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ABSTRACT
The purpose of this study was to predict the survival time of patients with malignant glioma after radiotherapy with
high accuracy by considering additional clinical factors and optimize the prescription dose and treatment duration
for individual patient by using a machine learning model. A total of 35 patients with malignant glioma were included
in this study. The candidate features included 12 clinical features and 192 dose–volume histogram (DVH) features.
The appropriate input features and parameters of the support vector machine (SVM) were selected using the genetic
algorithm based on Akaike’s information criterion, i.e. clinical, DVH, and both clinical and DVH features. The
prediction accuracy of the SVM models was evaluated through a leave-one-out cross-validation test with residual
error, which was defined as the absolute difference between the actual and predicted survival times after radiotherapy.
Moreover, the influences of various values of prescription dose and treatment duration on the predicted survival
time were evaluated. The prediction accuracy was significantly improved with the combined use of clinical and DVH
features compared with the separate use of both features (P < 0.01, Wilcoxon signed rank test). Mean ± standard
deviation of the leave-one-out cross-validation using the combined clinical and DVH features, only clinical features
and only DVH features were 104.7 ± 96.5, 144.2 ± 126.1 and 204.5 ± 186.0 days, respectively. The prediction
accuracy could be improved with the combination of clinical and DVH features, and our results show the potential to
optimize the treatment strategy for individual patients based on a machine learning model.

Keywords: malignant glioma; support vector machine; survival time prediction; dose–volume histogram features;
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INTRODUCTION
As prognostic prediction models have been used to evaluate radiation
treatment plans, tumor control probability (TCP) [1] and normal
tissue complication probability (NTCP) [2], the optimization of the
treatment plan through these models is called biological optimization
(BIOP) [3]. By considering these biological models, dose distribution
could be improved [3–5]. However, these biological models only
consider the radiation dose information obtained from a dose–
volume histogram (DVH). There is a probability that not only the
information obtained from DVH but also clinical features about

patients might affect the prognosis of patients. In fact, Curran et al.
[6] reported that the survival time after radiotherapy of patients with
glioma, who are >50 years old and have an abnormal mental status, is
short. Therefore, a prognostic prediction model could possibly be
constructed with high accuracy by considering clinical features in
addition to the detailed DVH features. In this study, a prognostic
prediction model was constructed using the combination of clinical
features and detailed DVH features, and the model was used to
demonstrate the optimization of treatment strategies for individual
patients.
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To predict prognosis after radiotherapy by simultaneously consid-
ering the clinical and DVH features, a machine learning model was
used. In recent years, many researchers have applied various machine
learning models in the field of radiotherapy, and shown their usefulness
[7–9]. Some studies have shown that support vector machines (SVMs)
achieve superior performance over other statistical and machine learn-
ing methods [7,10,11], and therefore the SVM model was used in this
study. If the machine learning model is constructed with high accuracy,
the correspondence between input features and output is clear.

If the survival time is set as the output of a machine learning model,
input features related to treatment strategy can be directly controlled to
maximize the survival time. Thus, the possibility exists that prognosis
can be improved by using machine learning. Although many studies
using machine learning models for the prediction of patient outcome
have been reported, to the best of our knowledge, no studies in which
a prediction model has been used for optimization of treatment strate-
gies for patients with malignant glioma have been reported. Therefore,
in this study, the change of the predicted survival time after radiother-
apy was evaluated by changing some input features. The purpose of this
study was to predict the survival time of patients with malignant glioma
after radiotherapy by combining the clinical and DVH features by using
an SVM model. In addition, the relationship between the predicted
survival time and some input features was investigated to assist decision
making in the treatment strategy.

METHODS AND MATERIALS
First, three feature groups (clinical features, DVH features and their
combination) were prepared. By using these feature groups, appro-
priate input features and parameters were selected for SVM models
according to a genetic algorithm (GA), and the prediction accuracies
of the three models were compared. Finally, the change of the predicted
survival time with the change in some input features was investigated
using the SVM model constructed with the combination of clinical and
DVH features.

Patients and input candidate features
The details of 35 patients with malignant glioma (oligodendroglioma:
2, anaplastic astrocytoma: 3, glioblastoma: 30), who were treated at the
University of Tokyo Hospital between April 2006 and March 2013,
were used in this study; these details were tracked until the patients’
deaths. This study was approved by the University Institutional Review
Board. The patient characteristics are shown in Table 1. All patients
underwent gross-total or subtotal resection or biopsy, followed by
adjuvant chemoradiotherapy with prescription doses of 30–80 Gy. A
total of 204 candidate features that included 8 clinical features and
196 DVH features were prepared (Table 2). The clinical target volume
(CTV)extend is defined as the surrounding edema with a 1.5–2-cm
margin, while the planning target volume (PTV)extend is defined as
CTV along with a 5-mm margin for setup error. CTVlocal is defined
as the residual tumor + tumor bed along with 1.5–2-cm margin or
the edema surrounding the tumor (smaller than CTVextend). PTVlocal

is defined as CTVlocal along with a 5-mm margin for setup error. DX

represents the dose irradiated to a volume of X cm3 (or %) or more, and
X = 98, 95–50 (five intervals) and 2. Further, VX represents the volume
of the irradiated dose of X Gy or more, where X = 80–5 (five intervals).

Table 1. Patient characteristics

Glioma patients (n = 35)

Age
Median (range), years 64 (11–92)

Sex
Women 12
Men 23

Survival time
Median (range), days 504 (64–1279)

Mental status
Normal 19
Abnormal 16

Tumor location
Frontal lobe 17
Temporal lobe 10
Parietal lobe 1
Other 7

Symptom duration
Median (range), days 93 (27–3119)

Prescription dose
Median (range), Gy 60 (30–80)

Treatment duration
Median (range), days 50 (19–80)

Table 2. Candidate input features for the prediction of survival
time after radiotherapy

Clinical features (8) DVH features (196)

Age Gammaknife
Gender Target volume
Histology Prescription dose
Mental status Treatment duration
Chemotherapy Biological effective dose (BED)
Tumor location PTVlocal, Dx, Vx, max, min, mean
Surgical resection CTVlocal, Dx, Vx, max, min, mean
Symptom duration PTVextend, Dx, Vx, max, min, mean

CTVextend, Dx, Vx, max, min, mean
Dx: D98, D95–D50 (five interval), D2

Vx: V 80–V 5 (five interval)

SVM-based survival time prediction
An SVM is mostly used for classification but can be modified for a
regression problem [12]. In this study, the survival time of patients
with glioma after radiotherapy was predicted as a regression problem.
The SVM maps the training data into a high-dimensional feature space
through a kernel function. As the radial basis function (RBF) kernel is
generally the most commonly used kernel function because of its better
generalization ability [13], it was used in this study.

The SVM model as a regression model must select three parame-
ters: C, ε and γ [12]. Parameter C is a regularization parameter that
controls the tradeoff between training error and model complexity.
Parameter ε controls the width of the insensitive zone that allows the
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Fig. 1 (a) Flowchart of feature selection and parameter optimization by using a genetic algorithm. (b) Encoding of the
chromosome comprising four parts: C, ε, γ, and the features mask. (c) Genetic crossover and mutation operation.

error and parameter γ controls the amplitude of the RBF kernel and
the generalizability of the SVM.

Selection of input features and parameters for the SVM
Figure 1(a) shows the flowchart for the selection of input features and
parameters by using the GA. The combination of input features affects
the selection of appropriate parameters of the SVM, and vice versa.
Therefore, these two problems should be addressed simultaneously.
As the GA has been recently used for the simultaneous selection of
SVM features and parameters [14,15], it was considered in the current
study for simultaneously selecting input features and parameters for the
construction of the SVM model. The input features and parameters are
expressed in the GA with chromosomes; this is one such solution to the
given problem. In fact, the GA works with a subset of all possible solu-
tions called “population.” The optimal solution is obtained through a
series of iterative calculations (generations). The detailed process of
the GA-based selection of input features and parameters is as follows.

First, each “individual” (one set of input features and parameters)
in the population should be initialized by a chromosome [14]. To rep-
resent parameters of the SVM and input features with a chromosome,
a binary encoding technique [14,15] was used. In binary encoding,
parameters of the SVM (C, ε and γ) are expressed in their binary form.
That is, in the case of feature selection, the bit value of “1” implies
that the feature is selected, whereas “0” implies that the feature is not
selected (Figure 1(b)). Then, a fitness function that represents the suit-
ability of each individual was calculated, and genetic operations (selec-
tion, crossover and mutation) were applied [14,15] (Figure 1(c)). The
calculation of the fitness function and genetic operation were repeated
until termination was achieved.

The fitness function was used for the evaluation and comparison of
each candidate individual. In this study, Akaike’s information criterion
(AIC) [16] for the SVM was used as the fitness function, and smaller

fitness values indicated that an individual was fit. A simple model with
a small number of features is more likely to be selected using AIC.

For AIC calculation, the SVM model was trained and validated
through leave-one-out cross-validation (LOOCV) that maintained the
best compromise between computational cost and reliable estimates
[17]. LOOCV involves the use of one observation as the validation set
and the remaining observation as the training set. This procedure was
repeated until every observation was used once.

The iterative selection process of the GA was terminated when the
evolution reached 1000 generations. The other parameters for the GA
were as follows: population size was 500, crossover rate was 0.8 and
mutation rate was 0.3. These parameters were referenced from relevant
literature [14,15].

Prediction-accuracy validation of the SVM model
The survival time of patients with glioma was predicted using the
SVM model through LOOCV, and the absolute difference between
the actual and predicted survival times (residual error) was calculated.
The mean residual error of all patients was used as the performance
evaluation index.

Investigation of influence of input features on
predicted survival time

By using the SVM model, we investigated how the predicted survival
time changed with the change in the values of some input features
selected through the GA. In this study, the SVM model constructed
with the combination of clinical and DVH data was used as the predic-
tion model, and the “prescription dose” and “treatment duration” were
used in this investigation. We predicted the survival time by changing
“prescription dose” in three steps. First, the prescription dose was
changed in the simulation. Second, the DVH parameters selected by
the GA were changed corresponding to the prescription dose in the
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Fig. 2 (a) Mean residual error from LOOCV by using each feature group, i.e. clinical features, DVH features and combination of
clinical and DVH features. The prediction accuracy when using the combination of clinical and DVH features was significantly
improved (P < 0.05 and 0.005, respectively, paired t-test). (b) Survival curve using actual and predicted survival time. There is no
significant difference (P = 0.18, log-rank test).

simulation. Finally, by using the changed DVH parameters as input
features, the survival time was predicted. Wilcoxon signed rank test was
applied as a non-parametric statistical test. All statistical analyses were
performed using R version 3.1.4.

RESULTS
Prediction accuracy of each prediction model

Figure 2(a) shows the mean residual errors of each prediction model.
Mean ± standard deviation of LOOCV when using the clinical
features, DVH features, and the combination of these features was
144.2 ± 126.1, 204.5 ± 186.0 and 104.7 ± 96.5 days, respectively.
The model constructed using the combination of clinical and DVH
data produced significantly better performance than those constructed
using clinical data (P < 0.01, Wilcoxon signed rank test) and DVH
data (P < 0.01, Wilcoxon signed rank test). The features selected from
each feature group according to the GA are shown in Table S1 (see
online supplementary material), and the distribution of each residual
error using the combination of clinical and DVH features, clinical
features only, and DVH features only is shown in Figure S1 (see online
supplementary material).

The GA was used for the simultaneous and automatic selection of
input features and parameters. To show that the GA can select input
features and parameters appropriately, the convergence of fitness values
was investigated, and the performance of the GA was compared with
that of the grid-search algorithm [18] for the same range of search
parameters. Details of the comparison of the GA and grid search are
shown in Figure S2 (see online supplementary material).

Figure 2(b) shows the Kaplan–Meier survival curves of the actual
and predicted survival times, with no significant difference between

the curves (P = 0.18, log-rank test). The SVM model constructed by
combining the clinical and DVH features was used to generate the
Kaplan–Meier survival curves.

Relationship among prescription dose, treatment
duration and predicted survival time

Figure 3 (top) shows the relationship between the prescription dose
and predicted survival time for two patients. The effect of dose esca-
lation differed according to each patient. Figure 3 (bottom) shows the
result of adding the treatment duration of each patient. The influence
of prescription dose and treatment duration on the survival time after
radiotherapy was different for each patient.

DISCUSSION
In this study, the clinical and DVH features were combined for
constructing a prognostic prediction model. By considering more
input features related to prognosis by using a machine learning
model, the prediction accuracy was improved. Moreover, we showed
the potential to optimize the treatment strategy for an individual
patient by using the prediction model. By using our methods, there
is a possibility that prescription dose and treatment duration can
be controlled to improve survival time of individual patients after
radiotherapy.

The prediction accuracy of the SVM model constructed using the
combination of clinical and DVH features was significantly improved
compared with the accuracies of those models constructed using only
clinical features and only DVH features. This result indicates that the
clinical features influence the prognosis of glioma patients as reported
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Fig. 3 Result of investigating the change in the predicted survival time when changing prescription dose and treatment duration as
input features. Top: relationship between the prescription dose and predicted survival time of each patient. The round (�)
symbol shows the actual survival time and prescription dose of patient A, and the triangle (�) symbol shows the actual survival
time and prescription dose of patient B. Bottom: the result of adding treatment duration of each patient.

by Curran et al. [6]. Therefore, prognostic prediction models are
recommended to be developed by considering not only radiation dose
information from DVH but also clinical features.

The survival time of patients with glioma was predicted as a regres-
sion problem in this study. Some reports predicted the survival time
for patients with glioma as a classification problem [6,19,20]. However,
to the best of the authors’ knowledge, no study has reported this
problem as a regression problem. For comparison with other reports,
the survival time was binarized with the median value and the prog-
nosis of glioma patients was predicted as a classification problem. The
area under the curve (AUC) of our SVM model was 0.91, which is
equivalent to or marginally higher than the values in the past reports
(AUC = 0.7–0.9) [21,22]. Chaddad et al. [21] achieved a prediction
performance of AUC = 0.85 using radiomic features in presurgical
magnetic resonance (MR) images. Papp et al. [22] reported AUC = 0.9
based on a model with radiomic features calculated using LS-methyl-
11C-methionine (11C-MET) positron emission tomography (PET)
images. In the classification problem, the patients were classified into
two groups according to their survival time (for example, class 1:
survival time >50 days, class 2: survival time ≤50 days). Therefore,
the treatment strategy was optimized with respect to each patient
group instead of individual patients. However, in regression, as in this

study, the survival time is predicted as a continuous value. As different
survival times are predicted for each patient, the treatment strategy can
be optimized for individual patients.

Conventionally, the quality of radiotherapy is judged according to
the physical quantities such as DVH parameters. However, optimiza-
tion of radiotherapy with respect to these parameters is an indirect
method because the optimization is based on the assumption that these
parameters correlate with the prognosis after radiotherapy. Therefore,
we investigated the direct relationship between some input features
and the predicted survival time after radiotherapy by using a machine
learning model. In this study, the input features of prescription dose
and treatment duration were used for optimization because they are
continuous and related to treatment strategy. The motivation for this
investigation was to personalize radiotherapy for individual patients.
If prognostic prediction models are constructed with high accuracy
based on this study, it is possible to control some input features related
to the treatment strategy to improve the predicted survival time after
radiotherapy, leading to the realization of precision medicine in the
field of radiotherapy. As shown in Figure 3, the effect of dose escalation
and extension of treatment duration differed according to each patient.
Therefore, there is a probability that the optimal prescription dose and
treatment duration vary with respect to each patient. This investigation
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could be the first step for the optimization of the prescription dose and
treatment duration for individual patients.

In this study, an SVM model was used as a machine learning model
to predict the survival time of patients with glioma after radiotherapy
because of its superior performance. In recent years, multilayer neural
networks called “deep learning networks” have achieved higher pre-
diction accuracy than other machine learning models; however, deep
learning methods require a huge amount of data to achieve high pre-
diction accuracy [23,24]. Although You et al. [25] proposed a hybrid
model based on convolutional neural network (CNN) and SVM, a
large dataset is still needed. In the case of a small dataset, simpler
machine learning models, such as SVM and multiple linear regression
[26] (MLR), could perform with high prediction accuracy [7]. As
an additional study, the performances of the SVM and MLR models
were compared, as shown in Figs S3 and S4. As shown in Fig. S4(a),
the SVM model had higher generalizability to the separated dataset
than the MLR model. Although random forests have also been used
for small datasets, the random forest is generally used as a classifier
for classification problems [27,28]. In this study, survival time after
radiotherapy was predicted as a regression problem. Therefore, we
compared the SVM and MLR models in this study.

Future studies are expected to increasingly report about the use of
machine learning models in not only prognostic prediction [29,30] but
also optimization of treatment strategies in the field of radiotherapy.
Therefore, clinical trials to ensure the usefulness of optimizing treat-
ment strategies using machine learning models will become necessary,
e.g. the use of prospective tests to ascertain whether radiotherapy
optimized through a machine learning model significantly improves
prognosis. If such clinical trials are performed in many facilities in
the future, the usefulness of the treatment-strategy optimization by
using machine learning models will be ensured, and machine learning
methods will be incorporated into actual radiotherapy.

The current study has some limitations. First, the sample size of
our dataset is 35 because only the cases that could be tracked until
death were used. Second, adversarial events were not considered.
For example, if we tried to optimize the prescription dose and
treatment duration, adverse events accompanying them must also
be considered; however, our dataset does not contain features about
adverse events because all patients died before the occurrence of any
adverse events. Therefore, more samples and input features should
be collected in future works. Radiomics features could be effective as
input features to improve the prediction accuracy of survival time of
patients with glioma. In recent years, the field of radiomics has attracted
attention, and many studies have been published on this topic [31–
33]. Radiomics refers to the comprehensive quantification of tumor
phenotypes by applying a large number of quantitative image features
[34]. In fact, Grossmann et al. [35] reported that radiomics provides
prognostic value for survival and progression in patients with recurrent
glioblastoma. In this study, however, radiomics information, such as
presurgical MR images, were not obtained for survival time prediction
because modalities and imaging sequences of the glioma image were
not unified. To improve prediction accuracy using radiomics, modal-
ities and imaging sequences should be unified [36,37]. Moreover,
there are many other factors, that could not be obtained in this study,
associated with a glioma patient’s prognosis [38], such as Karnofsky
performance score (KPS), resection percentage and genomics features.

The prediction accuracy may be increased by including these
features.

CONCLUSIONS
In conclusion, our result showed the potential to customize the treat-
ment strategy for individual patients based on a machine learning
model. Furthermore, the prediction accuracy could be improved by
combining clinical and DVH features. To apply the prediction model
to clinical use, a more absolute prediction accuracy and a prospective
test are needed.
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