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Abstract

Background:  The aim of this study was to develop a functional aging index (FAI) that taps four body systems: sensory (vision and hearing), 
pulmonary, strength (grip strength), and movement (gait speed) and to test the predictive value of FAI for entry into care and mortality.
Method:  Growth curve models and Cox regression models were applied to data from 1,695 individuals from three Swedish longitudinal 
studies of aging. Participants were aged 45–93 at intake and data from up to eight follow-up waves were available.
Results:  The rate of change in FAI was twice as fast after age 75 as before, women demonstrated higher mean FAI, but no sex differences in 
rates of change with chronological age were identified. FAI predicted entry into care and mortality, even when chronological age and a frailty 
index were included in the models. Hazard ratios indicated that FAI was a more important predictor of entry into care for men than women, 
whereas it was a stronger predictor of mortality for men than women.
Conclusions:  Measures of biological aging and functional aging differ in their predictive value for entry into care and mortality for men and 
women, suggesting that both are necessary for a complete picture of the aging process across genders.
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Gerontologists are in agreement that using chronological age as the 
only metric for investigating the aging process can be problematic, 
but there is less agreement about what metric should be used to com-
plement chronological age. Leading contenders can generally be div-
ided into two categories: frailty and biological age. A frailty index 
is typically derived as the proportion of potential deficits exhibited 
by an individual in multiple domains (1–3). In contrast, measures of 
biological age take a more computational approach, focusing on mo-
lecular and phenotypic biomarkers of aging and combining them into 
single index (4–7). In general, the only consensus among proponents 
of these many possible aging metrics is that no single measure, or 
single composite measure, will capture all facets of the aging pro-
cess (4,8,9). The World Health Organization has championed an ap-
proach that focuses on healthy aging as a process of developing and 
maintaining functional abilities as opposed to simply the absence 
of disease (10). Indeed, Rockwood and Mitnitski (1) suggested that 

other indexes might advantageously focus on function and mobility, 
and in a separate analysis they reported that a functional scale, com-
posed of 12 measures of activities of daily living, was significantly 
better at predicting risk for entry into an institution than the frailty 
index (2). Moreover, evidence suggests that functional capacity can 
play a critical role in offsetting the effects of disease burden to in-
crease years of healthy aging (11). Our goal is to expand on these 
results by combining existing “functional biomarkers of aging” 
(12,13) to develop an index of functional aging that can comple-
ment existing measures of biological aging and frailty by focusing 
on functional capacity.

Functional biomarkers of aging tap relative functional capacity 
using methods that are minimally invasive and accessible to practi-
tioners and researchers without access to genotyping or extensive 
blood chemistries (12). In reviews of research on functional bio-
markers of aging, four domains of functioning are most common: 
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lung function, muscle strength, gait speed, and sensory acuity (9,13). 
Of these, only lung function is included in typical definitions of bio-
logical aging (5,6). Lung function, muscle strength, and gait speed 
may be included among the 30–40 items in a frailty measure, but 
only as categorical variables that indicate a vulnerability threshold, 
not quantified functioning (3). The aims of the current analyses were 
to use data from three Swedish longitudinal twin studies of aging to 
create a functional aging index (FAI) and to validate the index using 
criteria adapted from those proposed by Searle and colleagues (3) for 
frailty indexes: (a) candidate component measures must be associ-
ated with (functional) health status; (b) functioning on the measures 
should generally decline with age; (c) declines in functioning should 
not saturate too early in the aging process; (d) measures should 
tap a range of domains; and (e) in longitudinal studies, component 
measures must be consistent over measurement waves. In addition, 
utility of FAI was investigated in three ways. First, given the well-
documented sex differences in the experience of aging (14) and in 
measures of frailty (1), we examined sex differences in change tra-
jectories for FAI. Second, we examined the extent to which FAI com-
plemented chronological age in the prediction of entry into care and 
mortality. Third, we compared the effectiveness of FAI and an estab-
lished measure of frailty in predicting entry into care and mortality.

Method

Participants
Data from three Swedish twin studies were combined to create a 
sample that covered adulthood beginning at age 50 while oversam-
pling late adulthood (ages 70–93), as recommended for investiga-
tions of functional biomarkers (12). The three studies were each 
drawn independently from the Swedish Twin Registry and similar, 
often identical, means of identifying, recruiting, and assessing the 
participants were used: Swedish Adoption/Twin Study of Aging 
(SATSA (15)), Origins of Variance in the Oldest Old (OCTO-Twin 
(16)), and Aging in Women and Men: A  Longitudinal Study of 
Gender Differences in Health Behavior and Health among Elderly 
(GENDER (17)). The purpose of both OCTO-Twin and GENDER 
was to sample specifically twins in later adulthood. Supplementary 
Figure 1 demonstrates that the inclusion of data from OCTO-Twin 
and GENDER boosted sample size at ages 65 and above, providing 
some counterbalance to the effects of reduced sample size in late ages 

typical of longitudinal studies. In-person testing (IPT) took place in a 
location convenient to participants, including homes and long-term 
care clinics. In total, functional biomarkers were available from at 
least one testing occasion for 1,695 individuals: 740 from SATSA, 
478 from OCTO-Twin, and 477 from GENDER. As given in Table 
1, the study sample was majority female (58%), with a mean age 
at intake of 72.74 years (range: 45–93 years). Because of the dif-
ferent purposes of the three studies, there were sample differences in 
mean age at intake and thus proportion of women. In the combined 
sample, there were no sex differences in mean number of waves of 
participation (t(1,693) = 0.30, n.s.) or number of years of follow-up 
(t(1,693) = 0.97, n.s.).

Measures
Gait speed
Time to walk 3 m and return was recorded by trained research 
nurses using a handheld stopwatch.

Subjective sensory ability
Although visual acuity was measured using a reading test in all three 
studies, more than 90% achieved the highest possible score in all 
waves, resulting in too little variation to be useful as a measure of 
aging. Correlations between self-report measures of sensory abilities 
and measured acuity tend to be in the range of .50–.90 (18–20). 
Therefore, vision and hearing were measured via self-report, which 
is likely to reflect sensory ability in a broad array of situations. 
Participants were asked to rate their vision on a scale from 1 (ex-
cellent) to 5 (nearly blind or blind) and to rate their hearing on a 
scale from 1 (excellent) to 5 (nearly deaf or deaf). The scale ranged 
from 1 to 6 in OCTO-Twin and GENDER; responses were prorated 
to transform to 5-point scale. Research suggests that dual sensory 
impairment (both hearing and vision) is more debilitating than 
single sensory impairment and can be predictive of poorer health 
and increased risk of mortality (21). Therefore, similar to previous 
studies (18), the two measures were summed to create the subjective 
sensory ability measure with fairly normal distribution at all waves 
(Supplementary Figure 1).

Muscle strength
Grip strength was measured by a handgrip dynamometer or 
vigorimeter administered by a trained research nurse at the IPTs. 

Table 1.   Sample Demographics

Variable SATSA OCTO-Twin GENDER Full sample

N individuals 740 478 477 1,695
  Men 304 167 240 711
  Women 436 311 237 984
Age range at intake 45–86 79–93 70–81 45–93
Number of waves 8 5 3 8
Mean age at intake (SD) 65.02 (9.14) 82.96 (2.59) 74.46 (2.63) 72.74 (9.83)
  Men 63.87 (8.57) 82.63 (2.46) 74.49 (2.66) 71.86 (9.60)
  Women 65.82 (9.44)a 83.14 (2.65)a 74.43 (2.61) 73.37 (9.95)a

Mean # waves (SD) 3.95 (2.38) 2.67 (1.50) 2.24 (0.86) 3.11 (1.97)
  Men 4.00 (2.37) 2.71 (1.46) 2.20 (0.86) 3.09 (1.95)
  Women 3.92 (2.39) 2.65 (1.53) 2.27 (0.86) 3.12 (1.99)
Mean yrs. follow-up (SD) 12.31 (8.05) 5.35 (2.73) 6.57 (1.93) 8.73 (6.45)
  Men 12.19 (8.03) 4.99 (2.64) 6.43 (1.99) 8.55 (6.38)
  Women 12.40 (8.07) 5.54 (2.75)a 6.71 (1.86) 8.86 (6.50)

aDifference between men and women is significant at p < .05.
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In SATSA, the dynamometer was used through wave 8; in the re-
maining SATSA waves and all OCTO-Twin and GENDER waves, 
a vigorimeter was used. Differences between the two tools are scale 
and ease of use for older adults. Overlapping data on the two meas-
ures in a sample of 45 adults provided data for creating a trans-
formation equation; thus all data were transformed to dynamometer 
units. Participants made six attempts (three with each hand) and the 
maximum score (in kilogram) was considered as the participant’s 
grip strength score.

Lung function
Lung function was tested on portable spirometers with subjects in 
seated position and their nasal passages blocked with nose clips. Two 
trials of peak expiratory flow (PEF) were completed and data from 
the best trial were used in the present analyses. In SATSA, forced ex-
piratory volume in the first second (FEV1) was assessed instead of 
PEF at IPT2. As both measures were available from all other waves, 
the data were used to create a linear transformation equation and 
FEV1 at IPT2 was translated to PEF units.

Functional aging index
Methods for combining biomarkers into a composite measure of bio-
logical age vary (6). Frailty indexes typically rely on unit weighting, 
particularly because other weighting methods such as factor analysis 
can limit generalizability by producing weights specific to the sample 
(1,2,5). Correlations among the four measures and the results of 
factor analysis at each wave can be found in Supplementary Table 
1. Correlations among items ranged from .11 to .44 across waves. 
Factor analysis identified a single factor at each wave that explained 
40%–43% of the variance, with factor loadings ranging from .36 to 
.78 across waves. For these reasons, we chose to use unit weighting 
and sum the four domain variables to create the functional bio-
logical age composite. Before calculation of FAI, grip strength was 
regression-corrected for sex and PEF was corrected for body volume 
through dividing it by the individual’s squared height in meters (22). 
The four variables were standardized separately based on means 
and standard deviations at intake to avoid issues of measurement 
variance (5), and grip strength and PEF were reverse scored to en-
sure that higher scores indicated poorer performance. Finally, the 
composite score was translated to the T-score metric (mean = 50, 
SD = 10); higher scores on FAI indicate poorer functioning.

Frailty
A 42-item Rockwood-based frailty index (FI) has previously been 
calculated for the SATSA sample and shown to predict mortality 
(23). The index includes indications of illnesses, self-reported health, 
and activities of daily living, as well as self-reported vision and 
hearing. For the purpose of these analyses, a 40-item scale was cre-
ated that did not include the vision and hearing items, to ensure no 
definitional overlap between FI and FAI. A similar frailty index was 
created for the OCTO-Twin and GENDER samples using a largely 
overlapping set of 39 and 42 items, respectively (see Supplementary 
Table 2 for a list of items used to create the frailty indexes). Relying 
on the proportion of deficits observed reduces the impact of slight 
differences in the number of items used to create the frailty indexes 
(1,2).

Mortality
Mortality data retrieved from the Swedish National Death Registry 
on February 16, 2018 were used to determine survival and age at 

death, as appropriate. Of the 1,695 participants, 700 (41%) had 
died.

Entry into care
At each wave, participants were asked where they currently lived and 
responses were dichotomized into those living in their own home or 
apartment and those living in a care situation such as elder home or 
long-term care. Two variables were created for the use in regression 
analyses: last known residential status (at home vs in care) and age 
at which they last reported living at home. These measures provided 
a rough estimate of age of entry into care. Of the 1,695 participants, 
242 (14.3%) had entered into care at the time of their last contact 
with study personnel: 83 men and 159 women (chi-square = 6.87, 
df = 1, p < .01).

Statistical Method
Latent growth curve model
An age-based latent growth curve model (LGCM) was used to esti-
mate trajectories of change with age in the individual functional bio-
markers and the resulting composite FAI (24,25). To examine the age 
trajectories in the component biomarkers of FAI, a two-slope LGCM 
was applied to the data (24,26): one linear slope before the centering 
age and a separate linear slope after the centering age. Comparison 
of LGCMs centered at different ages (65, 70, 75, 80, 85) indicated 
that centering the model at age 75 provided the best fit to the data, 
comparable to results reported for a similar measure in SATSA alone 
(27). The parameter estimates were obtained using PROC Mixed in 
SAS 9.4 and models were corrected for twinness by estimating both 
within-pair and between-pair variance in the random effects.

Survival model
Survival models were used to investigate the extent to which FAI 
could predict years to entry into care and years to death. Cox pro-
portional hazards models were run in PROC PHREG in SAS 9.4. 
Comparing models predicting entry into care and mortality with and 
without FAI and with and without FI provided a test of the ability 
of FAI to add significantly to the prediction of entry into care and 
mortality above chronological age, sex, and frailty. Models were cor-
rected for twinness. Thirty-five participants (11 men and 24 women) 
were already living in a long-term care facility at the intake wave 
and thus were not included in the survival analysis of entry into care.

Results

Components of FAI
LGCMs were used to demonstrate two criteria: functioning on the 
measures should generally get worse with age and changes in func-
tioning should not saturate too early in the aging process (3). Table 
2 presents the results of comparing the one-slope LGCM to the 
two-slope LGCM for all four component measures of FAI. Nested 
LGCM can be compared using a likelihood ratio test (LRT), which 
is the difference in the model fit statistic (log likelihood) for the two 
models. The results in Table 2 demonstrate that all four component 
measures showed significant within-person change with age. Second, 
for all four measures, the two-slope model provided an improved 
fit to the data over the one-slope model. Aging trajectories for each 
biomarker are presented in Supplementary Figure 2. Finally, slope 2 
was equal to or greater than slope 1 for all four measures, indicating 
that none of the measures had saturated too early in the aging pro-
cess. The two-slope model also provided the best fit to the data for 
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FAI (LRT = 192.1, df = 7, p < .01), with a significant increase in slope 
after age 75.

Sex Differences in FAI
Sex differences in the LGCM for FAI were tested at two levels: fixed ef-
fects (sample means) and random effects (variance around the sample 
means). Three nested LGCMs were compared: (a) the two-slope 
model with no sex effects, (b) the two-slope model with sex effects 
added in the fixed effects, and (c) the two-slope model with sex effects 
added in both fixed and random effects. Comparison of model 2 (log-
likelihood = 37,624.3) versus model 1 (log-likelihood = 37,674.1) in-
dicated significant sex differences in fixed effects (LRT = 49.8, df = 3, 
p < .01) and comparison of model 3 (log-likelihood  =  37,551.0) 
versus model 2 indicated significant sex differences in random effects 

(LRT = 73.3, df = 13, p < .01). The estimated aging trajectories for 
fixed and random effects for men and women are presented in Figure 
1. Mean level of FAI was significantly higher for women than men at 
the centering age (p < .001); however, there were no significant sex 
differences in rates of change in FAI with age before or after the cen-
tering age (Figure 1a). Incorporating twinness in the LGCM means 
that both within-pair and between-pair variances are estimated. As 
shown in Figure 1b, variances increased with age for both sexes, but 
the increase is significantly greater for men than for women. Greater 
increases in within-pair variance suggest increasing unique environ-
mental influences on FAI with age.

Predicting Entry into Care and Mortality
Two Cox survival models were compared for each outcome vari-
able: model 1 included age at intake, sex, and age at intake × sex and 
model 2 added FAI and FAI × sex. Model fit statistics for each model 
are presented in Table 3. Comparing the two models provided a test 
of the predictive value of FAI in addition to age: results indicated 
that FAI contributed significantly to the prediction of entry into 
care (LRT = 17.71, df = 2, p < .01) and the prediction of mortality 
(LRT = 37.02, df = 2, p < .01) in the models that included chrono-
logical age as well. Hazard ratios for each predictor estimated by 
model 2 are presented in the top half of Table 4; significant hazard 
ratios are in bold. For the prediction of both entry into care and 
mortality, hazard ratios for FAI were significant for both men and 
women. The 95% confidence intervals indicate that hazard ratio 
of FAI for entry into care for men (1.043) was significantly greater 
than the hazard ratio for women (1.019). In contrast, in the predic-
tion of mortality the hazard ratio of FAI for women (1.039) was 
significantly great than the hazard ratio for men (1.019) (Survival 
models that included individual Bayes estimates of intercept and 
slope from the latent growth curve of FAI in place of FAI at intake 
showed that results for FAI-intercept were no different from FAI 
at intake and adding FAI-slope to the model did not significantly 
improve model fit).

Complementing Frailty
Frailty and FAI at intake were correlated 0.48. Two additional re-
gression models were completed to examine the role of FAI vis-à-vis 
frailty in predicting entry into care and mortality, and the model fit 
statistics are also presented in Table 3. Model 3 included age, sex, 
age × sex, FI, and FI × sex. In model 4, FAI and FAI × sex were added 
to model 3.  Comparing the two models tested whether FAI com-
plemented chronological age and frailty in the prediction of entry 
into care and mortality. Model comparisons indicate that FAI added 
significantly to the prediction of both entry into care (LRT = 13.38, 
df = 2, p < .01) and mortality (LRT = 41.81, df = 2, p < .01), even 
when both age and frailty were included in the model. Hazard ratios 
for model 4 are reported in the bottom half of Table 4. Similar to the 

Figure 1.  (a) Aging trajectories for functional aging index (FAI) estimated from 
the latent growth curve model: women versus men. (b) Aging trajectories for 
within-twin pair and between-twin pair variance estimated from the latent 
growth curve model: women versus men.

Table 2.   Results of Latent Growth Curve Models of Components of Functional Aging Index

Variable LRT (df) Intercept Slope 1 Slope 2

Gait speed 366.9 (7)** –0.28 (0.02)** 0.02 (0.002)** 0.09 (0.004)**
Grip strength 44.1 (7)** –0.01 (0.01) 0.02 (0.001)** 0.02 (0.001)**
PEF 91.6 (7)** –0.02 (0.04) 0.02 (0.002)** 0.06 (0.003)**
Sensory 102.4 (7)** –0.12 (0.03)* 0.02 (0.002)** 0.04 (0.003)**

Note: LRT = likelihood ratio test of one-slope model versus two-slope model.
*p < .05; **p < .01.
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results for FAI alone (model 2), sex differences in the predictive value 
of FAI were evident for both entry into care and mortality. Again, the 
95% confidence intervals indicate that hazard ratio of FAI for entry 
into care for men (1.042) was significantly greater than the hazard 
ratio for women (1.013), which was not significantly different from 
zero in this model. In contrast, in the prediction of mortality the 
hazard ratio of FAI for women (1.043) was significantly great than 
the hazard ratio for men (1.023), even when both age and frailty 
were included in the model.

Discussion

The aim of the current analyses was to develop and test a composite 
measure of functional aging to complement measures of frailty and 
biological age. Similar measures have been used in previous research 
(18,22,28,29); our purpose was to apply the conceptual approaches 
common to creating composite measures of frailty and biological 
age to the creation of an index of functional biomarkers of aging. 
The FAI was defined as the sum of standardized measures of gait 
speed, grip strength, lung function, and subjective sensory function. 
Latent growth curve modeling was used to validate the component 
functional biomarkers and then Cox survival models were used to 
examine the utility of the resulting index.

Validation of Components of FAI
Criteria for validating measures of frailty and biological age have 
evolved as the research on these measures has developed (3,12,30). 
We adapted a set of criteria proposed for frailty indexes (3) to es-
tablish that FAI meets generally accepted criteria for composite 

measures of the aging process. First, reviews of functional bio-
markers of aging consistently identified the four measures included 
in FAI as strongly associated with functional health outcomes (9,13). 
Second, functioning on the measures should generally decline with 
age. Cross-sectional data can confound age and cohort and thus age 
correlations can tap cohort differences in functioning. In the cur-
rent analyses, age-based latent growth curve modeling allowed us 
to examine within-person change with age in the functional bio-
markers. The results indicated significant within-person increases 
in functional difficulties for all four biomarkers. Third, for all four 
functional biomarkers, the rate of change after age 75 was equal 
to or greater than the rate of change before age 75, demonstrating 
that none of the components saturated too early. Fourth, measures 
should tap a range of domains. Choice of components in the current 
analyses was based on reviews of research on functional biomarkers 
(9,13) and research demonstrating that these domains are associated 
with functional and cognitive aging outcomes (18,22). To satisfy the 
final criterion that these component measures must be consistent 
over measurement waves, we chose straightforward physical meas-
ures and corrected for any changes in instrumentation over time.

Utility of FAI
In the second part of the analyses, utility of the resulting FAI was 
tested in three ways: analysis of sex differences, complementing 
chronological age in prediction of entry into care and mortality, and 
investigation of its complementary role with an established frailty 
index. Sex differences in the experience of aging should be reflected 
in sex differences in age change trajectories in FAI. Men tend to have 
earlier and more compressed histories of major illnesses and dis-
ability before death, whereas women live longer, have more health 

Table 3.  Model Fit (–2LL) for Cox Survival Models With Functional Aging Index (FAI) and Frailty Index (FI) Predicting Entry Into Care and 
Mortality

Model Number of parameters Entry into care Mortality

1. Age, sex, age × sex 3 1,572.39 5,511.63
2. Age, sex, age × sex, FAI, FAI × sex 5 1,554.68a 5,474.61a

3. Age, sex, age × sex, FI, FI × sex 5 1,563.94 5,511.32
4. Age, sex, age × sex, FI, FI × sex, FAI, FAI × sex 7 1,550.57b 5,469.52b

aModel fit is significantly different from model 1 at p < .01.
bModel fit is significantly different from model 3 at p < .01.

Table 4.  Hazard Ratios Resulting From Cox Survival Models to Predict Entry Into Care and Mortality (Significant Odds Ratios Are in Bold)

Entry into care Mortality

Predictor Hazard ratio 95% CI Hazard ratio 95% CI

FAI (model 2)     
  Age at intake: Men 1.136 1.097, 1.177 1.043 1.026, 1.060
  Age at intake: Women 1.117 1.086, 1.149 1.002 0.983, 1.022
  FAI: Men 1.043 1.023, 1.064 1.019 1.009, 1.030
  FAI: Women 1.019 1.001, 1.036 1.039 1.025, 1.053
FAI and frailty (model 4)     
  Age at intake: Men 1.135 1.092, 1.179 1.044 1.026, 1.063
  Age at intake: Women 1.111 1.079, 1.143 1.006 0.984, 1.027
  FAI: Men 1.042 1.021, 1.063 1.023 1.013, 1.033
  FAI: Women 1.013 0.995, 1.031 1.043 1.027, 1.059
  Frailty: Men 0.952 0.770, 1.564 0.938 0.824, 1.370
  Frailty: Women 1.106 1.025, 1.378 1.023 0.939, 1.265
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complaints across the life course, and have higher prevalence of 
chronic disabling but not fatal diseases later in life (14,31). As a re-
sult, women tend to demonstrate more frailty (32) and “older” bio-
logical age (33). In the current analyses, latent growth curve models 
demonstrated significantly higher FAI for women compared with 
men, indicating poorer functioning for women than men. Individual 
differences in FAI increased with age for both sexes, but variance 
increased significantly more for men than for women, particularly 
after age 75. This sex difference in age trajectories for variance likely 
reflects the sex differences in both survival and illness histories: men 
who survive to late old age exhibit more individual differences in FAI 
than women of the same age range.

A primary criterion for any composite measures of aging is that it 
should complement chronological age in the prediction of mortality 
(12,30). Hazard models indicated that FAI added to the prediction of 
both entry into care and mortality in addition to chronological age 
and sex. Sex differences were evident in the role of FAI for the pre-
diction of both entry into care and mortality: the hazard ratio of FAI 
for entry into care was higher for men than women, but the hazard 
ratio for mortality was higher for women than for men. Thus, for 
every unit increase in FAI, men had a 4.3% increased risk of entry 
into care whereas women had a 1.9% increased risk. For mortality, a 
one-unit increase in FAI resulted in a 3.9% increased risk for women 
but only a 1.9% increased risk for men. Single people are more likely 
to be in care and older women are more likely to be single (wid-
owed or divorced), so significantly more women than men in the 
full sample were in care (16.3% vs 11.7%). Because men were more 
likely than women to be married (68.7% vs 43.6%) and thus living 
with someone who could provide support, a higher level of disability 
was required for men before it would be necessary to enter into care.

Similar to results reported by Rockwood and colleagues (2) for 
a composite of activities of daily living, model comparisons demon-
strated that FAI contributed significantly to the prediction of entry 
care in addition to chronological age. Moreover, in the model that 
included frailty, the hazard ratio of FAI for entry into care was sig-
nificant only for men, whereas the hazard ratio of frailty was sig-
nificant only for women. Clearly, FAI and FI are tapping aspects of 
the aging process that differ for men and women, in relation to the 
different experience of aging for men and women (14,31). Evidence 
suggests that acute illnesses (eg, cardiovascular disease and stroke) 
are more common for men, and these illnesses will have a dramatic 
impact on functional abilities, triggering entry into care (34,35). In 
contrast, women are more likely to experience a gradual increase in 
chronic illnesses that result in increased frailty, as measured by the 
frailty index, and eventually triggering entry into care as the number 
of conditions accumulates with age (14).

Limitations
Limitations include many of the statistical assumptions common to 
structural equation models. The data are assumed to be missing at 
random and the sample is assumed to be relatively homogeneous. As 
one focus of the current analysis was sex differences, it is important 
to note that patterns of participation did not differ significantly for 
men and women. As with any longitudinal sample, attrition occurred 
in these samples. However, using an age-based growth curve model 
instead of a time-based model allowed us to maximize power, espe-
cially for individuals with more participation waves. Even though the 
samples were representative of the population at intake, nonrandom 
dropout through the course of the longitudinal studies results in 
increasingly select samples of adults who are healthy enough to 

participate. However, inclusion of the OCTO-Twin and GENDER 
studies allowed us to oversample late adulthood and thus reduce the 
impact of selective survival. In addition, in all three studies, research 
nurses visited the participants at their current residence; therefore, 
data collection could continue even after entry into care. As a result, 
wave-to-wave dropout in these studies was quite low (about 8%), 
but dropout accumulates across waves. Consequently, our analyses 
have likely underestimated the extent of change with age. Finally, 
our estimate of age of entry into care was inexact: we were only able 
to track change in living situation from one wave to the next but did 
know have exact age or date of entry into care, which introduces a 
certain amount of measurement error into prediction of entry into 
care.

Conclusions

FAI was designed to tap functional biomarkers of aging to comple-
ment existing measures that focus on medical health, such as frailty 
and biological age (12). There is general agreement among aging 
researchers that no single measure, or single composite measure, 
can capture all facets of the aging process (4,8,9). Indeed, the cur-
rent analyses indicated that FAI and a standard frailty index have 
different predictive value for men and women for entry into care, 
suggesting that each composite focuses on different facets of the 
aging process and that both are necessary for a complete picture 
of the aging process across genders. Thus, although FAI, frailty, or 
biological age provide more information about processes of aging 
that can be captured by the passage of time (ie, chronological age), 
they focus on different facets of the process. Investigations have con-
firmed the validity of these separate dimensions of disease status and 
functional limitations (36). Measures of frailty and biological age 
take a comprehensive approach to general disease status, quantifying 
a “nonspecific state of increasing risk,” that reflects multisystem 
physiological change (1,6). In contrast, the FAI presented here em-
phasizes changes that will directly affect mobility and independence 
and thus can provide improved prediction of entry into care (12). To 
the extent that the separate dimensions of disease status and func-
tional status exist on a pathway from physiological deficits to overall 
health status (10,12,36,37), indexes like FAI that focus on functional 
status will also contribute to the prediction of mortality.
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Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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