Skip to main content
. Author manuscript; available in PMC: 2021 Jun 1.
Published in final edited form as: IEEE Trans Med Imaging. 2019 Dec 13;39(6):1856–1867. doi: 10.1109/TMI.2019.2959609

TABLE IV:

Semantic segmentation results measured by IoU (mean±s.d. %) for U-Net, wide U-Net, UNet+ (our intermediate proposal), and UNet++ (our final proposal). Both UNet+ and UNet++ are evaluated with and without deep supervision (DS). We have performed independent two sample t-test between U-Net [5] vs. others for 20 independent trials and highlighted boxes in red when the differences are statistically significant (p < 0.05).

Architecture DS Params 2D Application
Architecture DS Params 3D Application
EM Cell Nuclei Brain Tumor Liver Lung Nodule
U-Net [5] X 7.8M 88.30±0.24 88.73±1.64 90.57±1.26 89.21±1.55 79.90±1.38 V-Net [28] X 22.6M 71.17±4.53
wide U-Net X 9.1M 88.37±0.13 88.91±1.43 90.47±1.15 89.35±1.49 80.25±1.31 wide V-Net X 27.0M 73.12±3.99
UNet+ X 8.7M 88.39±0.15 90.71±1.25 91.73±1.09 90.70±0.91 79.62±1.20 VNet+ X 25.3M 75.93±2.93
UNet+ 8.7M 88.89±0.12 91.18±1.13 92.04±0.89 91.15±0.65 82.83±0.92 VNet+ 25.3M 76.72±2.48
UNet++ X 9.0M 88.92±0.14 91.03±1.34 92.44±1.20 90.86±0.81 82.51±1.29 VNet++ X 26.2M 76.24±3.11
UNet++ 9.0M 89.33±0.10 91.21±0.98 92.37±0.98 91.21±0.68 82.60±1.11 VNet++ 26.2M 77.05±2.42

The winner in BraTS-2013 holds a “complete” Dice of 92% vs. 90.83%±2.46% (our UNet++ with deep supervision).