automated and 

fully automated analysis. Data are shown as mean ± SEM (n=3 independent dissections per 

condition). *Significantly different (p<0.05) between experimental groups for the same 

researcher and && semi-automated method vs. fully automated method as determined using 

unpaired student’s t-test.
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