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Abstract

The state-of-the-art models for medical image segmentation are variants of U-Net and fully 

convolutional networks (FCN). Despite their success, these models have two limitations: (1) their 

optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble 

of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive 

fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and 

decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural 

architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth 

with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-

learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate 

features of varying semantic scales at the decoder sub-networks, leading to a highly flexible 

feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of 

UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, 

covering multiple imaging modalities such as computed tomography (CT), magnetic resonance 

imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently 

outperforms the baseline models for the task of semantic segmentation across different datasets 

and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects—

an improvement over the fixed-depth UNet; (3) Mask RCNN++ (Mask R-CNN with UNet++ 

design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) 

pruned UNet++ models achieve significant speedup while showing only modest performance 

degradation. Our implementation and pre-trained models are available at https://github.com/

MrGiovanni/UNetPlusPlus.
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1. INTRODUCTION

The encoder-decoder networks are widely used in modern semantic and instance 

segmentation models [1], [2], [3], [4], [5], [6]. Their success is largely attributed to their skip 

connections, which combine deep, semantic, coarse-grained feature maps from the decoder 

sub-network with shallow, low-level, fine-grained feature maps from the encoder sub-

network, and have proven to be effective in recovering fine-grained details of the target 

objects [7], [8], [9] even on complex background [10], [11]. Skip connections have also 

played a key role in the success of instance-level segmentation models such as [12], [13] 

where the idea is to segment and distinguish each instance of desired objects.

However, these encoder-decoder architectures for image segmentation come with two 

limitations. First, the optimal depth of an encoder-decoder network can vary from one 

application to another, depending on the task difficulty and the amount of labeled data 

available for training. A simple approach would be to train models of varying depths 

separately and then ensemble the resulting models during the inference time [14], [15], [16]. 

However, this simple approach is inefficient from a deployment perspective, because these 

networks do not share a common encoder. Furthermore, being trained independently, these 

networks do not enjoy the benefits of multi-task learning [17], [18]. Second, the design of 

skip connections used in an encoder-decoder network is unnecessarily restrictive, demanding 

the fusion of the same-scale encoder and decoder feature maps. While striking as a natural 

design, the same-scale feature maps from the decoder and encoder networks are 

semantically dissimilar and no solid theory guarantees that they are the best match for 

feature fusion.

In this paper, we present UNet++, a new general purpose image segmentation architecture 

that aims at overcoming the above limitations. As presented in Fig. 1(g), UNet++ consists of 

U-Nets of varying depths whose decoders are densely connected at the same resolution via 

the redesigned skip pathways. The architectural changes introduced in UNet++ enable the 

following advantages. First, UNet++ is not prone to the choice of network depth because it 

embeds U-Nets of varying depths in its architecture. All these U-Nets partially share an 

encoder, while their decoders are intertwined. By training UNet++ with deep supervision, all 

the constituent U-Nets are trained simultaneously while benefiting from a shared image 

representation. This design not only improves the overall segmentation performance, but 

also enables model pruning during the inference time. Second, UNet++ is not handicapped 

by unnecessarily restrictive skip connections where only the same-scale feature maps from 

the encoder and decoder can be fused. The redesigned skip connections introduced in UNet+

+ present feature maps of varying scales at a decoder node, allowing the aggregation layer to 

decide how various feature maps carried along the skip connections should be fused with the 

decoder feature maps. The redesigned skip connections are realized in UNet++ by densely 

Zhou et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



connecting the decoders of the constituents U-Nets at the same resolution. We have 

extensively evaluated UNet++ across six segmentation datasets and multiple backbones of 

different depths. Our results demonstrate that UNet++ powered by redesigned skip 

connections and deep supervision enables a significantly higher level of performance for 

both semantic and instance segmentation. This significant improvement of UNet++ over the 

classical UNet architecture is ascribed to the advantages offered by the redesigned skip 

connections and the extended decoders, which together enable gradual aggregation of the 

image features across the network, both horizontally and vertically.

In summary, we make the following five contributions:

1. We introduce a built-in ensemble of U-Nets of varying depths in UNet++, 

enabling improved segmentation performance for varying size objects—an 

improvement over the fixed-depth U-Net (see Section II-B).

2. We redesign skip connections in UNet++, enabling flexible feature fusion in 

decoders—an improvement over the restrictive skip connections in U-Net that 

require fusion of only same-scale feature maps (see Section II-B).

3. We devise a scheme to prune a trained UNet++, accelerating its inference speed 

while maintaining its performance (see Section IV-C).

4. We discover that simultaneously training multi-depth U-Nets embedded within 

the UNet++ architecture stimulates collaborative learning among the constituent 

U-Nets, leading to much better performance than individually training isolated 

U-Nets of the same architecture (see Section IV-D and Section V-C).

5. We demonstrate the extensibility of UNet++ to multiple backbone encoders and 

further its applicability to various medical imaging modalities including CT, 

MRI, and electron microscopy (see Section IV-A and Section IV-B).

II. PROPOSED NETWORK ARCHITECTURE: UNET++

Fig. 1 shows how UNet++ evolves from the original U-Net. In the following, we first trace 

this evolution, motivating the need for UNet++, and then explain its technical and 

implementation details.

A. Motivation behind the new architecture

We have done a comprehensive ablation study to investigate the performance of U-Nets of 

varying depths (Fig. 1(a–d)). For this purpose, we have used three relatively small datasets, 

namely CELL, EM, and BRAIN TUMOR (detailed in Section III-A). Table I summarizes 

the results. For the cell and brain tumor segmentation, a shallower network (U-Net L3) 

outperforms the deep U-Net. For the EM dataset, on the other hand, the deeper U-Nets 

consistently outperform the shallower counterparts, but the performance gain is only 

marginal. Our experimental results suggest two key findings: 1) deeper U-Nets are not 

necessarily always better, 2) the optimal depth of architecture depends on the difficulty and 

size of the dataset at hand. While these findings may encourage an automated neural 

architecture search, such an approach is hindered by the limited computational resources 
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[19], [20], [21], [22], [23]. Alternatively, we propose an ensemble architecture, which 

combines U-Nets of varying depths into one unified structure. We refer to this architecture 

as U-Nete (Fig. 1(e)). We train U-Nete by defining a separate loss function for each U-Net in 

the ensemble, i.e., X0,j, j ∈ {1, 2, 3, 4}. Our deep supervision scheme differs from the 

commonly used deep supervision in deep image classification and image segmentation 

networks; in [24], [25], [26], [27] the auxiliary loss functions are added to the nodes along 

the decoder network, i.e. X4–j,j, j ∈ {0, 1, 2, 3, 4}, whereas we apply them on X0,j, j ∈ {1, 2, 

3, 4}. At the inference time, the output from each U-Net in the ensemble is averaged.

The ensemble architecture (U-Nete) outlined above benefits from knowledge sharing, 

because all U-Nets within the ensemble partially share the same encoder even though they 

have their own decoders. However, this architecture still suffers from two drawbacks. First, 

the decoders are disconnected—deeper U-Nets do not offer a supervision signal to the 

decoders of the shallower U-Nets in the ensemble. Second, the common design of skip 

connections used in the U-Nete is unnecessarily restrictive, requiring the network to combine 

the decoder feature maps with only the same-scale feature maps from the encoder. While 

striking as a natural design, there is no guarantee that the same-scale feature maps are the 

best match for the feature fusion.

To overcome the above limitations, we remove long skip connections from the U-Nete and 

connect every two adjacent nodes in the ensemble, resulting in a new architecture, which we 

refer to as UNet+ (Fig. 1(f)). Owing to the new connectivity scheme, UNet+ connects the 

disjoint decoders, enabling gradient back-propagation from the deeper decoders to the 

shallower counterparts. UNet+ further relaxes the unnecessarily restrictive behaviour of skip 

connections by presenting each node in the decoders with the aggregation of all feature maps 

computed in the shallower stream. While using aggregated feature maps at a decoder node is 

far less restrictive than having only the same-scale feature map from the encoder, there is 

still room for improvement. We further propose to use dense connectivity in UNet+, 

resulting in our final architecture proposal, which we refer to as UNet++ (Fig. 1(g)). With 

dense connectivity, each node in a decoder is presented with not only the final aggregated 

feature maps but also with the intermediate aggregated feature maps and the original same-

scale feature maps from the encoder. As such, the aggregation layer in the decoder node may 

learn to use only the same-scale encoder feature maps or use all collected feature maps 

available at the gate. Unlike U-Nete, deep supervision is not required for UNet+ and UNet+

+, however, as we will describe later, deep supervision enables model pruning during the 

inference time, leading to a significant speedup with only modest drop in performance.

B. Technical details

1) Network connectivity: Let xi,j denote the output of node Xi,j where i indexes the 

down-sampling layer along the encoder and j indexes the convolution layer of the dense 

block along the skip connection. The stack of feature maps represented by xi,j is computed 

as
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xi, j =
ℋ D xi − 1, j , j = 0

ℋ xi, k
k = 0
j − 1 , U xi + 1, j − 1 , j > 0

(1)

where function ℋ ⋅  is a convolution operation followed by an activation function, D ⋅
and U ⋅  denote a down-sampling layer and an up-sampling layer respectively, and [ ] 

denotes the concatenation layer. Basically, as shown in Fig. 1(g), nodes at level j = 0 receive 

only one input from the previous layer of the encoder; nodes at level j = 1 receive two inputs, 

both from the encoder sub-network but at two consecutive levels; and nodes at level j > 1 

receive j + 1 inputs, of which j inputs are the outputs of the previous j nodes in the same skip 

connection and the j + 1th input is the up-sampled output from the lower skip connection. 

The reason that all prior feature maps accumulate and arrive at the current node is because 

we make use of a dense convolution block along each skip connection.

2) Deep supervision: We introduce deep supervision in UNet++. For this purpose, we 

append a 1×1 convolution with C kernels followed by a Sigmoid activation function to the 

outputs from nodes X0,1, X0,2, X0,3, and X0,4 where C is the number of classes observed in 

the given dataset. We then define a hybrid segmentation loss consisting of pixel-wise cross-

entropy loss and soft dice-coefficient loss for each semantic scale. The hybrid loss may take 

advantages of what both loss functions have to offer: smooth gradient and handling of class 

imbalance [28], [29]. Mathematically, the hybrid loss is defined as:

ℒ Y , P = − 1
N ∑

c = 1

C
∑
n = 1

N
yn, clogpn, c + 2yn, cpn, c

yn, c2 + pn, c2 (2)

where yn,c ∈ Y and pn,c ∈ P denote the target labels and predicted probabilities for class c 
and nth pixel in the batch, N indicates the number of pixels within one batch. The overall 

loss function for UNet++ is then defined as the weighted summation of the hybrid loss from 

each individual decoders:ℒ = ∑i = 1
d ηi ⋅ ℒ Y , P i , where d indexes the decoder. In the 

experiments, we give same balanced weights ηi to each loss, i.e., ηi ≡ 1, and do not process 

the ground truth for different outputs supervision like Gaussian blur.

3) Model pruning: Deep supervision enables model pruning. Owing to deep 

supervision, UNet++ can be deployed in two operation modes: 1) ensemble mode where the 

segmentation results from all segmentation branches are collected and then averaged, and 2) 

pruned mode where the segmentation output is selected from only one of the segmentation 

branches, the choice of which determines the extent of model pruning and speed gain. Fig. 2 

shows how the choice of the segmentation branch results in pruned architectures of varying 

complexity. Specifically, taking the segmentation result from X0,4 leads to no pruning 

whereas taking the segmentation result from X0,1 leads to maximal pruning of the network.
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III. EXPERIMENTS

A. Datasets

Table II summarizes the six biomedical image segmentation datasets used in this study, 

covering lesions/organs from most commonly used medical imaging modalities including 

microscopy, computed tomography (CT), and magnetic resonance imaging (MRI).

1) Electron Microscopic (EM): The dataset is provided by the EM segmentation 

challenge [30] as a part of ISBI 2012. The dataset consists of 30 images (512×512 pixels) 

from serial section transmission electron microscopy of the Drosophila firt instar larva 

ventral nerve cord (VNC). Referring to the example in Fig. 3, each image comes with a 

corresponding fully annotated ground truth segmentation map for cells (white) and 

membranes (black). The labeled images are split into training (24 images), validation (3 

images), and test (3 images) datasets. Both training and inference are done based on 96×96 

patches, which are chosen to overlap by half of the patch size via sliding windows. 

Specifically, during the inference, we aggregate predictions across patches by voting in the 

overlapping areas.

2) Cell: The dataset is acquired with a Cell-CT imaging system [31]. Two trained experts 

manually segment the collected images, so each image in the dataset comes with two binary 

cell masks. For our experiments, we select a subset of 354 images that have the highest level 

of agreement between the two expert annotators. The selected images are then split into 

training (212 images), validation (70 images), and test (72 images) subsets.

3) Nuclei: The dataset is provided by the Data Science Bowl 2018 segmentation 

challenge and consists of 670 segmented nuclei images from different modalities (brightfield 

vs. fluorescence). This is the only dataset used in this work with instance-level annotation 

where each nucleolus is marked in a different color. Images are randomly assigned into a 

training set (50%), a validation set (20%), and a test set (30%). We then use a sliding 

window mechanism to extract 96×96 patches from the images, with 32-pixel stride for 

training and validating model, and with 1-pixel stride for testing.

4) Brain Tumor: The dataset is provided by BraTS 2013 [32], [34]. To ease the 

comparison with other approaches, the models are trained using 20 High-grade (HG) and 10 

Low-grade (LG) with Flair, T1, T1c, and T2 scans of MR images from all patients, resulting 

in a total of 66,348 slices. We further pre-process the dataset by re-scaling the slices to 

256×256. Finally, the 30 patients available in the dataset are randomly assigned into five 

folds, each having images from six patients. We then randomly assign these five folds into a 

training set (3-fold), a validation set (1-fold), and a test set (1-fold). The ground truth 

segmentation have four different labels: necrosis, edema, non-enhancing tumor, and 

enhancing tumor. Following the BraTS-2013, the “complete” evaluation is done by 

considering all four labels as positive class and others as negative class.

5) Liver: The dataset is provided by MICCAI 2017 LiTS Challenge and consists of 331 

CT scans, which we split into training (100 patients), validation (15 patients), and test (15 

patients) subsets. The ground truth segmentation provides two different labels: liver and 
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lesion. For our experiments, we only consider liver as positive class and others as negative 

class.

6) Lung Nodule: The dataset is provided by the Lung Image Database Consortium 

image collection (LIDC-IDRI) [33] and consists of 1018 cases collected by seven academic 

centers and eight medical imaging companies. Six cases with ground truth issues were 

identified and removed. The remaining cases were split into training (510), validation (100), 

and test (408) sets. Each case is a 3D CT scan and the nodules have been marked as 

volumetric binary masks. We have re-sampled the volumes to 1-1-1 spacing and then 

extracted a 64×64×64 crop around each nodule. These 3D crops are used for model training 

and evaluation.

B. Baselines and implementation

For comparison, we use the original U-Net [35] and a customized wide U-Net architecture 

for 2D segmentation tasks, and V-Net [28] and a customized wide V-Net architecture for 3D 

segmentation tasks. We choose U-Net (or V-Net for 3D) because it is a common 

performance baseline for image segmentation. We have also designed a wide U-Net (or wide 

V-Net for 3D) with similar number of parameters to our suggested architecture. This is to 

ensure that the performance gain yielded by our architecture is not simply due to increased 

number of parameters. Table III details the U-Net and wide U-Net architectures. We have 

further compared the performance of UNet++ against UNet+, which is our intermediate 

architecture proposal. The numbers of kernels in the intermediate nodes have been given in 

Table III.

Our experiments are implemented in Keras with Tensorflow backend. We use early-stop 
mechanism on the validation set to avoid over-fitting and evaluate the results using Dice-

coefficient and Intersection over Union (IoU). Alternative measurement metrics, such as 

pixel-wise sensitivity, specificity, F1, and F2 scores, along with the statistical analysis can be 

found in Appendix Section A. Adam is used as the optimizer with a learning rate of 3e-4. 

Both UNet+ and UNet++ are constructed from the original U-Net architecture. All the 

experiments are performed using three NVIDIA TITAN X (Pascal) GPUs with 12 GB 

memory each.

IV. RESULTS

A. Semantic segmentation results

Table IV compares U-Net, wide U-Net, UNet+, and UNet++ in terms of the number 

parameters and segmentation results measured by IoU (mean±s.d) for the six segmentation 

tasks under study. As seen, wide U-Net consistently outperforms U-Net. This improvement 

is attributed to the larger number of parameters in wide U-Net. UNet++ without deep 

supervision achieves a significant IoU gain over both U-Net and wide U-Net for all the six 

tasks of neuronal structure (↑0.62±0.10, ↑0.55±0.01), cell (↑2.30±0.30, ↑2.12±0.09), nuclei 

(↑1.87±0.06, ↑1.71±0.06), brain tumor (↑2.00±0.87, ↑1.86±0.81), liver (↑2.62±0.09, 

↑2.26±0.02), and lung nodule (↑5.06±1.42, ↑3.12±0.88) segmentation. Using deep 

supervision and average voting further improves UNet++, increasing the IoU by up to 0.8 
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points. Specifically, neuronal structure and lung nodule segmentation benefit the most from 

deep supervision because they appear at varying scales in EM and CT slices. Deep 

supervision, however, is only marginally effective for other datasets at best. Fig. 3 depicts a 

qualitative comparison between the results of U-Net, wide U-Net, and UNet++.

We have further investigated the extensibility of UNet++ for semantic segmentation by 

applying redesigned skip connections to an array of modern CNN architectures: vgg-19 [36], 

resnet-152 [8], and densenet-201 [9]. Specifically, we have turned each architecture above 

into a U-Net model by adding a decoder sub-network, and then replaced the plain skip 

connections of U-Net with the redesigned connections of UNet++. For comparison, we have 

also trained U-Net and UNet+ with the aforementioned backbone architectures. For a 

comprehensive comparison, we have used EM, CELL, NUCLEI, BRAIN TUMOR and 

LIVER segmentation datasets. As seen in Fig. 4, UNet++ consistently outperforms U-Net 

and UNet+ across all backbone architectures and applications under study. Through 20 

trials, we further present statistical analysis based on the independent two-sample t-test on 

each pair among U-Net, UNet+, and UNet++. Our results suggest that UNet++ is an 

effective, backbone-agnostic extension to U-Net. To facilitate reproducibility and model 

reuse, we have released the implementation1 of U-Net, UNet+, and UNet++ for various 

traditional and modern backbone architectures.

B. Instance segmentation results

Instance segmentation consists in segmenting and distinguishing all object instances; hence, 

more challenging than semantic segmentation. We use Mask R-CNN [12] as the baseline 

model for instance segmentation. Mask R-CNN utilizes feature pyramid network (FPN) as 

backbone to generate object proposal at multiple scales, and then outputs the segmentation 

masks for the collected proposals via a dedicated segmentation branch. We modify Mask R-

CNN by replacing the plain skip connections of FPN with the redesigned skip connections 

of UNet++. We refer to this model as Mask RCNN++. We use resnet101 as the backbone for 

Mask R-CNN in our experiments.

Table V compares the performance of Mask R-CNN and Mask RCNN++ for nuclei 

segmentation. We have chosen the NUCLEI dataset because multiple nucleolus instances 

can be present in an image, in which case each instance is annotated in a different color, and 

thus marked as a distinct object. Therefore, this dataset is amenable to both semantic 

segmentation where all nuclei instances are treated as foreground class, and also instance 

segmentation where each individual nucleus is to be segmented separately. As seen in Table 

V, Mask RCNN++ outperforms its original counterpart, achieving 1.82 points increase in 

IoU (93.28% to 95.10%), 3.45 points increase in Dice (87.91% to 91.36%), and 0.013 points 

increase in the leaderboard score (0.401 to 0.414). To put this performance in perspective, 

we have also trained a U-Net and UNet++ model for semantic segmentation with a 

resnet101 backbone. As seen in Table V, Mask R-CNN models achieve higher segmentation 

performance than semantic segmentation models. Furthermore, as expected, UNet++ 

outperforms U-Net for semantic segmentation.

1The project page: https://github.com/MrGiovanni/UNetPlusPlus
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C. Model pruning

Once UNet++ is trained, the decoder path for depth d at inference time is completely 

independent from the decoder path for depth d + 1. As a result, we can completely remove 

the decoder for depth d+1, obtaining a shallower version of the trained UNet++ at depth d, 

owing to the introduced deep supervision. This pruning can significantly reduce the 

inference time, but segmentation performance may degrade. As such, the level of pruning 

should be determined by evaluating the model’s performance on the validation set. We have 

studied the inference speed-IoU trade-off for UNet++ in Fig. 5. We use UNet++ Ld to denote 

UNet++ pruned at depth d (see Fig. 2 for further details). As seen, UNet++ L3 achieves on 

average 32.2% reduction in inference time and 75.6% reduction in memory footprint while 

degrading IoU by only 0.6 points. More aggressive pruning further reduces the inference 

time but at the cost of significant IoU degradation. More importantly, this observation has 

the potential to exert important impact on computer-aided diagnosis (CAD) on mobile 

devices, as the existing deep convolutional neural network models are computationally 

expensive and memory intensive.

D. Embedded vs. isolated training of pruned models

In theory, UNet++ Ld can be trained in two fashions: 1) embedded training where the full 

UNet++ model is trained and then pruned at depth d to obtain UNet++ Ld, 2) isolated 

training where UNet++ Ld is trained in isolation without any interactions with the deeper 

encoder and decoder nodes. Referring to Fig. 2, embedded training of a sub-network 

consists of training all graph nodes (both yellow and grey components) with deep 

supervision, but we then use only the yellow sub-network during the inference time. In 

contrast, isolated training consists of removing the grey nodes from the graph, basing the 

training and test solely on the yellow sub-network.

We have compared the isolated and embedded training schemes for various levels of UNet+

+ pruning across two datasets in Fig. 6. We have discovered that the embedded training of 

UNet++ Ld results in a higher performing model than training the same architecture in 

isolation. The observed superiority is more pronounced under aggressive pruning when the 

full UNet++ is pruned to UNet++ L1. In particular, the embedded training of UNet++ L1 for 

liver segmentation achieves 5-point increase in IoU over the isolated training scheme. This 

finding suggests that supervision signal coming from the deep downstream enables training 

higher performing shallower models. This finding is also related to knowledge distillation 

where the knowledge learned by a deep teacher network is learned by a shallower student 

network.

V. DISCUSSIONS

A. Performance analysis on stratified lesion sizes

Fig. 7 compares U-Net and UNet++ for segmenting different sizes of brain tumors. To avoid 

clutter in the figure, we group the tumors by size into seven buckets. As seen, UNet++ 

consistently outperforms U-Net across all the buckets. We also adopt t-test on each bucket 

based on 20 different trials to measure the significance of the improvement, concluding that 

5 out of the 7 comparisons are statistically significant (p < 0.05). The capability of UNet++ 
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in segmenting tumors of varying sizes is attributed to its built-in ensemble of U-Nets, which 

enables image segmentation based on multi-receptive field networks.

B. Feature maps visualization

In Section II-A, we explained that the redesigned skip connections enable the fusion of 

semantically rich decoder feature maps with feature maps of varying semantic scales from 

the intermediate layers of the architecture. In this section, we illustrate this privilege of our 

re-designed skip connections by visualizing the intermediate feature maps.

Fig. 8 shows representative feature maps from early, intermediate, and late layers along the 

top most skip connection (i.e., X0,i) for a brain tumor image. The representative feature map 

for a layer is obtained by averaging all its feature maps. Also note that architectures in the 

left side of Fig. 8 are trained using only loss function appended to the deepest decoder layer 

(X0,4) whereas the architectures in the right side of Fig. 8 are trained with deep supervision. 

Note that these feature maps are not the final outputs. We have appended an additional 1×1 

convolutional layer on top of each decoder branch to form the final segmentation. We 

observe that the outputs of U-Net’s intermediate layers are semantically dissimilar whereas 

for UNet+ and UNet++ the outputs are formed gradually. The output of node X0,0 in U-Net 

undergoes slight transformation (few convolution operations only) whereas the output of 

X1,3, the input of X0,4, goes through nearly every transformation (four down-sampling and 

three up-sampling stages) learned by the network. Hence, there is a large gap between the 

representation capability of X0,0 and X1,3. So, simply concatenating the outputs of X0,4 and 

X1,3 is not an optimal solution. In contrast, redesigned skip connections in UNet+ and UNet

++ help refine the segmentation result gradually. We further present the learning curves of 

all six medical applications in Appendix Section B, revealing that the addition of dense 

connections in UNet++ encourages a better optimization and reaches lower validation loss.

C. Collaborative learning in UNet++

Collaborative learning is known as training multiple classifier heads of the same network 

simultaneously on the same training data. It is found to improve the generalization power of 

deep neural networks [37]. UNet++ naturally embodies collaborative learning through 

aggregating multi-depth networks and supervising segmentation heads from each of the 

constituent networks. Besides, the segmentation heads, for example X0,2 in Fig. 2, receive 

gradients from both strong (loss from ground truth) and soft (losses propagated from 

adjacent deeper nodes) supervision. As a result, the shallower networks improve their 

segmentation (Fig. 6) and provide more informative representation to deeper counterparts. 

Basically, deeper and shallower networks regularize each other via collaborative learning in 

UNet++. Training multi-depth embedded networks together results in improved 

segmentation than training them individually as isolated network which is evident in Section 

IV-D. The embedded design of UNet++ makes it amenable to auxiliary training, multi-task 

learning, and knowledge distillation [17], [38], [37].
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VI. RELATED WORKS

In the following, we review the works related to redesigned skip connections, feature 

aggregation, and deep supervision, which are the main components of our new architecture.

A. Skip connections

Skip connections were first introduced in the seminal work of Long et al. [39] where they 

proposed a fully convolutional networks (FCN) for semantic segmentation. Shortly after, 

building on skip connections, Ronneberger et al. [35] proposed U-Net architecture for 

semantic segmentation in medical images. The FCN and U-Net architectures however differ 

in how the up-sampled decoder feature maps were fused with the same-scale feature maps 

from the encoder network. While FCN [39] uses the summation operation for feature fusion, 

U-Net [35] concatenates the features followed by the application of convolutions and non-

linearities. The skip connections have shown to help recover the full spatial resolution, 

making fully convolutional methods suitable for semantic segmentation [40], [41], [42], 

[43]. Skip connections have further been used in modern neural architectures such as 

residual networks [8], [44] and dense networks [9], facilitating the gradient flow and 

improving the overall performance of classification networks.

B. Feature aggregation

The exploration of aggregating hierarchical feature has recently been the subject of research. 

Fourure et al. [45] propose GridNet, which is an encoder-decoder architecture wherein the 

feature maps are wired in a grid fashion, generalizing several classical segmentation 

architectures. Despite GridNet contains multiple streams with different resolutions, it lacks 

up-sampling layers between skip connections; and thus, it does not represent UNet++. Full-

resolution residual networks (FRRN) [46] employs a two-stream system, where full-

resolution information is carried in one stream and context information in the other pooling 

stream. In [47], two improved versions of FRRN are proposed, i.e., incremental MRRN with 

28.6M parameters and dense MRRN with 25.5M parameters. These 2D architectures 

however have similar number of parameters to our 3D VNet++ and three times more 

parameters than 2D UNet++; and thus, simply upgrading these architectures to a 3D manner 

may not be amenable to the common 3D volumetric medical imaging applications. We 

would like to note that our redesigned dense skip connections are completely different from 

those used in MRRN, which consists of a common residual stream. Also, it’s not flexible to 

apply the design of MRRN to other backbone encoders and meta framework such as Mask 

R-CNN [12]. DLA2 [48], topologically equivalent to our intermediate architecture UNet+ 

(Fig. 1(f)), sequentially connects the same resolution of feature maps, without long skip 

connections as used in U-Net. Our experimental results demonstrate that by densely 

connecting the layers, UNet++ achieves higher segmentation performance than UNet+/DLA 

(see Table IV).

2Deep Layer Aggregation—a simultaneous but independent work published in CVPR-2018 [48].
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C. Deep supervision

He et al. [8] suggested that the depth d of network can act as a regularizer. Lee et al. [27] 

demonstrated that deeply supervised layers can improve the learning ability of the hidden 

layer, enforcing the intermediate layers to learn discriminative features, enabling fast 

convergence and regularization of the network [26]. DenseNet [9] performs a similar deep 

supervision in an implicit fashion. Deep supervision can be used in U-Net like architecture 

as well. Dou et al. [49] introduce a deep supervision by combining predictions from varying 

resolutions of feature maps, suggesting that it can combat potential optimization difficulties 

and thus reach faster convergence rate and more powerful discrimination capability. Zhu et 
al. [50] used eight additional deeply supervised layers in their proposed architecture. Our 

nested networks are however more amenable to training under deep supervision: 1) multiple 

decoders automatically generate full resolution segmentation maps; 2) the networks are 

embedded various different depths of U-Net so that it grasps multiple-resolution features; 3) 

densely connected feature maps help smooth the gradient flow and give relatively consistent 

predicting mask; 4) the high dimension features have effects on every outputs through back-

propagation, allowing us to prune the network in the inference phase.

D. Our previous work

We first presented UNet++ in our DLMIA 2018 paper [51]. UNet++ has since been quickly 

adopted by the research community, either as a strong baseline for comparison [52], [53], 

[54], [55], or as a source of inspiration for developing newer semantic segmentation 

architectures [56], [57], [58], [59], [60], [61]; it has also been utilized for multiple 

applications, such as segmenting objects in biomedical images [62], [63], natural images 

[64], and satellite images [65], [66]. Recently, Shenoy [67] has independently and 

systematically investigated UNet++ for the task of “contact prediction model PconsC4”, 

demonstrating significant improvement over widely-used U-Net.

Nevertheless, to further strengthen UNet++ on our own, the current work presents several 

extensions to our previous work: (1) we present a comprehensive study on network depth, 

motivating the need for the proposed architecture (Section II-A); (2) we compare the 

embedded training schemes with the isolated ones at various levels of pruned UNet++, and 

discover that training embedded U-Nets of multi-depths leads to improved performance than 

individually training them in isolation (Section IV-D); (3) we strengthen our experiments by 

including a new magnetic resonance imaging (MRI) dataset for brain tumor segmentation 

(Section IV); (4) we demonstrate the effectiveness of UNet++ in Mask R-CNN, resulting in 

a more powerful model namely Mask RCNN++ (Section IV-B); (5) we investigate the 

extensibility of UNet++ to multiple advanced encoder backbones for semantic segmentation 

(Section IV-A); (6) we study the effectiveness of UNet++ in segmenting lesions of varying 

sizes (Section V-A); and (7) we visualize the feature propagation along the resigned skip 

connection to explain the performance (Section V-B).

VII. CONCLUSION

We have presented a novel architecture, named UNet++, for more accurate image 

segmentation. The improved performance by our UNet++ is attributed to its nested structure 
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and redesigned skip connections, which aim to address two key challenges of the U-Net: 1) 

unknown depth of the optimal architecture and 2) the unnecessarily restrictive design of skip 

connections. We have evaluated UNet++ using six distinct biomedical imaging applications 

and demonstrated consistent performance improvement over various state-of-the-art 

backbones for semantic segmentation and meta framework for instance segmentation.
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APPENDIX A: Additional Measurements

TABLE VI:

Pixel-wise sensitivity, specificity, F1, and F2 scores for all six applications under study. Note 

that the p-values are calculated between our UNet++ with deep supervision vs. the original 

U-Net. As seen, powered by redesigned skip connections and deep supervision, UNet++ 

achieves a significantly higher level of segmentation performance over U-Net across all the 

biomedical applications under study.

EM Sensitivity Specificity F1 score F2 score

U-Net 91.21±2.18 83.55±1.62 87.21±1.88 89.56±2.06

UNet++ 92.87±2.08 84.94±1.55 88.73±1.79 91.17±1.96

p-value 0.018 0.008 0.013 0.016

Cell Sensitivity Specificity F1 score F2 score

U-Net 94.04±2.36 96.10±0.75 81.25±2.62 88.47±2.49

UNet++ 95.88±2.59 96.76±0.65 84.34±2.52 90.90±2.57

p-value 0.025 0.005 5.00e-4 0.004

Nuclei Sensitivity Specificity F1 score F2 score

U-Net 93.57±4.30 93.94±0.87 83.64±2.97 89.33±3.71

UNet++ 97.28±4.85 96.30±0.94 90.14±3.82 94.29±4.41

p-value 0.015 5.35e-10 6.75e-7 4.47e-4

Brain Tumor Sensitivity Specificity F1 score F2 score

U-Net 94.00±1.15 97.52±0.78 88.42±2.61 91.68±1.77

UNet++ 95.81±1.25 98.01±0.67 90.83±2.46 93.75±1.77

p-value 2.90e-5 0.042 0.005 7.03e-3

Liver Sensitivity Specificity F1 score F2 score

U-Net 91.22±2.02 98.48±0.43 86.19±2.84 89.14±2.37

UNet++ 93.15±1.88 98.74±0.36 88.54±2.57 91.25±2.18

p-value 0.003 0.046 0.010 0.006

Lung Nodule Sensitivity Specificity F1 score F2 score
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EM Sensitivity Specificity F1 score F2 score

U-Net 94.95±1.31 97.27±0.47 83.98±1.94 90.24±1.60

UNet++ 95.83±0.86 97.81±0.40 86.78±1.66 91.99±1.22

p-value 0.018 3.25e-3 1.92e-5 4.27e-3

APPENDIX B: Learning Curves
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Fig. 9: 
UNet++ enables a better optimization than U-Net evidenced by the learning curves for the 

tasks of neuronal structure, cell, nuclei, brain tumor, liver, and lung nodule segmentation. We 

have plotted the validation losses averaged by 20 trials for each application. As seen, UNet+

+ with deep supervision accelerates the convergence speed and yields the lower validation 

loss due to the new design of the intermediate layers and dense skip connections.
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Fig. 1: 
Evolution from U-Net to UNet++. Each node in the graph represents a convolution block, 

downward arrows indicate down-sampling, upward arrows indicate up-sampling, and dot 

arrows indicate skip connections. (a–d) U-Nets of varying depths. (e) Ensemble architecture, 

U-Nete, which combines U-Nets of varying depths into one unified architecture. All U-Nets 

(partially) share the same encoder, but have their own decoders. (f) UNet+ is constructed by 

connecting the decoders of U-Nete, enabling the deeper decoders to send supervision signals 

to the shallower decoders. (g) UNet++ is constructed by adding dense skip connections to 

UNet+, enabling dense feature propagation along skip connections and thus more flexible 

feature fusion at the decoder nodes. As a result, each node in the UNet++ decoders, from a 

horizontal perspective, combines multiscale features from its all preceding nodes at the same 

resolution, and from a vertical perspective, integrates multiscale features across different 

resolutions from its preceding node, as formulated at Eq. 1. This multiscale feature 

aggregation of UNet++ gradually synthesizes the segmentation, leading to increased 

accuracy and faster convergence, as evidenced by our empirical results in Section IV. Note 

that, explicit deep supervision is required (bold links) to train U-Nete but optional (pale 

links) for UNet+ and UNet++.
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Fig. 2: 
Training UNet++ with deep supervision makes segmentation results available at multiple 

nodes X0,j, enabling architecture pruning at inference time. Taking the segmentation result 

from X0,4 leads to no pruning, UNet++ (L4), whereas taking the segmentation result from 

X0,1 results in a maximally pruned architecture, UNet++ L1. Note that nodes removed 

during pruning are colored in gray.
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Fig. 3: 
Qualitative comparison among U-Net, wide U-Net, and UNet++; showing segmentation 

results for our six distinct biomedical image segmentation applications. They include various 

2D and 3D modalities. The corresponding quantitative scores are provided at the bottom of 

each prediction (IoU | Dice).
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Fig. 4: 
Comparison between U-Net, UNet+, and UNet++ when applied to the state-of-the-art 

backbones for the tasks of neuronal structure, cell, nuclei, brain tumor, and liver 

segmentation. UNet++, trained with deep supervision, consistently outperforms U-Net 

across all backbone architectures and applications under study. By densely connecting the 

intermediate layers, UNet++ also yields higher segmentation performance than UNet+ in 

most experimental configurations. The error bars represent the 95% confidence interval and 

the number of * on the bridge indicates the level of significance measured by p-value (“n.s.” 

stands for “not statistically significant”).

Zhou et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Complexity (size ∝ parameters), inference time, and IoU of UNet++ under different levels 

of pruning. The inference time is calculated by the time taken to process 10K test images on 

a single NVIDIA TITAN X (Pascal) GPU with 12 GB memory.
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Fig. 6: 
We demonstrate that our architectural design improves the performance of each shallower 

network embedded in UNet++. The embedded shallower networks show improved 

segmentation when pruned from UNet++ in comparison to the same network trained 

isolated. Due to no pruning, UNet++ L4 naturally achieves the same level of performance in 

isolated and embedded training modes.
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Fig. 7: 
UNet++ can better segment tumors of various sizes than does U-Net. We measure the size of 

tumors based on the ground truth masks and then divide them into seven groups. The 

histogram shows the distribution of different tumor sizes. The box-plot compares the 

segmentation performances of U-Net (black) and UNet++ (red) in each group. The t-test for 

two independent samples has been further performed on each group. As seen, UNet++ 

improves segmentation for all sizes of tumors and the improvement is significant (p < 0.05) 

for the majority of the tumor sizes (highlighted in red).
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Fig. 8: 
Visualization and comparison of feature maps from early, intermediate, and late layers along 

the top most skip connection for brain tumor images. Here, the dot arrows denote plain skip 

connection in U-Net and UNet+, while the dash arrows denote dense connections introduced 

in UNet++.
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TABLE I:

Ablation study on U-Nets of varying depths alongside with the new variants of U-Nets proposed in this work. 

U-Net Ld refers to a U-Net with a depth of d (Fig. 1(a–d)). U-Nete, UNet+, and UNet++ are the new variants 

of U-Net, which are depicted in Fig. 1(e–g). “DS” denotes deeply supervised training followed by average 

voting. Intersection over union (IoU) is used as the metric for comparison (mean±s.d. %).

Architecture DS Params EM Cell Brain Tumor

U-Net L1 X 0.1M 86.83±0.43 88.58±1.68 86.90±2.25

U-Net L2 X 0.5M 87.59±0.34 89.39±1.64 88.71±1.45

U-Net L3 X 1.9M 88.16±0.29 90.14±1.57 89.62±1.41

U-Net (L4) X 7.8M 88.30±0.24 88.73±1.64 89.21±1.55

U-Nete ✓ 8.7M 88.33±0.23 90.72±1.51 90.19±0.83

UNet+ X 8.7M 88.39±0.15 90.71±1.25 90.70±0.91

UNet+ ✓ 8.7M 88.89±0.12 91.18±1.13 91.15±0.65

UNet++ X 9.0M 88.92±0.14 91.03±1.34 90.86±0.81

UNet++ ✓ 9.0M 89.33±0.10 91.21±0.98 91.21±0.68
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TABLE II:

Summary of biomedical image segmentation datasets used in our experiments (see Section III-A for details).

Application Images Input Size Modality Provider

EM 30 96×96 microscopy ISBI 2012 [30]

Cell 354 96×96 Cell-CT VisionGate [31]

Nuclei 670 96×96 mixed Data Science Bowl

Brain Tumor 66,348 256×256 MRI BraTS2013 [32]

Liver 331 96×96 CT MICCAI 2017 LiTS

Lung Nodule 1,012 64×64×64 CT LIDC-IDRI [33]
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TABLE III:

Details of the architectures used in our study. Wider version of U-Net and V-Net are designed to have 

comparable number of parameters to UNet++ and VNet++.

Architecture Params X0,0

X0,4
X1,0

X1,3
X2,0

X2,2
X3,0

X3,1
X4,0

X4,0

U-Net 7.8M 32 64 128 256 512

wide U-Net 9.1M 35 70 140 280 560

V-Net 22.6M 32 64 128 256 512

wide V-Net 27.0M 35 70 140 280 560

Architecture Params X0,0–4 X1,0–3 X2,0–2 X3,0–1 X4,0

UNet+ 8.7M 32 64 128 256 512

UNet++ 9.0M 32 64 128 256 512

VNet+ 25.3M 32 64 128 256 512

VNet++ 26.2M 32 64 128 256 512
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TABLE V:

Redesigned skip connections improve both semantic and instance segmentation for the task of nuclei 

segmentation. We use Mask R-CNN for instance segmentation and U-Net for semantic segmentation in this 

comparison.

Architecture Backbone IoU Dice Score

U-Net resnet101 91.03 75.73 0.244

UNet++ resnet101 92.55 89.74 0.327

Mask R-CNN [12] resnet101 93.28 87.91 0.401

Mask RCNN++
† resnet101 95.10 91.36 0.414

†
Mask R-CNN with UNet++ design in its feature pyramid.
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