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ABSTRACT Working mechanisms of CRISPR-Cas systems have been intensively stud-
ied. However, far less is known about how they are regulated. The histone-like
nucleoid-structuring protein H-NS binds the promoter of cas genes (Pcas) and sup-
presses the type I-E CRISPR-Cas system in Escherichia coli. Although the H-NS paral-
ogue StpA also binds Pcas, its role in regulating the CRISPR-Cas system remains
unidentified. Our previous work established that E. coli is able to take up double-
stranded DNA during natural transformation. Here, we investigated the function of
StpA in regulating the type I-E CRISPR-Cas system against natural transformation of
E. coli. We first documented that although the activated type I-E CRISPR-Cas system,
due to hns deletion, interfered with CRISPR-Cas-targeted plasmid transfer, stpA inac-
tivation restored the level of natural transformation. Second, we showed that inacti-
vating stpA reduced the transcriptional activity of Pcas. Third, by comparing transcrip-
tional activities of the intact Pcas and the Pcas with a disrupted H-NS binding site in
the hns and hns stpA null deletion mutants, we demonstrated that StpA activated
transcription of cas genes by binding to the same site as H-NS in Pcas. Fourth, by ex-
pressing StpA with an arabinose-inducible promoter, we confirmed that StpA ex-
pressed at a low level stimulated the activity of Pcas. Finally, by quantifying the level
of mature CRISPR RNA (crRNA), we demonstrated that StpA was able to promote the
amount of crRNA. Taken together, our work establishes that StpA serves as a tran-
scriptional activator in regulating the type I-E CRISPR-Cas system against natural
transformation of E. coli.

IMPORTANCE StpA is normally considered a molecular backup of the nucleoid-
structuring protein H-NS, which was reported as a transcriptional repressor of
the type I-E CRISPR-Cas system in Escherichia coli. However, the role of StpA in
regulating the type I-E CRISPR-Cas system remains elusive. Our previous work
uncovered a new route for double-stranded DNA (dsDNA) entry during natural
transformation of E. coli. In this study, we show that StpA plays a role opposite
to that of its paralogue H-NS in regulating the type I-E CRISPR-Cas system
against natural transformation of E. coli. Our work not only expands our knowl-
edge on CRISPR-Cas-mediated adaptive immunity against extracellular nucleic ac-
ids but also sheds new light on understanding the complex regulation mecha-
nism of the CRISPR-Cas system. Moreover, the finding that paralogues StpA and
H-NS share a DNA binding site but play opposite roles in transcriptional regula-
tion indicates that higher-order compaction of bacterial chromatin by histone-
like proteins could switch prokaryotic transcriptional modes.
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To cope with environmental stresses, bacteria and archaea acquire exogenous genes
from genomes and plasmids of other strains via horizontal gene transfer (HGT)

(1–3). Simultaneously, prokaryotes are challenged by invasion of harmful genes. To
reduce the risk of acquisition of exogenous DNA, prokaryotes have evolved both innate
immunity that is mediated by restriction-modification systems (4) and adaptive immu-
nity that is mediated by CRISPR-Cas systems (5–13). The CRISPR-Cas system, consisting
of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated (cas) genes, is widespread in genomes of prokaryotes (5, 6, 14–17). Accord-
ing to the organization of effector modules, CRISPR-Cas systems are grouped into two
classes, and each class is further divided into three types (5, 18). Class 1 CRISPR-Cas
systems (including types I, III, and IV) are considered the ancestral system, whereas class
II CRISPR-Cas systems (including types II, V, and VI) are most widely applied in genome
editing of a wide range of organisms (6). In general, the CRISPR-Cas-mediated adaptive
immunity involves three processes (adaptation, expression, and interference) (6). Two
conserved proteins, Cas1 and Cas2, mediate the adaptation process during which new
spacers are formed in the CRISPR region near the leader sequence (19–21). In the
expression process, a group of Cas proteins are produced, accompanied by transcrip-
tion of the CRISPR array into the precursor CRISPR RNA (pre-crRNA), which is subse-
quently processed into small mature crRNA by CasE or RNase III (10, 22). The interfer-
ence process involves crRNA-directed cleavage of the targeted DNA by Cas nucleases
within the ribonucleoprotein complex composed of Cas proteins and crRNA (12, 14,
23–27).

Escherichia coli K-12 is equipped with a type I-E CRISPR-Cas immune system that
consists of eight cas genes (cas1, cas2, cas3, and casABCDE) and two CRISPR arrays
(CRISPR I and CRISPR II) (10, 16, 28). Genes casABCDE encode Cas proteins that form the
Cascade complex. The Cascade-Cas3 complex and the RecBCD nuclease generate
single-stranded DNAs (ssDNAs) that are used for naive and primed adaptation (29–32).
Protospacer-adjacent motif (PAM)-containing ssDNA strands are captured by Cas1 and
Cas2, which then anneal complementary strands (20, 21, 33, 34). Prespacer precursors
are trimmed for integration, with the mature PAM-derived end being integrated at the
spacer side of the CRISPR, followed by duplicating repeats as a result of filling of gaps
(35, 36). The CRISPR array is transcribed into pre-crRNA and further processed into
mature crRNA by CasE (10). Together with crRNA, CasABCDE form a CRISPR ribonucle-
oprotein (crRNP) complex which can be directed to the targeted DNA region (10, 37,
38). The conformational changes in the Cascade complex lock the R loop, which is
formed by hybridization of the crRNA and the target strand of the double-stranded
DNA (dsDNA), leading to the nontarget strand being replaced (39–42). Then, the
nuclease Cas3, which is stabilized by the heat shock protein 90 homologue HtpG (43),
is recruited to the target strand to cleave DNA (39, 44).

The working mechanisms of CRISPR-Cas systems have been intensively studied
(6–15, 19–27, 29–44) whereas less is known about the mechanisms regulating them
(45). Normally, the type I-E CRISPR-Cas system of E. coli is suppressed (28, 46). It can be
activated under certain physiological conditions (i.e., in medium supplemented with
glucose) and confer immunity to bacteriophage P1 (47). Expression of the type I-E
CRISPR-Cas system is regulated by multiple regulators in E. coli and Salmonella enterica
(28, 46–48). H-NS, a histone-like nucleoid-structuring protein that inhibits gene tran-
scription, represses expression of cas genes by binding to the upstream region of the
promoter of the casABCDE operon (Pcas) (28). It also reduces the amount of crRNA
through inhibiting transcription of the CRISPR array and limiting pre-crRNA processing
due to insufficient CasE (28). H-NS also partially suppresses transcription of cas3 (49),
which encodes the nuclease for DNA cleavage (50, 51). Temperature of incubation is
important to maintain a sufficient amount of Cas3 for DNA interference. Incubating the
hns mutant at 30°C improves the immunity conferred by the CRISPR-Cas system against
� phage infection (49). Overexpression of LeuO, the LysR-type regulator, can activate
transcription of casABCDE through antagonizing H-NS-mediated transcriptional repres-
sion and increase the amount of crRNA (46). The carbon catabolism regulator cAMP-
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cAMP receptor protein (cAMP-CRP) complex negatively regulates type I-E CRISPR-Cas
system by competing with LeuO for the binding site of Pcas (47) whereas CRP plays an
opposite role in Pectobacterium atrosepticum (52). It activates the type I-F CRISPR-Cas
system in that species.

The H-NS paralogue StpA, considered a backup for H-NS (53), can fill the role of H-NS
in repressing transcription of genes when H-NS is absent (54, 55). At the transcriptional
level, H-NS and StpA can suppress expression of each other (54). In some cases, StpA
and H-NS can serve as transcriptional activators and stimulate transcription of the
maltose regulon and crp via the stringent response regulator ppGpp (56, 57). Normally,
H-NS and StpA bind to the same region of promoters, and StpA has a 4- to 6-fold-
greater affinity for DNA than H-NS (58).

As a main driving force for evolution, natural transformation has been found
widespread in prokaryotes (59). In general, during natural bacterial transformation, a
single-stranded DNA (ssDNA) from extracellular dsDNA is pulled into the cytoplasm via
a highly conserved DNA uptake machinery that is assembled in the cell membrane
(59–61). CRISPR-Cas systems limit ssDNA uptake during natural transformation of both
Streptococcus pneumoniae and Neisseria meningitidis (62, 63). Our previous work has
shown that stationary-phase E. coli is able to develop natural competence and allows
dsDNA to enter the cytoplasm (64–67). Natural transformation of E. coli is regulated by
the transcriptional regulators RpoS and cAMP-CRP complex (66, 68). Although CRISPR-
Cas-mediated immunity to bacteriophage infection has been well documented in E. coli
(10, 47), the potential effect of the CRISPR-Cas system on limiting dsDNA uptake during
natural transformation has not yet been investigated. It has been demonstrated that
StpA is able to bind the promoter of the cas operon in E. coli (28). However, the role of
StpA in regulating expression of the cas genes remains unknown. In this study, we
explored the potential role of StpA in regulating the type I-E CRISPR-Cas system of E.
coli and CRISPR-Cas-mediated immunity to dsDNA transfer during natural transforma-
tion. Our data showed that StpA played a role opposite to that of H-NS: it served as an
activator in regulating the type I-E CRISPR-Cas system and enhanced immunity against
DNA transfer during natural transformation of E. coli.

RESULTS
StpA is required for the immunity against plasmids that is conferred by the

CRISPR-Cas system in an hns null mutant. H-NS suppresses expression of the type I-E
CRISPR-Cas system in E. coli (28). Although the H-NS paralogue StpA was shown to bind
the promoter of the cas operon (28), its role in regulating the type I-E CRISPR-Cas
system remains unexplored. We attempted to characterize the role of StpA in regulat-
ing the type I-E CRISPR-Cas system against natural transformation in E. coli. To this end,
we constructed stpA null mutants in hns-deficient and hns� E. coli strains. By using
�-Red-mediated recombineering, hns and stpA single- and double-deletion mutants
were constructed (see Fig. S1 in the supplemental material). Construction and genotype
examination of these mutants are shown in Fig. S1 and S2. A Western blot assay
showed that StpA was indeed absent in the hns stpA null mutant (Fig. S1D). Morphol-
ogies of constructed strains were observed under a phase-contrast microscope. Similar
to a previous observation (69), both hns and hns stpA null mutants were obviously
longer than their wild-type (WT) parent and the stpA null mutant (Fig. S2). The hns stpA
null mutant grew remarkably more slowly than the hns null mutant (Fig. S8A), in line
with previous reports (54, 70).

To evaluate the DNA interference by the type I-E CRISPR-Cas system, we constructed
the plasmid pCR1, which can be targeted by the CRISPR-Cas system of E. coli. To ensure
the sensitivity of pCR1 to the CRISPR-Cas system, the DNA fragment (CR1) with four
protospacer-adjacent motif (PAM)-containing DNA regions was chemically synthesized
and cloned into pUC57 (Fig. S3). DNA interference by the type I-E CRISPR-Cas system
was evaluated by levels of natural transformation (Fig. 1) and by the viability of
transformants after transformation (Fig. S9). Natural transformation was performed by
spreading the mixture of plasmid and the cell culture onto an LB plate containing 5%
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(wt/vol) agar (Fig. 1A). Levels of natural transformation were compared with those of
the CRISPR-Cas-targeted plasmid (pCR1) and nontargeted plasmid (pDsRED) carrying a
red fluorescence gene whose sequence cannot be recognized by the CRISPR-Cas
system in E. coli. Both pCR1 (GenBank accession number MT437282 and Addgene
plasmid repository catalog no. 154270 [https://www.addgene.org/154270/]) and pD-
sRED are derivatives of pUC19 (Table 1), and their sequences are available in the
supplemental material. With pDsRED as the donor plasmid, transformation efficiencies
of the stpA and hns null mutants and their WT parent were similar (�100 CFU/�g) (Fig.
1B). In contrast, with pCR1 as the donor plasmid, although the transformation efficiency
was not significantly reduced in the stpA null mutant with respect to that of the WT
strain, it was reduced by more than 200-fold in the hns null mutant (Fig. 1B). The results
demonstrate that activation of the type I-E CRISPR-Cas system in the hns null mutant
strongly inhibits plasmid transfer during natural transformation. We observed that
transformation of the hns stpA null mutant with pCR1 as the donor plasmid reduced the
level of transformation by less than 3-fold (Fig. 1B). Although stpA inactivation restored
transformation in the hns null mutant, the level of transformation in the hns stpA null
mutant was still lower than that in the WT strain, indicating that StpA is partially
responsible for activating CRISPR-Cas-mediated DNA interference in the hns mutant.

We analyzed DNA interference in transformants of the hns and hns stpA null mutants
after transformation. Growth rates of transformants of mutants and their wild-type
parent were evaluated. In liquid LB broth, no significant difference in cell growth was
observed in WT and the hns null mutant carrying either the CRISPR-Cas-targeted

FIG 1 Effect of stpA inactivation on natural transformation with CRISPR-Cas-targeted plasmid. (A)
Schematic representation of natural transformation of E. coli for evaluating the CRISPR-Cas-mediated
immunity against extracellular DNA. (B) Natural transformation was performed by spreading the mixture
of the 24-h-incubated E. coli culture and plasmid onto LB plates containing 5% (wt/vol) agar supple-
mented with ampicillin (100 �g ml�1). Levels of natural transformation with the CRISPR-Cas-targeted
plasmid pCR1 (pT) or nontargeted plasmid pDsRED (pNT) were measured in �hns, �stpA, �hns �stpA, and
WT strains. Cell viability of each transformant was measured (see Fig. S9 in the supplemental material).
Data are shown as means � standard deviations (n � 3). Statistical significance was determined using a
two-tailed Student’s t test (**, P � 0.01; ***, P � 0.005).
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plasmid pCR1 or the nontargeted plasmid pDsRED (Fig. S9A) whereas a significant
growth defect in LB broth was observed in the hns and hns stpA null mutants carrying
pCR1 compared with those carrying pDsRED (Fig. S9A). A growth defect was also
observed in the hns and hns stpA null mutants carrying pCR1 and grown on LB-agar
plates. By using drop plating and plate streaking methods, we showed that both the
hns and hns stpA null mutants carrying pDsRED grew well on plates, but the mutants
carrying pCR1 grew poorly under the same conditions (Fig. S9B and C). To quantify DNA
interference after natural transformation, plasmid loss was evaluated by counting the
number of viable cells having (ampicillin positive [Amp�]) or losing (Amp�) the
targeted plasmid. In both the hns and hns stpA null mutants carrying pCR1, the number
of Amp� viable counts in the overnight-grown culture was �1,000-fold smaller than
that of Amp� viable counts (Fig. S9D), suggesting that the targeted plasmid could have
suffered significant damage in these mutants. Together, these results clearly demon-
strate that StpA is required for CRISPR-Cas-mediated DNA interference in plasmid
transformation of E. coli.

TABLE 1 Strains and plasmids

Strain or plasmid Descriptiona Source or reference

Strains
MC4100 F� �� araD139 �(argF-lac)U169 rpsL150 relA deoC1 ptsF25 rbsR flbB5301 66
ZJUTCBB0015 MC4100 �stpA::cat, Cmr This study
ZJUTCBB0016 MC4100 �hns::kan, Kanr This study
ZJUTCBB0017 MC4100 �stpA::cat �hns::kan, Kanr Cmr This study
ZJUTCBB0018 MC4100 �stpA pGLO-Pcas-GFP This study
ZJUTCBB0019 MC4100 �hns pGLO-Pcas-GFP This study
ZJUTCBB0020 MC4100 �stpA �hns pGLO-Pcas-GFP This study
ZJUTCBB0021 MC4100 pGLO-Pcas-GFP This study
ZJUTCBB0022 MC4100 �hns pSUStpA pGLO-Pcas-GFP This study
ZJUTCBB0023 MC4100 �hns pSUHNS pGLO-Pcas-GFP This study
ZJUTCBB0024 MC4100 �hns pSU19 pGLO-Pcas-GFP This study
ZJUTCBB0025 MC4100 �stpA �hns pSUStpA pGLO-Pcas-GFP This study
ZJUTCBB0026 MC4100 �stpA �hns pSUHNS pGLO-Pcas-GFP This study
ZJUTCBB0027 MC4100 �stpA �hns pSU19 pGLO-Pcas-GFP This study
ZJUTCBB0028 MC4100 �hns pSUStpA pGLO-Pcas*-GFP This study
ZJUTCBB0029 MC4100 �hns pSUHNS pGLO-Pcas*-GFP This study
ZJUTCBB0030 MC4100 �hns pSU19 pGLO-Pcas*-GFP This study
ZJUTCBB0031 MC4100 �stpA �hns pSU-PBAD-stpA This study
ZJUTCBB0032 MC4100 �stpA �hns pSU-PBAD-hns This study
ZJUTCBB0033 MC4100 �stpA pSU-PJ23119-GFP This study
ZJUTCBB0034 MC4100 �hns pSU-PJ23119-GFP This study
ZJUTCBB0035 MC4100 �stpA �hns pSU-PJ23119-GFP This study
ZJUTCBB0036 MC4100 pSU-PJ23119-GFP This study

Plasmids
pKD46 Expressing Red recombinase, repA101(Ts) oriR101, Ampr 94
pCP20 Expressing FLP recombinase, repA101(Ts) pSC101 ori, Cmr, Ampr 94
pKD3 R6K � ori, Ts replicon, Cmr 94
pKD4 R6K � ori, Ts replicon, Kanr 94
pSU19 p15A replicon, Cmr Lab reserve
pSUStpA pSU19 derivative, stpA expressed with the original promoter, Cmr This study
pSUHNS pSU19 derivative, hns expressed with the original promoter, Cmr This study
pGLO-Pcas-gfp pGLO derivative, gfp expressed with Pcas, Ampr This study
pGLO-PrscA-gfp pGLO derivative, gfp expressed with PrscA, Ampr This study
pGLO-Pcas*-gfp pGLO-Pcas-gfp with mutated Pcas This study
pSU-PBAD-gfp pSU19 derivative, gfp expressed with PBAD, Cmr This study
pSU-PBAD-stpA pSU19 derivative, stpA expressed with PBAD, Cmr This study
pSU-PBAD-hns pSU19 derivative, hns expressed with PBAD, Cmr This study
pSU-PJ23119-gfp pSU19 derivative, gfp expressed with PJ23119 which is a constitutive promoter, Cmr Lab reserve
pUC57 pUC19 derivative, Ampr Lab reserve
pT/pCR1 pUC19 derivative, carrying a DNA fragment targeted by the type I-E CRISPR-Cas

system of E. coli, Ampr

This study

pNT/pDsRED pUC19 derivative, expressing red fluorescence protein, Ampr Lab reserve
pET28a-StpA-His pET28a derivative, StpA expressed by T7/lac promoter, Kanr This study
pET28a-HNS-His pET28a derivative, HNS expressed by T7/lac promoter, Kanr This study

aTs, temperature sensitive.
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To evaluate the potential effect of StpA on DNA interference during chemical
transformation, we compared transformation efficiencies in the hns and the hns stpA
null mutants. The CRISPR-Cas-targeted plasmid pCR1 transformed both the stpA null
mutant and its wild-type parent with a high efficiency (1 � 105 to 2 � 105 CFU/�g). In
contrast, it transformed the hns null mutant with an efficiency of �4 CFU/�g. Inacti-
vating stpA in the hns null mutant increased transformation efficiency by more than
10-fold, reaching �50 CFU/�g. Nevertheless, the efficiency of transformation with pCR1
was more than 1,000-fold lower than that with the nontargeted plasmid pDsRED in the
hns stpA mutant, reflecting that StpA weakly stimulated CRISPR-Cas-mediated DNA
interference during chemical transformation of the hns mutant.

StpA is required for transcription of cas genes in an hns null mutant. H-NS was
reported to be able to both suppress and activate gene expression (55, 56, 71) while
StpA serves as a backup for H-NS, fulfilling the role of H-NS when it is absent (54, 55).
Since deleting stpA remarkably reduced the activity of the CRISPR-Cas system against
natural transformation in the hns mutant (Fig. 1B), we suspected that H-NS and StpA
played opposite roles in regulating the type I-E system in E. coli. To test this, we
quantified transcription of the cas operon in E. coli strains with single or double
deletions of hns and stpA. We observed that inactivating stpA in an hns null mutant
further increased transcription of an H-NS-suppressed gene, bglG, by more than 5-fold
(Fig. 2A), and further decreased transcription of an H-NS-activated gene, malE, by about
7-fold (Fig. 2B). These results are in good accordance with previous reports (55, 56, 71).
Transcription of the cas operon was reported to be increased by inactivating hns (55,
56, 71). We also observed that transcription of a gene in the cas operon (casB) was
increased by more than 6-fold in an hns null mutant with respect to the level in the wild
type (Fig. 2C). However, transcription of casB was increased by only about 3-fold in the
hns stpA null mutant, about 2-fold lower than that in the hns null mutant (Fig. 2C). The
data clearly show that StpA is required for high-level transcription of the cas operon.

To further explore the role of StpA in regulating the type I-E CRISPR-Cas system, we
monitored transcription of the cas operon during cell growth by fusing the promoter
of the cas operon with the green fluorescent protein (GFP) gene (Pcas-gfp) (Fig. 3A and
Fig. S4A). Inactivation of hns was reported to relieve transcriptional repression of cas
genes (28). As expected, strong green fluorescence was observed in an hns null mutant
whereas it was much weaker in the WT parent (Fig. 3B). The H-NS-suppressed promoter
PrcsA was reported to be activated by mutating hns (72). We also observed that relative
intensities of green fluorescence with the transcriptional fusion construct of PrcsA-gfp
were remarkably higher in the hns and hns stpA null mutants than those in the stpA null
mutant and the WT strain (Fig. S11). We noticed that transcription of the cas operon
was low in the stpA null mutant (Fig. 3B), in line with the previous observation that
inactivation of stpA did not significantly affect transcription of cas genes (28). After 12
h of incubation in LB medium, green fluorescence was �3-fold lower in the hns stpA
null mutant than that in the hns null mutant (Fig. 3B), indicating that StpA played a
positive role in regulating the cas operon. In contrast, expression levels of GFP with a
constitutive promoter in the hns and hns stpA null mutant were not higher than those
in the stpA null mutant and WT (Fig. S12). A stimulation effect of StpA on transcription
of cas genes was more evident when cells were grown in M9 minimal medium.
Throughout incubation, relative intensities of green fluorescence were �3-fold lower in
the hns stpA null mutant than in the hns null mutant (Fig. 3C). Taken together, these
results clearly show that StpA activates transcription of cas genes in the absence of hns.

StpA activates transcription of cas genes by binding to the same site as H-NS
in the promoter of the cas operon. StpA often shares the same DNA binding site
(DBS) as H-NS in the wild-type cell. But DNA binding profiles of StpA were different in
wild-type and hns mutant cells (73). In vitro experiments showed that both H-NS and
StpA bound Pcas, and the corresponding DBS of H-NS in Pcas was predicted (28). We
asked whether H-NS and StpA bound to the same site in regulating the cas operon. To
confirm that H-NS suppressed the cas operon by binding to the predicted DBS, we
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replaced the four conserved A/T residues with G/C in the putative DBS and constructed
the promoter Pcas* (Fig. 4A and Fig. S5). Transcriptional activities of Pcas and Pcas* were
compared when H-NS was expressed from a multicopy-number plasmid (Fig. S6). By
using GFP as the reporter, we observed that activities of both Pcas and Pcas* were strong
in an hns null mutant carrying the empty vector pSU19 (Fig. 4B). Although expressing
H-NS on pSU19 reduced the activity of Pcas by 4.41-fold in the hns null mutant, it
reduced the activity of Pcas* by only 1.84-fold (Fig. 4B). Moreover, the activity of Pcas*
was higher than that of Pcas in both wild-type and stpA mutant cells (Fig. S15). These
results demonstrated that mutations in Pcas* relieved transcriptional suppression by
H-NS, indicating that H-NS indeed inhibited transcription of the cas operon by binding
to the predicted DBS.

FIG 2 Quantification of transcriptional levels of the cas operon in the absence of H-NS and/or StpA. To
quantify gene transcription, the cDNA was synthesized with RNA isolated from mutants (�stpA, �hns, and
�hns �stpA strains) and their wild-type parent. Relative expression levels of bgl (A), mal (B), and cas (C)
operons in these strains were measured with qPCR using 16S RNA as the reference. Primers used for qPCR
are listed in Table 2. Each column represents results from an average of 4 samples. Error bars denote
standard deviation. Statistical significance was determined using a two-tailed Student’s t test (***,
P � 0.005; ****, P � 0.001).
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Although expressing H-NS on pSU19 increased the natural transformability of the
hns stpA mutant to the level of the wild type, expressing StpA on pSU19 partially
restored the natural transformability of the hns stpA mutant (Fig. S13). The results
indicated that ectopic expression of H-NS fully, but overexpression of StpA slightly,
suppressed the DNA interference activity of the CRISPR-Cas system. In accordance with
the above observation, overexpression of StpA slightly suppressed the activity of Pcas

after 36 h of incubation. This result contradicts our previous observation that StpA

FIG 3 Effect of stpA inactivation on transcription of the cas operon. (A) The reporter plasmid pGLO-Pcas-
gfp was constructed by fusing the promoter of the cas operon (Pcas) with gfp to quantify the transcrip-
tional level of cas genes. (B) Expression levels of Pcas-gfp were measured in �hns, �stpA, �hns �stpA, and
WT strains that were grown in LB broth. (C) Expression levels of Pcas-gfp were measured in �hns, �stpA,
�hns �stpA, and WT strains that were grown in M9 minimal medium supplemented with 0.32% (wt/vol)
fructose as the carbon source. Dashed lines represent optical growth, and solid lines represent activity
of Pcas. All experiments were performed at 30°C with shaking at 180 rpm. Refer to supplemental material
for details about construction of mutants (�hns, �stpA, and �hns �stpA strains) (see Fig. S1 and Table S1
in the supplemental material) and the plasmid pGLO-Pcas-gfp (Fig. S4A). Data are shown as means �
standard deviations (n � 3).
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FIG 4 DNA binding site for transcriptional regulation by StpA and H-NS. Previous work has shown that
H-NS and StpA can bind to Pcas, and the DNA binding site (DBS) for H-NS was predicted. (A) The putative
DBS of H-NS/StpA was mutated by replacing the conserved sequence ATAAA to CGCAC. Pcas with a
disrupted DBS was named Pcas*. Refer to Fig. S5 in the supplemental material for details about plasmid
construction. (B) With the reporter GFP as an indicator, activities of Pcas and Pcas* were compared in the
hns null mutant that expressed StpA or H-NS from the multicopy-number plasmid pSU19 in LB broth.

(Continued on next page)

StpA Regulates the Type I-E CRISPR-Cas System Applied and Environmental Microbiology

July 2020 Volume 86 Issue 14 e00731-20 aem.asm.org 9

https://aem.asm.org


positively regulated the cas operon in the hns null mutant. A high concentration of
StpA was reported to block the accessibility of DNA and interfere with gene transcrip-
tion (74). We reasoned that the level of StpA expressed from both the genome and the
multicopy-number plasmid pSUStpA in the hns null mutant should be very high and
thus affect transcription of Pcas. To test whether StpA expressed at the physiological
level promoted transcription of the cas operon by binding to the DBS of Pcas, we
compared activities of Pcas and Pcas* in hns and hns stpA null mutants. In M9 medium
supplemented with fructose, we observed that after 24 h of incubation the activity of
Pcas was about 2-fold higher than that of Pcas* in the hns null mutant (Fig. 4C). Similar
differential activities of Pcas and Pcas* in the hns null mutant were observed in M9
medium supplemented with glucose (Fig. 4D) whereas activities of both Pcas and Pcas*
were similarly low in the hns stpA null mutant grown in M9 medium supplemented with
either fructose or glucose (Fig. 4C and D). These results reflect that StpA indeed
promotes the activity of Pcas by binding to the DBS of H-NS when it is expressed by a
single chromosomal copy of the stpA in the hns null mutant.

Expression of StpA at a low level activates transcription of the cas operon. Low
expression of StpA on the chromosome promoted the activity of Pcas (Fig. 2, 3, and 4C)
whereas high expression of StpA on a multicopy-number plasmid failed to stimulate
Pcas (Fig. 4B). This led us to consider whether expressing StpA at different levels yielded
different effects on Pcas. To test this, we controlled expression of StpA by using an
arabinose-inducible promoter (PBAD-stpA) on the plasmid (Fig. S7). The activity of Pcas

was evaluated when StpA was expressed at different levels in the hns stpA null mutant
grown in LB and M9 media (Fig. 5). We indeed observed that low concentrations of
arabinose (0.1 mM to 3 mM) induced weak expression of StpA (Fig. 5B and C), which
stimulated Pcas in LB medium (Fig. 5A). When 1 mM arabinose was added to the cell
culture, the activity of Pcas in the hns stpA null mutant expressing StpA by PBAD reached
the highest level, which was more than 2-fold higher than that in a strain carrying an
empty vector (Fig. 5A). We also observed that even when no arabinose was added into
the LB medium, the activity of Pcas in the strain containing PBAD-stpA on the vector was
still obviously higher than that in the strain carrying the empty vector (Fig. 5A),
indicating that leaky expression of StpA was sufficient for activating transcription of the
cas operon in LB medium, whereas the activity of Pcas was gradually decreased by
further increasing the concentration of arabinose (Fig. 5A). In contrast, a high concen-
tration of arabinose (i.e., 10 mM) remarkably increased the amount of StpA expressed
by PBAD (Fig. 5B and C) but reduced the activity of Pcas to a level similar to that with the
empty vector (Fig. 5A). To test the effect of low expression of StpA on the CRISPR-Cas
system-mediated DNA interference, levels of natural transformation with the CRISPR-
Cas-targeted plasmid pCR1 and nontargeted plasmid pDsRED were evaluated in the
hns stpA mutant containing PBAD-stpA. Considering that transformation occurred ex-
clusively on agar plates (64, 65), expression of StpA was controlled by adding arabinose
in both liquid form and on agar plates (see the supplemental material for details about
the experimental procedure). When no arabinose was added, pCR1 transformed cells
with an efficiency of �35 CFU/�g (Table S2) whereas no transformants were detected
when 1 or 2 mM arabinose was added (Table S2). The result indicated that arabinose-
induced expression of StpA activated CRISPR-Cas-mediated DNA interference during
natural transformation of the E. coli hns stpA mutant.

The effect of StpA on the activity of Pcas was also evaluated in E. coli strains grown
in M9 medium with glucose as the carbon source, which was reported to suppress the
activity of PBAD (75, 76). Expressing StpA by PBAD in M9 medium supplemented with

FIG 4 Legend (Continued)
Activities of Pcas-gfp and Pcas*-gfp were compared in hns and hns stpA null mutants that were grown in
M9 minimal medium supplemented with 0.32% (wt/vol) fructose (C) or 1% (wt/vol) glucose (D) as the
carbon source. TSS, transcriptional start site. Data are shown as means � standard deviations (n � 4).
Statistical significance was determined using a two-tailed Student’s t test (*, P � 0.05; **, P � 0.01; ****,
P � 0.001).

Sun et al. Applied and Environmental Microbiology

July 2020 Volume 86 Issue 14 e00731-20 aem.asm.org 10

https://aem.asm.org


FIG 5 Complementation analysis of the effect of StpA on transcriptional regulation of Pcas. To modulate
expression of StpA, the araBAD promoter (PBAD) was fused with stpA, and the construct was transformed
into the hns stpA null mutant. The effect of StpA on transcription of the cas operon was monitored in cell
cultures incubated in LB medium for 10 h (A) and in M9 medium for 24 h (D) supplemented with different

(Continued on next page)
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glucose indeed yielded a small amount of StpA (Fig. 5E and F). When no arabinose was
added, the activity of Pcas in the hns stpA null mutant with PBAD-stpA on a vector was
comparable to that of a strain carrying the empty vector (Fig. 5D), indicating remarkably
reduced leaky expression of StpA in M9 medium. Amounts of StpA expressed by PBAD

were equally low in cell cultures supplemented with 0.1 mM to 10 mM arabinose (Fig.
5E and F). Correspondingly, activities of Pcas in the above cultures were increased by 2-
to 5-fold with respect to the level in the culture without arabinose (Fig. 5D). In contrast,
expression of H-NS at either a high or a low level failed to stimulate transcription of the
cas operon in the hns stpA null mutant (Fig. S14). Taken together, our results clearly
demonstrate that expressing StpA at a low level stimulates transcription of the cas
operon.

StpA is required for the formation of mature crRNA in an hns null mutant. A
functional CRISPR-Cas system consists of Cas proteins and mature CRISPR RNA (crRNA),
which guides Cas proteins to the target DNA (5, 6, 14, 15). We have shown that StpA
activated transcription of the cas genes in the hns null mutant. Finally, we examined the
potential effect of StpA on the amount of mature crRNA. Mature crRNA is formed by
processing pre-crRNA with CasE, encoded by a gene in the cas operon (10) (Fig. 6A). To
remove long RNA (including pre-crRNA), we purified mature crRNA from total RNA by
using a microRNA (miRNA) purification kit, in which the spin column contains resins
that selectively bind small RNAs (sRNAs) (	200 nucleotides [nt]) with high affinity (Fig.
6B). An adaptor, which consisted of poly(A) and a primer for further quantitative PCR,
was attached to the 3= end of the sRNA fragment (Fig. 6B). Purified sRNA was analyzed
by gel electrophoresis, which showed that sizes of most purified sRNAs were approx-
imately 50 bp (Fig. S16A). With tRNA (encoded by glnU) as the internal control,
quantitative PCR (qPCR) was performed to determine the amount of crRNA. Melt curve
analysis showed single peaks for both crRNA and tRNA (Fig. S16B and C), indicating that
the target cDNA was specifically amplified. PCR products of expected sizes were
detected by gel electrophoresis (Fig. S16D). The qPCR data revealed that the relative
amount of mature crRNA in the hns null mutant was more than 20-fold greater than
that in the hns stpA null mutant (Fig. 6C), indicating that stpA was required for the
formation of a large amount of cRNA in the hns mutant. Nevertheless, the amount of
crRNA is still significantly higher than that in the wild type. Therefore, StpA is partially
responsible for the increase in the amount of mature crRNA in the hns mutant whereas
in the hns� background, the relative amount of mature crRNA in the stpA mutant was
�5-fold higher than that in its wild-type parent, showing that the effect of StpA on the
amount of crRNA was influenced by H-NS.

DISCUSSION

Previous work established that H-NS suppressed the type I-E CRISPR-Cas system in
E. coli (28). In this study, we showed that the H-NS paralogue StpA played an opposite
role in regulating the type I-E CRISPR-Cas system when H-NS was absent. It is able to
promote both the transcriptional level of the cas operon and the amount of mature
crRNA. We also document that the type I-E CRISPR-Cas system activated by StpA was
able to defend against the transfer of DNA mediated by natural transformation in E. coli.
CRISPR adaptation is mediated by Cas1 and Cas2, whose encoding genes are located in
the cas operon of E. coli (16, 28). Considering that StpA activates transcription of the cas
operon, we anticipate that it could also stimulate CRISPR adaptation during natural
transformation of E. coli. The type I CRISR-Cas system is widely distributed in pro-
karyotes (5, 18). Particularly, homologues of H-NS and StpA have been found in both

FIG 5 Legend (Continued)
concentrations of arabinose. A Western blot assay was performed to determine expression levels of
StpA in cell cultures incubated in LB (B) and M9 (E) media. The StpA protein amounts from cell cultures
grown in LB (C) and M9 (F) media were analyzed by using Quality One software. All experiments were
performed in duplicate or triplicate. Statistical significance was determined using a two-tailed Student’s
t test (*, P � 0.05; ***, P � 0.005; ****, P � 0.001).
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Salmonella and Klebsiella, which are also equipped with the type I-E CRISPR-Cas system
(48, 77, 78). MvaT and MvaU play roles similar to those of H-NS and StpA in Pseudomo-
nas (79), which also contains an active type I-E CRISPR-Cas system (80, 81). It would be
interesting to investigate whether StpA homologues are involved in such regulatory
roles in organisms other than E. coli.

CRISPR-Cas systems limit not only ssDNA uptake during natural transformation of S.
pneumoniae and N. meningitidis (62, 63) but also dsDNA transferred via bacteriophage

FIG 6 Effect of stpA inactivation on the amount of mature crRNA. (A) Schematic representation of the
mechanism of crRNA formation. Followed by transcription of the pre-crRNA from CRISPR and expression
of the cas operon, CasE cleaves the repeat sequence to form mature crRNA. (B) Schematic representation
of the procedure of mature crRNA purification (refer to the supplemental material for details). (C) After
12 h of incubation in LB broth, total RNA was isolated, and a small RNA (containing crRNA) was purified
for quantitative PCR assay. The relative amounts of mature crRNA from �hns, �stpA, �hns �stpA, and WT
strains were quantified by real-time qPCR assay with tRNA as the reference. Data are shown as means �
standard deviations (n � 4). Statistical significance was determined using a two-tailed Student’s t test
(***, P � 0.005; ****, P � 0.001).
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infection in E. coli (10, 47). Our previous work uncovered a new type of natural
transformation, in which dsDNA was transferred across E. coli cell membranes (1). Here,
we have shown that the type I-E CRISPR-Cas system in E. coli reduced levels of natural
transformation with the CRISPR-Cas-targeted plasmid but did not affect transformation
with the nontargeted plasmid (Fig. 1). We also observed that an StpA-activated
CRISPR-Cas system reduced chemical transformation with the targeted plasmid (see
Fig. S10 in the supplemental material). Therefore, transforming dsDNA is subject to
CRISPR-Cas-mediated interference. It has been documented that inactivating cas3,
which encodes the nuclease for DNA cleavage, reduced bacteriophage DNA interfer-
ence by the type I CRISPR-Cas system in the hns mutant (46, 49). The StpA-activated
type I-E CRISPR-Cas system could also provide immunity against “infecting” ssDNA (e.g.,
conjugative DNA and bacteriophage DNA) due to DNA cleavage on the target dsDNA
formed by recombination or replication of ssDNA after its entry into the cell. With the
hns stpA null mutant as the recipient, although we detected a number of transformants
carrying the CRISPR-Cas-targeted plasmid, these transformants were unable to grow
further (Fig. S9), suggesting that the type I-E CRISPR-Cas system in the hns stpA null
mutant was unable to cleave all CRISPR-Cas-targeted DNA immediately after plasmid
entry. Instead, dsDNA should be gradually degraded over a prolonged period of time
in that strain (Fig. S9). Nevertheless, delayed DNA interference in the hns stpA null
mutant but immediate degradation of the entering plasmid in the hns null mutant
indicated that the efficiency of DNA interference was enhanced by StpA in the hns null
mutant (Fig. S9). It is also noticeable that the level of transformation with the CRISPR-
Cas-targeted plasmid was slightly lower than that with the nontargeted plasmid in the
WT strain (Fig. 1B), indicating that the type I-E CRISPR-Cas system could be moderately
activated during natural transformation of E. coli.

H-NS and StpA are xenogeneic silencing proteins for suppressing gene transcription
from foreign-derived DNAs, which are widespread in the Gram-negative alpha-, beta-,
and gammaproteobacteria as well as in the Gram-positive Actinobacteria (79). Although
interaction between xenogeneic silencers and DNA have recently been intensively
studied (74, 82–86), it remains unclear how the H-NS/StpA nucleoprotein structure
observed in vitro affects gene transcription in vivo. It is not unprecedented to discover
that StpA can act as a transcriptional activator, given that StpA normally functions as
a backup for H-NS, which was shown to act as both activator and repressor, as revealed
by transcriptome analysis (73). For example, both H-NS and StpA stimulate transcription
of crp by changing the DNA topology to a form that favors the use of highly compacted
DNA for transcription (57). We also observed that both H-NS and StpA positively
regulated transcription of the mal operon (Fig. 2B). Nevertheless, data presented here
strongly argue that H-NS and StpA play opposite roles in regulating the same promoter
(i.e., the cas promoter): the former suppresses gene transcription but the latter stimu-
lates gene transcription (Fig. 2 and 5). StpA and H-NS share DNA binding regions in
both the gal and cas promoters (28, 54). In the promoter of the cas operon, a
footprinting experiment showed that StpA and H-NS bound to the same region (28) in
which the H-NS binding motif was predicted (28, 46, 47). In this study, we provided
in vivo evidence supporting the finding that StpA and H-NS recognized the same DBS
in Pcas but played different roles in regulating transcription of the cas operon (Fig. 4).
Overexpressing H-NS strongly suppressed the activity of Pcas in the hns null mutant (Fig.
4B). In contrast, mutating the DBS derepressed transcription of the cas operon that was
inhibited by H-NS (Fig. 4B), showing that H-NS suppresses the activity of Pcas by binding
to the predicted DBS. With respect to the activity of Pcas containing an intact DBS, the
activity of Pcas* containing a mutated DBS was remarkably reduced in the hns null
mutant (Fig. 4C and D). Nevertheless, Pcas and Pcas* showed similar activity levels in the
hns stpA null mutant (Fig. 4C and D). These facts clearly show that certain amounts of
StpA promoted the activity of Pcas by acting on the DBS of H-NS. The reason for the
different behaviors of H-NS and StpA on the activity of Pcas needs further exploration.
Previous in vitro experiments documented that StpA and H-NS compact DNA in
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different ways (74). It is possible that differential compaction of DNA by H-NS and StpA
may lead to different modes of transcriptional regulation in vivo.

StpA is more versatile than H-NS in transcriptional regulation. In the presence or
absence of StpA, we observed that H-NS inhibited the activity of Pcas (Fig. 7). In contrast, a
small amount of StpA induced the activity of Pcas (Fig. 5A and D and Fig. 7), but a large
amount of StpA failed to stimulate Pcas (Fig. 5A and 7). Previous in vitro experiments
revealed that linearized double-stranded DNA incubated with 1 StpA per 1 bp (1:1 StpA/
DNA) showed rigid StpA-coated DNA hairpins that blocked DNA accessibility (74) whereas
at ratios of both 1:10 and 1:100 StpA/DNA, StpA-induced DNA bridging was evident (74).
We calculated the cellular concentration of StpA in cells grown in M9 medium supple-
mented with 1 mM arabinose and found that Pcas was activated when the ratio of
StpA/DNA was �1:200 (see the results and discussion in the supplemental material and
Table S3). Possibly, a low cellular concentration of StpA may induce DNA bridging, which
could facilitate transcription initiation by altering the configuration of StpA/DNA. Never-
theless, the explanation for transcriptional activation by StpA awaits more direct evidence.

We observed a transcriptional stimulation effect of StpA only in the hns null strain.
In line with a previous study (28), inactivation of stpA did not affect transcription of cas
genes in the hns� strain (Fig. 2 and 3). Considering that transcription of H-NS can be
upregulated by inactivating stpA (54), the effect of StpA on transcription of the type I-E
CRISPR-Cas system could be masked by stronger repression due to the increased
expression level of H-NS in the stpA null mutant. Similar to previous studies (54), we also
observed that inactivating both hns and stpA caused a more serious growth defect than
inactivating only hns (Fig. S8A). Interestingly, when a high-copy-number plasmid was
introduced into E. coli strains, the hns null mutant grew remarkably more slowly than
the hns stpA null mutant (Fig. S8B and C). Providing that H-NS alters plasmid and
chromosomal DNA supercoiling (87), as well as chromosome partitioning and replica-
tion (69), it is possible that the aberrant topological structure of the plasmid could have
an effect on cell growth in the hns null mutant.

Although StpA increased the amount of crRNA in the hns deletion mutant, it
reduced the amount of crRNA in the hns� strain (Fig. 6C). The result reflects that H-NS
influenced the effect of StpA on the level of crRNA. Considering that StpA can function
as both an RNA chaperon (88–90) and a transcriptional regulator of the gene encoding
CasE for pre-crRNA processing (Fig. 6A), it could play pleiotropic roles in stabilizing/
processing pre-crRNA and/or mature crRNA in the hns mutant. The complex interplay
between these processes contributes to crRNA abundance in a nonlinear way (91).
Alternatively, H-NS and StpA in the WT strain may form a heteromeric complex (92),
which could have a stronger suppression effect on expression of crRNA than only H-NS
in the stpA null mutant.

FIG 7 Schematic diagram of transcriptional regulation by StpA and H-NS. Transcription of the cas operon
was suppressed by H-NS in the presence (first row) or absence of StpA (second row). Although StpA
expressed at a high level weakly suppresses transcription of the cas operon (third row), a low concen-
tration of StpA stimulated the activity of Pcas (fourth row).
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Of note, a recent report documented that ectopic expression of StpA on a
multicopy-number plasmid suppressed transcription of casA in an hns cas1 double
mutant of E. coli, resulting in a decrease of DNA interference during � phage infection
(93). The result is in accordance with our observation that ectopic expression of StpA
at a high level suppressed transcription of cas genes in the hns null mutant (Fig. 4B) and
moderately reduced DNA interference during natural transformation (Fig. S13). It is also
documented that although inactivation of stpA further increased transcription of casA
in the hns cas1 mutant, stpA seems to have no additional role to further improve
immunity against bacteriophage infection in that strain (93). This finding is different
from our observation in that stpA deletion in an hns null mutant reduced transcription
of cas genes (Fig. 3) and decreased immunity against plasmid DNA in both natural and
chemical transformations (Fig. 1 and Fig. S10).

In summary, we showed that expression of the type I-E CRISPR-Cas system is positively
regulated by StpA which activates the promoter of the cas operon and augments the
amount of crRNA in the hns null background. The type I-E CRISPR-Cas system activated by
StpA increases DNA interference during natural transformation and thus improves the
cellular immune response to horizontally transferred genetic elements. Moreover, we
provided evidence showing that DNA-structuring protein paralogues StpA and H-NS bound
on the same site in Pcas but played opposite roles in transcriptional regulation of the cas
operon, implying that higher-order compaction of bacterial chromatin by histone-like
proteins could switch prokaryotic transcriptional modes.

MATERIALS AND METHODS
Bacterial strains, plasmids, primers, growth conditions, and media. Bacterial strains, plasmids,

and primers used in this study are listed in Tables 1 and 2. Strains lacking hns and/or stpA were
constructed with pKD46 (see Fig. S1 in the supplemental material), a temperature-sensitive plasmid
carrying the �-derived Red recombination system (94). Mutants were examined through PCR and
Western blot assay (Fig. S1 and Table S1). Recombinant plasmids were constructed with a One-Step PCR
Cloning kit (Fig. S3 to S7). Details of the construction of mutants and plasmids are described in
supplemental material. Plasmids were isolated with a plasmid isolation kit according to the manufac-
turer’s instructions (Axygen Biotech Co., Ltd.). E. coli was grown at 30°C or 37°C as follows: in LB broth
containing 1% tryptone (wt/vol), 0.5% (wt/vol) yeast extract, and 1% (wt/vol) NaCl; in 1.5� LB broth
containing 1.5% tryptone (wt/vol), 0.75% (wt/vol) yeast extract, and 1.5% (wt/vol) NaCl; in M9 minimal
medium containing 61 mM K2HPO4·3H2O, 38.21 mM KH2PO4, 4.15 mM MgSO4, 16.70 mM NH4Cl, 0.1%
tryptone (wt/vol), and 0.32% (wt/vol) fructose or 0.8% (wt/vol) glucose as the carbon source, supple-
mented with an appropriate amount of arabinose for inducing transcription of genes when necessary or
not supplemented; or on LB agar plates containing 1.5% (wt/vol) or 5% (wt/vol) agar. When necessary,
the medium was supplemented with ampicillin (100 �g ml�1), kanamycin (50 �g ml�1), or chloram-
phenicol (25 �g ml�1), unless otherwise specified. Cell growth was measured in a Spectrumlab S23A
spectrophotometer or in a Tecan Sunrise 96-well plate reader. All experiments were repeated indepen-
dently at least three times.

Quantification of transcription of cas genes with GFP. To monitor transcription of cas genes by
GFP, the promoter PBAD was replaced by the promoter of the cas operon (Pcas) in the plasmid
pGLO-gfp (Fig. 3A and Fig. S4A). The recombinant plasmid was transformed into E. coli cells, and
transformants were subsequently grown in LB or M9 medium supplemented with appropriate
antibiotics. Cell growth was monitored spectrophotometrically at an optical density of 600 nm
(OD600). Intensity of the culture fluorescence, as an indicator of transcription of Pcas, was measured
by a SpectraMax Gemini EM microplate reader with excitation and emission wavelengths at 395 and
509 nm, respectively.

Quantification of gene transcripts and mature crRNA with quantitative PCR. Total RNA was
isolated from E. coli cells grown in LB broth at 30°C for 12 h. The cell density was adjusted to an OD600

of 1.0. To quantify transcription of chromosomal genes, the isolated RNA was reverse transcribed, and
quantitative PCR (qPCR) was performed with a Bio-Rad iCycle iQ. Small RNA (sRNA) was purified from the
isolated total RNA with an EasyPure miRNA kit (TransGen Biotech Co., Ltd.) which contains columns filled
with resin with high affinity to sRNA (	200 bp) fragments (Fig. 2A). The 3= terminally tagged cDNA was
synthesized by reverse transcription (miRNA First-Strand cDNA Synthesis SuperMix; TransGen Biotech Co.,
Ltd.) and quantified by qPCR. Relative expression levels of genes and sRNAs were calculated according
to the formula 2�(ΔCT target � ΔCT reference) (95), with 16S RNA and tRNA, respectively, as the internal
references. Primers used for qPCR are listed in Table 2. Refer to supplemental material for detailed
procedures.

Natural transformation of E. coli. Natural transformation was performed according to a previ-
ously documented method (66, 67). A single E. coli colony grown on an LB-agar plate was inoculated
into a glass tube containing 5 ml of LB broth and incubated with shaking at 30°C. An overnight-
grown E. coli culture (14 to 18 h of incubation) was inoculated into a flask containing 1.5� LB broth
at a ratio of 1:100 (vol/vol). The culture was incubated with shaking at a speed of 180 rpm at 30°C.

Sun et al. Applied and Environmental Microbiology

July 2020 Volume 86 Issue 14 e00731-20 aem.asm.org 16

https://aem.asm.org


After 24 h of incubation, the cell culture was precipitated by centrifugation at room temperature,
and 90% (vol/vol) of the supernatant was discarded. The cell pellet was resuspended in the
remaining 10% (vol/vol) of the supernatant and placed in a metal bath at 30°C. Plasmids pDsRED and
pCR1 were added to the cell suspension solution to a final concentration of 40 �g ml�1. Fifty
microliters of the mixture was spread on LB plates containing 5% (wt/vol) agar (BD Difco) and 200 �g
ml�1 of ampicillin, which had been placed at room temperature (�30°C) for 1 to 2 days before use.
Numbers of transformants were counted on petri plates which were incubated at 30°C for 1 to
2 days. Transformation efficiency was calculated by dividing the number of transformants by the
amount of DNA.

Protein purification and Western blot assay. Protein with a His tag was purified from E. coli BL21
with a tagged-protein purification kit (soluble protein) (Beijing ComWin Biotech Co., Ltd.). The antibody
against StpA, which can interact with both StpA and its paralogue H-NS (Fig. S1C), was used for
evaluating the expression level of StpA. RpoB was set as the control, and the corresponding primary
antibody was commercially obtained from BioLegend. Refer to the supplemental material for details
about procedures for protein purification and Western blot assay.

Data availability. The pCR1 sequence has been deposited in GenBank under accession number
MT437282 and the Addgene plasmid repository under catalog no. 154270 (https://www.addgene.org/
154270/).

TABLE 2 Primers

Primer no. Name Sequence (5=–3=)a

P01 ΔstpA H1P1 ATCGCTTACACTACGCGACGAAATACTTTTTTTGTTTTGGCGTT
AAAAGGGTGTAGGCTGGAGCTGCTTC (�62, �12)

P02 ΔstpA H2P2 ATAAGATGCCGTGGAACCAACGAGCTTGAGAAGCGACGCCG
GACGCGCCCCATATGAATATCCTCCTTAG (�25, �75)

P03 Δhns H1P1 TCTATTATTACCTCAACAAACCACCCCAATATAAGTTTGAGATT
ACTACAGTGTAGGCTGGAGCTGCTTC (�51, �1)

P04 Δhns H2P2 TTATTAAATTGTCTTAAACCGGACAATAAAAAATCCCGCCGCT
GGCGGGCATATGAATATCCTCCTTAG (�443, �493)

P05 ΔstpA-1500F TATGTATTTACGACCAGAC
P06 ΔstpA-999R ATTTTAGCGGAGCCTGCC
P07 Δhns-1500F GCATTGCCCTTCTGGGGCCG
P08 Δhns-999R AGGAACCAGGATGTTGCCGG
P09 gfp-F AGGAGAACAATTTAAGAAGGAGATATACAT
P10 gfp-R AATAATGGTTTCTTAGACGTCAAGCTTGCATGCCTGCAGG
P11 Pcas promoter-F TCCCCGAAAAGTGCCACCTGCTTCGGGAATGATTGTTATC
P12 Pcas promoter-R CCTTCTTAAATTGTTCTCCTTCATATGCTC
P13 gfp-rscA-F CATTGAGTGAGGGTATGCTACTAGAAAGAGGAGAAATA
P14 gfp-rscA-R TTACGGAATTATATTAATGGGGTAACGAATCAGACAATTG
P15 PrscA promoter-F CAATTGTCTGATTCGTTACCGGGTCTGAATGCGACGTTAA
P16 PrscA promoter-R TATTTCTCCTCTTTCTAGTATTAAATTCTCCTGGACTG
P17 pSU19-stpA-F CGCTTCTCAAGCTCGTTGGGGTACCGAGCTCGAATTC
P18 pSU19-stpA-R GAAAACATCCATCACTGGTGCCTGCAGGCATGCAAGCTTG
P19 stpA-pSU19-F CAAGCTTGCATGCCTGCAGGCACCAGTGATGGATGTTTTC
P20 stpA-pSU19-R GAATTCGAGCTCGGTACCCCAACGAGCTTGAGAAGCG
P21 hns-pSU19-F CGTGGATAACACCGATACGGGGGTACCGAGCTCGAATTC
P22 hns-pSU19-R TACGAGAATTCCCTATCCTGCAGGCATGCAAGCTTG
P23 pSU19-hns-F CAAGCTTGCATGCCTGCAGGATAGGGAATTCTCGTA
P24 pSU19-hns-R GAATTCGAGCTCGGTACCCCCGTATCGGTGTTATCCACG
P25 cas-gfp-ΔBS-F CTTTAATAGCGAGACGAATAAC
P26 cas-gfp-ΔBS-R GTTATTCGTCTCGCTATTAAAG
P27 tRNA-F CGGTTTTTGATACCGGCAT
P28 crRNA-F CTCCCTGTCGGTTGTAATTG
P29 sRNA-R GATCGCCCTTCTACGTCGTAT
P30 PBAD-gfp-pSU-F TTATGACAACTTGACGGCTACA
P31 PBAD-gfp-pSU-R TTATTTGTAGAGCTCATCCATGC
P32 pSU-PBAD-gfp-F TGGATGAGCTCTACAAATAAGAATTCGAGCTCGGTACCCG
P33 pSU-PBAD-gfp-R TAGCCGTCAAGTTGTCATAAATTGCGTTGCGCTCACTGCC
P34 pSU-PBAD-F GAATTCGAGCTCGGTACCCG
P35 pSU-PBAD-R ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC
P36 PBAD-stpA-pSU-F TTTAAGAAGGAGATATACATATGTCCGTAATGTTACAAAG
P37 PBAD-stpA-pSU-R GGGTACCGAGCTCGAATTCTTAGATCAGGAAATCGTCGAG
P38 PBAD-hns-pSU-F TTTAAGAAGGAGATATACATATGAGCGAAGCACTTAAAATTCTG
P39 PBAD-hns-pSU-R GGGTACCGAGCTCGAATTCTTATTGCTTGATCAGGAAATCGTCG
aBoldface letters indicate nucleotide extensions, complementary to antibiotic resistance cassettes, that were
introduced in the primers to amplify either the cat gene or the kan gene from plasmid pKD3 or pKD4,
respectively. Following each primer sequence, the corresponding gene and the positions of the first and
final nucleotides (in parentheses) are indicated (with respect to the ATG of the gene).
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