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A B S T R A C T   

The COVID-19 pandemic elicited a global response to limit associated mortality, with social distancing and 
lockdowns being imposed. In India, human activities were restricted from late March 2020. This ‘anthropogenic 
emissions switch-off’ presented an opportunity to investigate impacts of COVID-19 mitigation measures on 
ambient air quality in five Indian cities (Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ 
measurements from 2015 to 2020. For each year, we isolated, analysed and compared fine particulate matter 
(PM2.5) concentration data from 25 March to 11 May, to elucidate the effects of the lockdown. Like other global 
cities, we observed substantial reductions in PM2.5 concentrations, from 19 to 43% (Chennai), 41–53% (Delhi), 
26–54% (Hyderabad), 24–36% (Kolkata), and 10–39% (Mumbai). Generally, cities with larger traffic volumes 
showed greater reductions. Aerosol loading decreased by 29% (Chennai), 11% (Delhi), 4% (Kolkata), and 1% 
(Mumbai) against 2019 data. Health and related economic impact assessments indicated 630 prevented pre
mature deaths during lockdown across all five cities, valued at 0.69 billion USD. Improvements in air quality 
may be considered a temporary lockdown benefit as revitalising the economy could reverse this trend. 
Regulatory bodies must closely monitor air quality levels, which currently offer a baseline for future mitigation 
plans.   

1. Introduction 

COVID-19, the novel coronavirus disease caused by SARS-CoV-2 
(severe acute respiratory syndrome coronavirus 2), was first identified 
in the Hebei district of Wuhan, China, in December 2019. This in
fectious disease spread rapidly from China to other countries across the 
world, and the outbreak was declared a global pandemic on 12 March 
2020 by the World Health Organization (WHO, 2020a). The ongoing 
pandemic has disrupted the lives of billions of people and caused more 
than 278,994 deaths worldwide as of 11 May 2020 (WHO, 2020b). The 
United States of America (USA), the United Kingdom (UK), and Italy 
have experienced the greatest impact to date (11 May 2020), with death 

tolls of around 76,916, 31,855, and 30,560, respectively (WHO, 
2020b). Asian countries, such as India, are not spared where the po
pulation density is high (Kumar et al., 2013) and the spread of COVID- 
19 is yet to reach its peak. 

The first case of COVID-19 in India was reported on 30 January 
2020 in Kerala, a southern state (PIB, 2020). After a preventive social 
distancing initiative on 22 March 2020 in the form of a 14 -h self- 
quarantine curfew called the ‘Janata Curfew’, the Government of India 
(GoI) announced a complete lockdown of both internal and external 
borders, and social isolation measures came into effect on 25 March 
2020 for the entire 1.3 billion population to prevent the spread of 
COVID-19. The lockdown has been renewed four times to date, with the 
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Table 1 
Summary of recent studies on COVID-19 and air quality impacts.     

Study area (city, country) Key findings Author (year)  

India (Delhi, Mumbai, Kolkata and Bangalore)  • Assessed overall impact of social and travel lockdown in five megacities of India 
and evaluated spatiotemporal variations in five criteria pollutants over two time 
periods, i.e., March-April 2019 and March-April 2020 and 10th-20th March 2020 
(before lockdown) and 25th March to 6th April 2020 (during lockdown).  

• Statistically significant reduction was found in all megacities for all pollutants 
except for O3, with concentration declines in PM2.5 (∼41%) PM10 (52%), NO2 

(51%) and CO (28%) during the lockdown phase in Delhi when compared to 
before lockdown. Similar reductions were observed for other megacities. 

Jain and Sharma (2020) 

India (Delhi)  • Analysed PM10, PM2.5, SO2, NO2, CO, O3 and NH3 over 34 monitoring stations in 
Delhi during pre-lockdown periods and during the lockdown.  

• Air quality significantly improved during lockdown, with reductions of 60% 
(PM10), 39% (PM2.5), 53% (NO2) and 30% (CO) compared to 2019. 

Mahato et al. (2020) 

India (Kolkata)  • Measured atmospheric CO2 levels with a portable CO2 analyzer at 12 sites during 
April 2019 (pre-lockdown) and April 2020 (post-lockdown).  

• 30–40% decrease in CO2 levels with significant temporal variation was observed  
(p  <  0.01), but no statistically significant variation was observed between sites. 

Mitra et al. (2020) 

India (22 cities in different regions)  • Examined impact of lockdown measures on criteria pollutant (PM10, PM2.5, CO, 
NO2, O3 and SO2) concentration reductions and analysed data between 16 March 
to 14 April from 2017 to 2020.  

• Compared to previous years (2017−2019), during lockdown periods, reductions 
in concentrations were up to 43% (PM2.5), 31% (PM10), ∼52% (mean excessive 
PM risks), 10% (CO), and 18% (NO2), while an increase of 17% in O3 and 
negligible changes in SO2 were detected. Reductions in AQI were up to 44% 
(North), 33% (South), 29% (East), 15% (Central) and 32% (West) India. 

Sharma et al. (2020) 

India  • Based on data-driven estimation methods and curve fitting, a 30-day projection 
of the effectiveness of preventive measures (social isolation and lockdown) on 
the spread of COVID-19 in India was developed.  

• Authors highlighted that the proposed method well estimated and predicted the 
positive cases and number of recovered cases within a certain range and will be a 
beneficial tool for policymakers and health officials. 

Tomar and Gupta (2020) 

Brazil (São Paulo)  • Assessed impacts of partial lockdown in São Paulo on concentration levels of CO, 
NO, NO2, and O3.  

• CO, NO, NO2, and O3 concentrations reduced by 65, 77, 54 and 30%, 
respectively, during the lockdown period. 

Nakada and Urban (2020) 

China  • Data from the TROPOspheric Monitoring Instrument (TROPOMI) sensor on- 
board ESA’s Sentinel-5 satellite showed reductions in NO2 concentrations due to 
lockdown near Wuhan, China (∼30%) and worldwide.  

• CO2 also decreased by 25% in China and by 6% worldwide. Fatalities might have 
decreased due to reduced air pollution levels. 

Dutheil, Baker, and Navel 
(2020) 

China  • Daily mortality due to air pollution and COVID-19 between Dec 2019 and Mar 
11th 2020 showed huge differences, indicating that lockdown likely saved more 
lives by preventing ambient air pollution than by preventing infection.  

• NASA satellite images showed reductions of up to 30% in NO2 levels and about 
25% carbon emissions (≈100 Mt equivalent to 6% of the global emissions) over 
the same period in Feb 2020 due to quarantine. 

Isaifan (2020) 

China (330 cities) and USA (New York)  • Evaluated the significance of environmental (including air quality) impacts of 
the COVID-19 lockdown in 330 Chinese cities and NewYork (USA).  

• When compared with 2019 data, air quality in 2020 improved by 11% across 
330 cities of China and 50% in New York (USA). 

Saadat, Rawtani, and 
Hussain (2020) 

China  • Investigated impact of reduced anthropogenic activities due to lockdown on air 
pollution using simulation with the community multi-scale air quality model 
between 01 Jan and 12 Feb 2020 and compared three air pollution scenarios.  

• Decreased PM2.5 in Beijing, Shanghai, Guangzhou, and Wuhan by 9.23, 6.37, 
5.35, and 30.79μgm−3, respectively. However, reduction ratios of PM2.5 

concentrations were smaller than those of precursor emissions, partially due to 
unfavorable meteorological conditions. 

Wang, Chen, Zhu, Wang, 
and Zhang (2020) 

China  • Assessed the dynamic environmental (including air quality) impacts of COVID- 
19 in China during the period of Jan-Mar 2020 compared to 2019.  

• Reduction in CO2 emissions by  > 25% ∼ 1M tonne of C or 6% of global 
emissions over two weeks (spring festival 2020 and 2019). Satellite data: decline 
in NO2 (> 30% China; 50% Wuhan). Air-pollutant monitoring in 337major cities 
(Jan-Mar 2020): Decline in PM2.5 (14.8%), NO2 (25%), CO (6.2%), PM10 

(20.5%), SO2 (21.4%); no change in O3.  

• Reduced economic activities decrease energy consumption and hence 
environmental pollution. 

Wang and Su (2020) 

China and Europe (France, Germany, Spain, and Italy)  • Studied positive and negative impacts of the COVID-19 lockdown on the 
environment in severely affected countries such as China, USA, Italy and Spain.  

• Quarantine led to reduced air pollutant concentrations in: (i) China, for NO2  

(12.9–22.8μgm−3, Wuhan) and PM2.5 (18.9μgm−3 in 367 cities  
(Wuhan-1.4μgm−3)) ∼ 20−30% between the monthly average for February 
2020 against monthly averages for last three years (February 2017−2019); and 
(ii) Europe (Rome, Madrid, and Paris), in NO2 and PM2.5 concentrations in 
February 2020 compared to previous three years (2017−2019). 

Zambrano-Monserrate, 
Ruano, and Sanchez-Alcalde 
(2020) 
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Table 1 (continued)    

Study area (city, country) Key findings Author (year)  

China (120 cities)  • Using generalised additive models, the authors explored relationships between 
ambient air pollutant (PM2.5, PM10, SO2, CO, NO2 and O3) concentrations and 
COVID-19 infection, utilising associations between meteorological variables 
(temperature, wind speed, RH) and daily COVID-19 confirmed cases.  

• Significant positive correlations were found between pollutant concentrations 
(PM2.5, PM10, NO2 and O3) and newly COVID-19 confirmed cases. For example, a  
10μgm−3 increase in PM2.5, PM10, NO2, and O3 was linked to a 2.24%, 1.76%, 
6.94%, and 4.76% increase in daily counts of confirmed cases, respectively. 
Conversely, a 10 μg m-3 increase in SO2 was linked to a 7.79% decrease in 
COVID-19 confirmed cases. 

Zhu et al. (2020) 

New York, Los Angeles, Zaragoza, Rome, Dubai, Delhi, 
Mumbai, Beijing and Shanghai  

• Dec 2019-Mar 2020 (COVID-19 outbreak period) compared with 2017−2019 
for changes in PM2.5 concentration (data from USEPA).  

• Decline in PM2.5 concentration in March 2020 compared to March 2019in. Dubai 
(11%), Rome (no change), Delhi (35%), Mumbai (14%), Beijing (50%), Shanghai 
(50%), New York (32%), Los Angeles (4%). No change in Zaragoza. 

Chauhan and Singh (2020) 

China, Spain, France, Italy, USA  • Study compiled environmental data released by NASA and ESA (European Space 
Agency) before and after the pandemic (Jan-Mar, 2019 and 2020) and discussed 
its impact on environmental quality.  

• Found reductions in NO2 levels of up to 20−30% in Wuhan (China), Spain, 
France, Italy and the USA. 

Muhammad, Long, and 
Salman (2020) 

Global  • Studied the impact of weather variables and air pollution (CO2, NO2, PM) on the 
global infection and spreading rate of COVID-19.  

• Air pollution was linked to an increased risk of COVID-19 infection and, 
therefore, strict and early lockdown measures (particularly in India and China) 
led to significant reductions in concentrations of NO2 and CO2 and this was 
observed across many metropolitan cities globally. 

Paital (2020) 

Global (27 countries, China, India and Europe)  • Using satellite data and a network of more than 10,000 air quality stations, the 
authors investigated whether or not reduced air pollution levels during Feb-Mar 
2020 were related to COVID-19 lockdown events.  

• 7400 (340 to 14,600) premature deaths and 6600 (4900 to 7900) pediatric 
asthma cases were avoided over two weeks post-lockdown. PM2.5-related 
avoided premature mortality was estimated for China as 1400 (1100 to 1700) 
and for India as 5300 (1000 to 11,700). Globally, 0.78 (0.09–1.5) million 
premature deaths and 1.6 (0.8–2) million pediatric asthma cases could be 
avoided in 2020, assuming the lockdown-induced reduction in concentrations is 
maintained throughout the year. 

Venter et al. (2020) 

Iran (Tehran, Mazandaran, Alborz, Gilan, and Qom)  • Examined the influence of several parameters on COVID-19 spread. Parameters 
included weather variables (e.g. average temperature, average precipitation, 
humidity, wind speed, and average solar radiation), number of COVID-19 
infected people, population density, intra-provincial movement, and infection 
days.  

• Population density and intra-provincial movement showed a direct correlation 
with the infection outbreak, while regions with comparatively low wind speed, 
humidity and solar radiation exposure showed higher rates of infection due to 
favourable conditions for virus survival. 

Ahmadi, Sharifi, Dorosti, 
Ghoushchi, and Ghanbari 
(2020) 

Iran  • Air samples from 2−5 m of patients’ beds were collected to measure airborne 
transmission of COVID-19.  

• All tests results were negative, with no positive readings within 2m distance of 
patients. 

Faridi et al. (2020) 

Italy (Brescia, Lodi, Monza, Alessandria, Milan, Turin, 
Padua, Bergamo and Cremona, Rovigo and Genoa, 
Lombardy region)  

• Determined associations between infected people and environmental, 
demographic and geographical factors governing transmission dynamics of 
COVID-19.  

• Cities with more than 100 days of air pollution (i.e. surpassing PM10 or O3 limits) 
showed significantly higher average numbers of infected individuals (∼3600 
infected individuals on 7 April 2020) than in cities with less than 100 days of air 
pollution (∼1000 infected individuals). 

Coccia (2020) 

Spain (National)  • Using generalised linear mixed models, the authors estimated the shape of the 
epidemic curve of accumulated cases and evaluated the effect of the intervention 
introduced by the Spanish government to mitigate the COVID-19 epidemic.  

• After one day of implementation of the measures, the variation rate of 
accumulated cases was reported to reduce daily on average from 3.1–5.1%. 
However, until 14 March 2020, the introduced measures to reduce the epidemic 
curve of COVID-19 have not reached the planned phase. 

Saez, Tobias, Varga, and 
Barceló (2020) 

Spain (Barcelona)  • Investigated changes in air pollution levels during the lockdown in terms of 
urban background and traffic air quality observed stations.  

• After two weeks of lockdown, the authors found a substantial reduction in BC 
(-45%) and NO2 (-51%), mostly related to traffic emissions. PM10 also decreased 
from -28 to -31%, whereas levels of O3 increased from +33 to +57%. 

Tobías et al. (2020) 

Turkey (Nine cities : Istanbul, Izmir, Ankara, Konya, 
Kocaeli, Sakarya, Isparta, Bursa and Adana, 
Turkey)  

• Studied the impact of meteorological variables (temperature, dew point 
temperature, humidity, and wind speed) on the COVID-19 pandemic over four 
periods (1, 3, 7, and 14 days). 

Şahin (2020) 
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Table 1 (continued)    

Study area (city, country) Key findings Author (year)   

• Population, wind speed 14 days ago, and temperature on the day showed the 
highest correlations, respectively. 

USA (New York)  • Investigated correlations between climate indicators (average temperature, 
minimum temperature, maximum temperature, rainfall, average humidity, wind 
speed, and air quality) and the COVID-19 pandemic.  

• Meteorological variables (average temperature, minimum temperature) and air 
quality showed strong correlation with the COVID-19 pandemic. 

Bashir, Ma et al. (2020) 

USA (Nationwide)  • Investigated associations between long-term average exposure to PM2.5 and 
increased risk of COVID-19 death in the United States.  

• Found that an increase of 1 μg m−3 in PM2.5 is associated with an 8% increase in 
the COVID-19 death rate (95% CI 2%–15%). 

Wu, Nethery et al. (2020) 

Malaysia and Southeast Asia  • Investigated air quality impact of lockdown. Decrease in AOD (Singapore, 
Brunei, Malaysia and the Philippines), tropospheric NO2 column density  
(27−34% in most countries except for Ho Chi Minh and Yangon cities) was 
noted. AODs remained very high (up to 2) in northern Southeast Asia due to 
extensive forest fires and agricultural burning.  

• In Malaysia (March-April 2020), decrease in AOD (urban area: 40−70%), PM10 

(industrial: 28–39%, urban: 26−31%), PM2.5 (industrial: 20–42%, urban:  
23−32%), NO2 (industrial: 33–46%, urban: 63−64%), SO2 (urban: 9−20%), 
and CO (urban: 25−31%) compared with 2018 and 2019 was noted. 

Kanniah, Zaman, 
Kaskaoutis, and Latif (2020) 

Southern European cities (Nice, Rome, Valencia and 
Turin) and Wuhan (China)  

• Presented the challenge of reducing the formation of secondary pollutants such 
as O3 even with lockdown’s reduced emission. In comparison to 2017−19, O3 

increased (24% in Nice, 14% in Rome, 27% in Turin, 2.4% in Valencia and 36% 
in Wuhan) due to reduced NOx and lower O3 titration by NO, while reductions 
were observed in NO2 (∼53% in Europe and 57% in Wuhan), NO (∼63% in 
Europe), and PM2.5 and PM10 (∼8% in Europe and ∼42% in Wuhan) at urban 
stations. NO2 and NO decreased by ∼65% and ∼78% respectively at traffic 
stations in Europe.  

• Last years’ weekend comparison showed that NOx was ∼ 49% lower in all cities, 
O3 was ∼10% higher in Southern Europe and 38% higher in Wuhan, PM was 
similar (∼6%) in Southern Europe. 

Sicard et al. (2020) 

Yangtze River Delta Region (China)  • The WRF-CAMx modelling system and monitoring data were applied to 
investigate the impact of lockdown on air quality and sources of residual 
pollution for future air pollution control.  

• Reductions in SO2 (16–26%), NOx (29–47%), PM2.5 (27–46%) and VOCs 
(37–57%) emissions were observed. Declines in PM2.5 (31.8%, 33.2%), NO2 

(45.1%, 27.2%) and SO2 (20.4%, 7.6%) were observed during the two periods of 
lockdown compared to 2019, however ozone increased greatly. Though primary 
emissions reduced (15%–61%), PM2.5 varied little (15−79μgm−3), suggesting 
high background and residual pollution.  

• Source apportionment pointed to industry (32.2–61.1%), mobile (3.9–8.1%), 
dust (2.6–7.7%), and residential (2.1–28.5%) sources of PM2.5 and a 14.0–28.6% 
contribution of long-range transport from northern China. 

Li, Li et al. (2020) 

44 cities in northern China  • Estimated the effects of COVID-19 related travel restrictions on air pollution.  

• The AQI decreased by 7.80%, and SO2, PM2.5, PM10, NO2, and CO decreased by 
6.76%, 5.93%, 13.66%, 24.67%, and 4.58% respectively. Human movements 
were reduced by 69.85%, partially causing reduction in the AQI, PM2.5, and CO, 
while completely mediating SO2, PM10, and NO2 reductions. 

Bao and Zhang (2020) 

Almaty (Kazakhstan)  • Analysed the effects of COVID-19 lockdown on air pollutants. Reductions in 
PM2.5 (21%, spatial variations: 6–34%), CO (49%) and NO2 (35%) were 
observed compared to 2018–2019, whereas O3 increased by 15% compared to 
17 days before the lockdown. Benzene and toluene were 2–3 times higher than 
for 2015–2019.  

• Pointed towards non-traffic-related sources, such as coal-fired combined heat 
and power plants, household heating systems, garbage burning and bathhouses. 

Kerimray et al. (2020) 

Delhi (India)  • Assessed pollutant datasets and observed a significant improvement in ambient 
air quality due to lockdown.  

• NOx reduced by ∼14 times the peak value (342 to 24ppb from 12 January to 30 
March 2020). Significant reduction in the PM10, PM2.5, NH3, SO2, NO, NO2, NOx 
and CO concentrations. 

Kotnala, Mandal, Sharma, 
and Kotnala (2020) 

Review (Global)  • Reviewed the evidence for SARS-CoV-2 transmission by particulate matter 
pollutants.  

• PM2.5 was suggested to transmit coronavirus via aerosols in Italy and Wuhan. 
PM2.5 may have direct correlation with virus transmission and related mortality. 

Sharma and Balyan (2020) 

Lucknow and New Delhi (India)  • Analysed primary air pollutant data before and after lockdown (21-days). 
Significant decline in PM2.5, NO2 and CO was seen in both cities, with less 
significant decline in SO2. 

Srivastava, Kumar, Bauddh, 
Gautam, and Kumar (2020) 
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Table 1 (continued)    

Study area (city, country) Key findings Author (year)   

• Perceptible air pollution mitigation was due to adoption short and periodic 
lockdowns. 

Northern China  • Quantified surface PM2.5, NO2, CO, and SO2 reductions during the lockdown.  

• PM2.5 and NO2 decreased by 29 ± 22% and 53 ± 10%, respectively, but O3 

increased by a factor 2.0 ± 0.7. Similar reductions (PM2.5: 31 ± 6%, NO2:  
54 ± 7%) and increase (O3: 2.2 ± 0.2 fold) were noted in the urban area of 
Wuhan. 

Shi and Brasseur (2020) 

Rio de Janeiro (Brazil)  • Discussed the partial lockdown impact on city air quality, comparing 2019 and 
weeks prior to the virus outbreak.  

• CO, related to light-duty vehicular emissions, reduced to 30.3–48.5%. Due to 
industrial and diesel input, NO2 decreased to a lower extent and PM10 reduced 
only during the first week. O3 increased due to the decrease in nitrogen oxide 
levels in a VOC-controlled scenario.  

• In April, vehicular flux and people movement increased due to public disregard 
of lockdown. Compared to 2019, NO2 and CO median values were 24.1–32.9 and 
37.0–43.6% lower. Meteorological interferences (e.g. transport of industrial 
pollutants) might have also impacted the results. 

Dantas, Siciliano, França, da 
Silva, and Arbilla (2020) 

Global  • Tested the hypothesis of improved environmental quality due to lockdown 
induced atmospheric pollutants reduction.  

• COVID-19 cases in the tropical regions were relatively lower than the European 
and American regions. Reductions in NO2 (Substantial: 0.00002mol m−2), CO 
(low:  < 0.03mol m−2) and AOD (low-to-moderate: ∼0.1–0.2) were observed in 
the major hotspots of COVID-19 outbreak during Feb–Mar 2020. High hazard 
was projected in major areas of the globe (absolute humidity: 4−9g m−3) during 
Apr–Jul 2020. The northern hemisphere may be more susceptible in May–Jul 
2020 while tropical regions in Oct–Nov 2020.  

• Scope for restoring the global environment from the ill-effects of anthropogenic 
activities through temporary shutdown measures was suggested. 

Lal et al. (2020) 

California (USA)  • Employed Spearman and Kendall correlation tests to analyse the association of 
PM2.5, PM10, SO2, NO2, Pb, VOC, and CO with COVID-19 cases.  

• PM10, PM2.5, SO2, NO2, and CO had significant correlation with the COVID-19 
epidemic and adoption of green environmental policies was promoted to shield 
human life. 

Bashir, Bilal, and Komal 
(2020) 

Northern China  • Evaluated AQI, PM2.5, PM10, CO, SO2, NO2, and O3 changes during the COVID- 
19 control period. The AQI decreased from 89.6–71.6. 322 out of 366 cities 
experienced AQI decline. All pollutants decreased except O3 because of less 
scavenging of HO2 due to lower fine particle loadings. Reductions in NO2, PM2.5, 
CO, and SO2 were linked to reduced activities of transportation, secondary 
industries and industrial sector respectively.  

• Importance of reactions between gaseous and particulate pollutants, and control 
of residential emissions were illustrated. Lowering both NOx and VOCs will be 
needed to control O3. 

Wang, Yuan et al. (2020) 

Milan (Italy)  • Assessed the effect of partial and total lockdown on air quality in 
meteorologically comparable periods.  

• A significant reduction of PM10, PM2.5, BC, benzene, CO and NOx was observed 
mainly due to reduced vehicular traffic. SO2 also dropped but remained 
unchanged in the adjacent areas. O3 increased due to the minor NO 
concentration and was more accentuated in the adjacent areas with reduced 
concentrations of benzene. 

Collivignarelli et al. (2020) 

Salé City (Morocco)  • Analysed air pollutants before and during the lockdown period. PM10, SO2 and 
NO2 concentrations were reduced respectively by 75%, 49% and 96%.  

• The three-dimensional air mass backward trajectories, using the HYSPLIT model, 
demonstrated that long-range transported aerosol contributions out-balanced 
the reductions in locally emitted PM10. Differences in the air mass back 
trajectories and the meteorology between these two periods were shown. 

Otmani et al. (2020) 

Dwarka river basin within Jharkhand and West Bengal 
(India)  

• Explored the impact of forced lockdown on PM10, land surface temperature, 
river water quality and noise using image- and field-derived data.  

• PM10 concentration reduced from 189−278μgm−3 in the pre-lockdown period 
to 50−60μgm−3 after 18 days of lockdown in selected four stone crushing 
clusters. 

Mandal and Pal (2020)    
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first, second, third, and fourth phases ending on 14 April, 03 May, 17 
May, and 31 May 2020, respectively (see details in Section 2.2). As of 
11 May 2020, the total number of cases reported in India stands at 
67,152, with 40,917 recoveries and 2206 deaths (COVID-19.in, 2020). 

Similar COVID-19 lockdowns throughout the world have entailed 
self-isolation, reduced personal travel and outdoor activities, and 
business closures across all sectors, including: commercial; industrial; 
construction; transport - both road and air; academic; retail; and social, 
such as restaurants, theatres, cinemas and sports stadiums. Global ac
tion to mitigate the pandemic has consequently involved switching off 
most pollutant emission sources. Therefore, we refer to the COVID-19 
outbreak here as an ‘anthropogenic emissions switch-off’ experiment 
that indicates a pollution baseline, which cities may aim to achieve 
under ‘normal’ conditions. This switch-off offers important educational 
opportunities regarding potential control systems and regulations for 
improved urban air quality in the future. Besides a few exceptional 
pollution episodes, such as increased levels of fine particulate matter 
(PM2.5, with aerodynamic diameter ≤2.5 μm) in the central United 
States in March due to long-range transport of particles from agri
cultural burning in Mexico (Schiermeier, 2020), many cities worldwide 
have seen blue skies for the first time in several decades. This is illu
strated by Table 1, which shows appreciable gaseous and PM con
centration reductions of up to 77% (in NO; São Paulo, Brazil) and 60% 
(in PM10; Delhi, India) across cities worldwide during lockdown per
iods. 

Beyond coming into contact with an infected person’s coughing/ 
sneezing or touching contaminated surfaces (Kumar & Morawska, 
2019), poor indoor ventilation has also been linked to COVID-19 spread 
(Brittain et al., 2020; Morawska & Cao, 2020) and outdoor aerosols 
containing viral RNA (Setti et al., 2020). For example, Li, Qian et al. 
(2020) reported the prolific spread of COVID-19 in a poorly ventilated 
restaurant in Wuhan, China. In another study, Liu et al. (2020) ex
amined the potential for aerosol-assisted transmission of the virus by 
measuring viral RNA in different places inside two Wuhan hospitals in 
February and March 2020. They reported a high concentration of viral 
RNA that matched peaks in both sub- and super-micrometre particle 
ranges and highlighted the potential transmission of SARS-CoV-2 via 
aerosols. Similarly, Setti et al. (2020) reported the RNA of COVID-19 in 
aerosol particles in Italy. However, it is not yet known whether or not 
this coronavirus interacts with airborne aerosol particles and much 
needs to be understood in this respect. The individual impact of COVID- 
19 is greatest for those with weak immune systems, such as the elderly, 
and those with pre-existing health conditions. For example, Wu, Leung 
et al. (2020) reported that a COVID-19 infected person > 59 years of 
age has a 5.1-times higher risk of dying, compared with only 0.6-times 
for those < 39 years old. The analogy that air pollution is linked with 
respiratory and cardiovascular disease (Heal, Kumar, & Harrison, 2012) 
and that cities with high air pollution may therefore expect to experi
ence a more prominent impact of COVID-19 is hypothesised. Early 
evidence supports this hypothesis, albeit based on several assumptions. 
For example, Zhu et al. (2020) applied generalised additive models and 
reported a 2.24% increase in COVID-19 confirmed cases for each 
10 μg m−3 increase in PM2.5 concentrations across Chinese cities. 
Likewise, a nationwide cross-sectional study in the US associated an 
increase of 1 μg m−3 in PM2.5 concentration with an 8% increase in 
COVID-19 death rates (Wu, Nethery, Sabath, Braun, & Dominici, 2020). 
While links to reduced air pollution during lockdown with human 
health impacts can be understood, linking COVID-19 with air pollution 
and death rates together remains a grey area that will require detailed 
scientific assessments to develop a consensus. 

India faces air pollution challenges due to its explosive population 
growth and rapid expansion of industrial development in recent dec
ades. As a result of economic growth, air pollutant concentrations have 
reached alarming levels that consistently exceed ambient air quality 
standards. This has exacerbated human health risks and increased 
premature mortality in surrounding communities (Guo et al., 2017;  

Mukherjee & Agrawal, 2018; Sharma, Zhang, Gao, Zhang, & Kota, 
2020; Shukla, Kumar, Mann, & Khare, 2020). For example, 77% of the 
Indian population in 2017 were exposed to annual mean ambient PM2.5 

concentrations of more than 40 μg m−³ (ICMR-PHFI-IHME, 2017). 
PM2.5 is predominantly generated from vehicle combustion engines, 
residential/industrial fuel burning and secondary aerosol formation 
(Guo et al., 2017; Guo, Kota, Sahu, & Zhang, 2019; Hama et al., 2020;  
Kumar, Gulia, Harrison, & Khare, 2017). In India, studies on air quality 
changes associated with COVID-19 are limited but clearly show an 
appreciable reduction in criteria air pollutants (e.g. PM10, PM2.5, CO, 
NO2, O3, SO2, and NH3), mainly due to decreased on-road vehicles and 
closure of non-essential industries (Mahato, Pal, & Ghosh, 2020;  
Sharma et al., 2020). For example, Sharma et al. (2020) used a WRF- 
AERMOD modeling system to demonstrate an overall decline of 43% in 
PM2.5 during the lockdown of March 2020, when compared with si
milar months in previous years. Similarly, Mahato et al. (2020) re
ported a reduction of more than 50% in PM2.5 and PM10 concentrations, 
and Venter, Aunan, Chowdhury, and Lelieveld (2020) linked the first 
two weeks of lockdown in India to a reduction in PM2.5 related pre
mature mortality of roughly 5300 (Venter et al., 2020). Chennai, Delhi, 
Hyderabad, Kolkata, and Mumbai are among the most populated (Table 
S1) and industrialised Indian cities, where ambient concentrations of 
PM2.5 are ordinarily above WHO annual guideline values of 10 μg m−³ 
(WHO, 2016). We have targeted these sprawling Indian cities to un
derstand relative changes in PM2.5 concentrations due to the impact of 
lockdown on emission sources before and during the lockdown. 

It may be expected that lockdowns to contain the spread of COVID- 
19 will generally result in reduced urban anthropogenic emission ac
tivities, and one can reasonably expect a reduction in concentrations of 
primary pollutants during lockdown when compared with periods of 
business as usual. However, what remained unknown was: how much 
reduction lockdown led to, in quantitative terms; whether this reduc
tion occurred to a similar degree in all cities; and what additional 
factors may influence any differences between cities. As illustrated by  
Table 1, COVID-19 related air quality studies for Indian cities are lim
ited. Such studies have typically covered varying days of the early 
lockdown period and involved analyses based on publicly available 
data from monitoring stations (e.g. Mahato et al., 2020; Sharma et al., 
2020) and/or modelling exercises (e.g. Mitra et al., 2020). Therefore, 
varied estimations of PM2.5 concentration reductions have been pro
duced for the same cities, such as 35–39% for Delhi (Chauhan & Singh, 
2020; Mahato et al., 2020), 30–40% for Kolkata (Mitra et al., 2020), 
and 14–43% for Mumbai (Chauhan & Singh, 2020; Sharma et al., 
2020). We cover the extended duration of lockdown in five Indian cities 
(Chennai, Delhi, Hyderabad, Kolkata, and Mumbai) and go beyond the 
scope of previous studies by evaluating the impact of the COVID-19 
pandemic’s ‘anthropogenic emission switch-off’, with an aim to: (i) in
vestigate variations and characteristics of PM2.5 concentrations during 
the lockdown in five Indian cities compared to similar periods in the 
previous five years; (ii) contextualise our own results from Indian cities 
with others from across the world; (iii) explore potential factors that 
influence differences between divergent concentration changes in dif
ferent cities; (iv) monitor the distribution of PM2.5 concentrations using 
theoretical probability density function (PDF) at six different time spans 
in five Indian cities; (v) reveal a holistic picture of aerosol loadings for 
each of these cities by utilising aerosol optical depth (AOD) analysis via 
satellite imagery; and (vi) generate valuations of health and economic 
impact due to decreased PM2.5 concentrations. 

2. Materials and methods 

2.1. Study areas 

Fig. 1 presents the topography of the studied Indian cities (Chennai, 
Delhi, Hyderabad, Kolkata, and Mumbai). Corresponding tables sum
marise each city’s location, population, population density and traffic 

P. Kumar, et al.   Sustainable Cities and Society 62 (2020) 102382

6



density (Table S1), known sources and traffic contributions to PM2.5 

(Table S2), and key features and meteorological characteristics (Table 
S3). All five cities experience the summer season during the lockdown 
period of March-May (Table S4). Differences in meteorological condi
tions between this period of 2020 and of previous years were modest 
(Table S4), as discussed below.  

• Chennai is the capital city of the south Indian state of Tamil Nadu, 
with a population of ∼10.9 million and an overall population 
density of 25,754 per square kilometre (Table S1). The average 
elevation of Chennai above the mean sea level (MSL) is ∼15.8 m 
(Table S3). The city had about 5.3 million vehicles on its roads in 
2017 (Table S1). The dominant wind direction, observed from 
Chennai airport (12°58′56″N 80°9′49″E), is towards the south 
(21%), followed by the west (16%) and the east (15%) (Table S3). 
Pollutants from industrial suburbs in North Chennai (Padi, Avadi 
and Ambattur) are transported by the wind towards the central and 
southern parts of the city. The average wind speed, ambient tem
perature and relative humidity (RH) during the lockdown period in 
2020 were 3.0  ±  1.7 m s−1, 30.6  ±  2.8 °C and 71.7  ±  12.8%, 
respectively.  

• Delhi is the capital of India and one of the largest megacities of Asia, 
with an overall population of 30.29 million and a population density 
of 20,412 per square kilometre (Table S1), as well as the highest 
number of registered on-road vehicles of all Indian cities 
(∼10.26 million in 2017; Table S1). Delhi has an average elevation 
of ∼216 m. The dominant wind direction, observed at Safdarjung 
airport (28°35.00′ N, 77°12.48′ E), which is located 3.75 km from 
the geographical centre of Delhi (India gate), is westerly (nearly 
34% of the observed duration during the study period; Table S3). 
The wind speed, ambient temperature and RH during the lockdown 
period were 2.5  ±  1.7 m s−1, 31.2  ±  3.1 °C and 43.4  ±  8.6%, 
respectively.  

• Hyderabad is the capital city of the south Indian state of Telangana, 
situated at an altitude of 545 m above MSL (Table S3), with a po
pulation of ∼10 million and an overall population density of 15,391 
per square kilometre (Table S1). The rate of urbanization and 

infrastructural development in the city has increased over the past 
decade to about 2.71 million vehicles on the roads of Hyderabad in 
2017 (Table S1). Dominant wind direction, recorded (during 
2000–2019; Table S3) at Rajiv Gandhi Hyderabad International 
Airport in Hyderabad (17°14.43′ N, 78°25.73′ E), is towards the west 
(30%). The wind speed, ambient temperature and RH during the 
lockdown period were 1.1  ±  0.2 m s−1, 30.5  ±  4.1 °C and 
54.9  ±  18.1%, respectively.  

• Kolkata is the capital city of the East Indian state of West Bengal, 
and is considered one of the most polluted cities in the world (Scroll, 
2019). Kolkata has a population of 14.8 million with an overall 
population density of 72,439 per square kilometre (Table S1). At 
just 6.10 m above MSL (Table S3), Kolkata is located in the Ganges 
Delta of north-eastern India, near the Bay of Bengal and ∼80 km 
west of the border with Bangladesh. This dense city had about 
0.8 million vehicles on the roads in 2017 (Table S1). Observed 
meteorological data (2000–2019) from Netaji Subhas Chandra Bose 
International Airport (22°39.24′ N, 88°26.80′ E), known as Dum 
Dum airport (located ∼17 km from Kolkata city centre), showed 
that wind direction is primarily towards the south (34% of the time). 
The wind speed, ambient temperature and RH during the lockdown 
period were 1.0  ±  0.6 m s−1, 29.3  ±  3.6 °C and 69.1  ±  17.7%, 
respectively.  

• Mumbai is the sixth-largest metropolitan region in the world 
(Pacione, 2006) and the financial capital of India. It has a popula
tion of 20 million at a density of 33,850 per square kilometre (Table 
S1). With an average elevation of ∼12.20 m above MSL (Table S3), 
the dominant wind direction measured at Chatrapati Shivaji Ma
haraj airport (Terminal-1; 19°5.50′ N, 72°51.97′ E) is towards the 
west (36% of the observed duration; Table S3), which highlights the 
role of meteorological factors in transporting pollutants from the 
eastern manufacturing districts into the city. Ambient air quality in 
Mumbai is also significantly affected by vehicle traffic (about 
3.05 million on-road vehicles in 2017; Table S1). The wind speed, 
ambient temperature and RH during the lockdown period in 2020 
were 0.8  ±  0.5 m s−1, 29.5  ±  1.8 °C and 81.4  ±  8.6%, respec
tively. 

Fig. 1. Topographic map of India, showing the locations, population density and vehicle population in Chennai, Delhi, Hyderabad, Kolkata and Mumbai. References 
for the data used in this figure, including human and vehicle population data, are available in Table S1. 
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2.2. Data source 

Hourly PM2.5 data for Chennai, Delhi, Hyderabad, Kolkata and 
Mumbai were extracted for the period between January 2015 and May 
2020 (Section 2.3). These data are measured using beta-attenuation 
monitors that are calibrated and maintained as per the protocols of the 
US EPA (EPA, 2009). The beta-attenuation monitoring method for 
continuous PM2.5 monitoring is used for over 80% of state- and local- 
level observations in the US (EPA, 2015). The data are available online 
(https://www.airnow.gov/) and have been used previously by nu
merous studies in India (e.g. Chen et al., 2020; Wang & Chen, 2019) and 
elsewhere (e.g. Berman & Ebisu, 2020; Dhammapala, 2019; Martini, 
Hasenkopf, & Roberts, 2015). As a quality assurance exercise, we fol
lowed two approaches: (i) outlier detection and gap-filling techniques 
to clean the obtained dataset, similar to what Jesus et al. (2020) applied 
for PM2.5 long-term time series, using the forecast package (Hyndman 
et al., 2019); and (ii) a simpler approach that included removal of all 
zero, negative and invalid data points after manual inspection of the 
dataset. The percentage of maximum difference, using both approaches, 
between PM2.5 mean concentrations for all cities during the lockdown 
in the year 2020, was found to be less than 1%. This low difference was 
expected since the percentage of total missing data points (i.e. the sum 
of zero, negative and invalid) during the assessment period was also less 
than 1%. Most of the gap-filling methods are usually recommended 
when missing data percentages are greater than 5% (Ottosen & Kumar, 
2019; Junger & De Leon, 2015; Junninen, Niska, Tuppurainen, 
Ruuskanen, & Kolehmainen, 2004). Since these differences in con
centrations and the percentage of missing data were modest, we 
adopted the simpler approach to preserve the site-specific measured 
data points as-is for further analysis. The cleaned dataset was run 
through the R statistical package (R Core Team, 2020) in the Open-air 
software package version 2.6–5 (Carslaw & Ropkins, 2012; Carslaw, 
2015) to identify missing periods and assess basic statistics, and to plot 
the data at each site for further analysis and interpretation. 

2.3. Data analyses 

The lockdown period in Indian cities (25 March 2020 onwards) is 
divided into different phases as discussed below. Detailed specifications 
regarding each phase are presented in the introduction of Section S1. 
On 22 March 2020 (0700−2100 h IST), a 14 -h voluntary public 
curfew/restraint was imposed as a pre-emptive measure against COVID- 
19 spread, as suggested by the government. From 25 March 2020 on
wards, an official quarantine plan was imposed by the GoI in four 
phases. Phase I (ended 14 April 2020) involved a suspension of nearly 
all services for 21 days, including transportation and factories but ex
cluding emergency services. Phase II (15 April 2020 to 03 May 2020) 
was an extension of Phase I for an additional 19 days, with a condi
tional relaxation for certain businesses. A lockdown area classification 
system (Red/Orange/Green) was initiated during this phase on 16 April 
2020. Phase III (04 May 2020 to 17 May 2020) remained in place for the 
subsequent 24 days. Area classification was periodically revised during 
this phase. Phase IV (18 May 2020 to 31 May 2020), a 14-day quar
antine, was the most recently updated rule by GoI before submitting 
this study. The duration between the official initiation of the lockdown 
restrictions (25 March 2020) and the time we extracted the datasets (11 
May 2020) is henceforth referred to as ‘lockdown’ and was compared 
with similar periods of the past five years (2015–2019). 

2.3.1. Generalized extreme value distribution 
The probabilistic distribution of PM2.5 exposure concentration 

during the lockdown period was explored for each city. Estimation of 
the PDF of PM2.5 concentrations before and during lockdown periods 
was carried out using a generalized extreme value (GEV) model, which 

is a common statistical approach used in extreme value analysis of air 
pollution data (Martins et al., 2017). The probability distributions or 
density function in the GEV distribution model is described by Eq. (1): 

= +f y µ k exp k y µ( ; , , ) 1Y
k
1

(1)  

The theoretical density of PM2.5 is also estimated using Eq. (1). The 
variable y is the hourly PM2.5 concentration and the parameters μ, σ, 
and k represent the distribution location, scale, and shape, respectively. 
The location determines the position of the distribution, the scale de
termines the size of deviations around the location parameter, and the 
shape determines the behaviour of the upper tail of the distribution 
(Coles, 2001). When k = 0, Eq. (1) is Gumbel distribution (light tail), 
when k is positive, Eq. (1) is Frechet distribution (heavy tail) and when 
k is negative, Eq. (1) is Weibull distribution (upper bounded tail). The 
estimated shape of PM2.5 for each city before and during lockdown is 
reported in Table S5. The GEV model is fitted to the PM2.5 dataset by 
maximizing the logarithmic likelihood function using the maximum 
likelihood method (Coles, 2001). 

2.3.2. Aerosol optical depth variation 
The relation of AOD with atmospheric physics and regional air 

quality is widely discussed, for example, for stating the correlation 
between cloud condensation nuclei and AOD (Liu & Li, 2014) or the 
correlations between PM2.5 and AOD (Kim, Zhang, Holt, & Liu, 2013). 
We perform an analysis (with a top-down approach) using AOD data, 
which could be useful to provide and link information related to the 
variation of aerosols during the anthropogenic emissions switch-off 
over five Indian cities. AOD measures aerosol loading, which is an 
optical property derived from different earth observation satellites (Li 
et al., 2009). The AOD spatial distribution maps show monthly average 
aerosol loadings worldwide, whereas the boundary values of optical 
thickness range from 0 to 1. An optical thickness of 0.1 is characterised 
by a crystal-clear sky with maximum visibility and an optical thickness 
of 1 represents very hazy conditions (NASA, 2020a). The analysed AOD 
datasets in this estimation, which were extracted from the NASA-Earth 
Observatory Global maps webpage (https://earthobservatory.nasa.gov/ 
global-maps), included both Terra- and Aqua-MODIS (Moderate Re
solution Imaging Spectroradiometer) with a resolution of 0.1° ⨯ 0.1°. 
The Terra- and Aqua-MODIS instruments scan the same area of Earth, 
with three-hours apart (NASA, 2020b). According to the Space Science 
and Engineering Centre (SSEC, 2020a), the Terra satellite crossing 
times in India (local time) approximately range from 0900 to 1100 h 
and from 2100 to 2300 h. For the Aqua satellite, approximate crossing 
times are from 0100 to 0300 h and from 1200 to 1400 h (SSEC, 2020b). 
For this study, a comparison analysis was carried out on monthly 
averaged AOD of both Terra- and Aqua-MODIS datasets during the 
lockdown period. March 2020 (before-lockdown) and April 2020 
(during-lockdown) were selected as the reference periods for the ana
lysis. The comparison analysis was obtained by means of the AOD 
variation, calculated as follows:  

AODvariation = [(AODi - AODref) /AODi]×100                              (2) 

where AODi and AODref represent a comparison month (during-lock
down) and the reference month (before-lockdown), respectively. 

2.3.3. Health impact assessment and economic valuation 
Impacts of reduced PM2.5 pollution, such as averted health burden 

(HB, in terms of premature deaths) related to PM2.5 exposure reductions 
and associated economic outcomes, have attracted worldwide atten
tion, as summarised in Table S6. We have undertaken health impact 
assessments and economic valuations regarding PM2.5 concentration 
reductions via a two-step approach: firstly, by estimating HB (Eq. 3) 
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and the excess risk (ER) of premature mortality (Eq. 6); and secondly, 
by determining the value of associated economic cost (million USD per 
year) for the selected Indian cities during lockdown (25 March to 11 
May 2020), as compared to similar periods of 2015–2019. 

HB due to short-term exposure to PM2.5 (number of premature 
deaths; Eq. 3) was estimated for the lockdown period (HBLP20; 25 March 
to 11 May 2020) and for the lockdown equivalent period during 
2015–2019 (HBLEP15−19). The reduction in health burden (ΔHB), based 
on averaged daily mean PM2.5 concentrations, is calculated as a dif
ference of the former and latter HB estimates (Eq. 4), following the 
approach applied in previous studies (Sahu & Kota, 2016; Chen et al., 
2020; Sharma et al., 2020; Venter et al., 2020). Likewise, the potential 
health benefits due to changes in daily mean PM2.5 concentrations 
(averaged over the lockdown, 25 March to 11 May 2020, and over the 
lockdown equivalent period of each previous year from 2015) in each 
city were estimated using the relative risk (RR) and ER associated with 
the pollutant loads (Eqs. 5 and 6).  

HB = BM ⨯ Pop⨯ AF; where AF = (RR-1)/RR                               (3)  

ΔHB = HBLEP15−19 - HBLP20                                                     (4)  

RRPM2.5 = exp[βPM2.5⨯(CPM2.5−CPM2.5,0)], CPM2.5 > 0                   (5)  

ER = RR-1                                                                            (6) 

where BM (baseline mortality per 100,000 people of all age groups) was 
obtained from standardised baseline mortality rates (Table S6) pub
lished by the Global Burden of Disease study of 2017 (GBD, 2017). 
Exposed population (Pop) was estimated by applying a 76.8% factor to 
the city-wise population of each Indian city. This factor was obtained 
from the Global Burden of Disease study for India (Balakrishnan et al., 
2019), whereby the authors estimated this fraction when the total In
dian population was assumed to be exposed to National Ambient Air 
Quality Standards for PM2·5. AF (attributable fraction) of a specific RR 
(Eq. 5; Table S7) is associated with pollutant load. β is the exposure- 
response coefficient indicating the additional health risk (such as 
mortality) caused per unit of PM2.5, when concentrations exceed a 
threshold limit. For example, the β value is considered to be 0.038% for 
PM2.5 per μg m−3 (Hu, Ying, Wang, & Zhang, 2015; Shen et al., 2020). 
CPM2.5 is the daily mean PM2.5 concentration with reference to the 
threshold concentration (CPM2.5,0 of 0 μg m−3), which means that con
centrations below or equal to this value are associated with no excess 
health risk (i.e. RR = 1) (Chen et al., 2020). 

In the second step, the economic cost was estimated using the value 
of statistical life (VSL; USD per person) for India. The VSL is based on an 
individual's valuation of their willingness to pay to reduce the risk of 
dying, a standard concept used widely (e.g. Xie, Dai, Dong, Hanaoka, & 
Masui, 2016, 2019, and Etchie et al., 2017) for cost-benefit analyses to 
reduce air pollution (OECD, 2014; WHO, 2015). The VSL estimate for 
India is derived from Ghude et al. (2016) as 1.1 million USD per 
average human lifespan, which is assumed to be the same for the stu
died period here. The total reduction in HB (per thousand) per city is 
multiplied by VSL to monetise averted economic cost in billion USD. 
The value for VSL used in this study is slightly higher than the con
servative estimate (USD 602,000) reported by the Organisation for 
Economic Co-operation and Development for 2010 (OECD, 2014). 

The assumptions used for the above analysis were: (1) a uniform RR 
value was assumed for the city-wise population and did not derive age 
group and cause-specific RR values for PM2.5; (2) state-wise baseline 
mortality rates were applied to corresponding cities for estimating city- 
wise HB obtained from the Global Burden of Disease study (GBD, 2017); 
(3) data from a certain period (25 March to 11 May) was considered to 
represent lockdown duration and lockdown equivalent periods from 
previous years (2015–2019), while such analyses are generally con
ducted with much more comprehensive datasets with an extensive time 
domain. 

3. Results and discussions 

3.1. Overview of PM2.5 during the lockdown in Indian cities 

Table 2 presents the descriptive statistics of five Indian cities during 
the lockdown period (25 March to 11 May 2020) with respect to similar 
periods of the past five years, which also minimises the impacts of 
meteorological conditions on temporal characteristics of ambient PM2.5 

concentrations. The lockdown restrictions reduced the hourly average 
concentration of PM2.5 in all five cities. For example, PM2.5 con
centrations during lockdown were 13  ±  10 μg m−3 (Chennai), 
40  ±  24 μg m−3 (Delhi), 31  ±  11 μg m−3 (Hyderabad), 29  ±  17 μg 
m−3 (Kolkata) and 28  ±  11 μg m−3 (Mumbai), which were reduced by 
32, 52, 26, 24 and 10% when compared with those of the same period 
in 2019 in each city, respectively. These improvements varied when 
compared with different years from 2015 to 2019, ranging from –19 to 
–43% (Chennai), –41 to –53% (Delhi), –26 to –54% (Hyderabad), –24 
to –36% (Kolkata), and –10 to –39% (Mumbai). Most cities showed an 
improvement from one-fifth to halving their concentrations during the 
lockdown period. Moreover, the maximum concentration peak in each 
city decreased appreciably (up to a 5-fold decrease) during the lock
down period when compared against previous years (Table 2). 

Delhi consistently exhibited the greatest improvements against 
previous years because Delhi, compared to other Indian cities, has a 
higher number of ordinarily on-road vehicles (Table S1), use of which 
was restricted during the lockdown period. Delhi has three coal-fired 
thermal power plants in and around it that had no restrictions on their 
operation during the lockdown period, in order to meet the energy 
demands of the city. On a relative basis, it is expected that the emissions 
of power plants may have similarly influenced PM2.5 concentrations 
during the lockdown in 2020 and the lockdown-equivalent period in 
2019. Source apportionment studies for Delhi suggest that the major 
sources of PM2.5 are secondary aerosols (∼21%), soil-dust (∼21%), 
vehicle emissions (∼20%), biomass burning (14%), fossil-fuel com
bustion (∼14%), industrial emissions (∼6%) and sea-salt (∼4%) 
(Sharma, Mandal, Jain, Sharma, & Saxena, 2016). While the effect of 
reduction in traffic emissions during the lockdown is evident (Fig. S1), 
switching off the other sources, such as fine mineral/soil dust linked to 
road-traffic and construction activities and industrial emissions that are 
also precursors of secondary aerosol formation, may have contributed 
to the reduced concentrations observed in Delhi. This means that re
ductions in PM2.5 concentrations during lockdown may also be attrib
uted to reduced levels of co-pollutants such as NO2 and SO2 levels 
(Table 1), which play an important role in the formation of secondary 
aerosols (Chen et al., 2019). Additionally, the effect of emissions from 
crop residue burning around Delhi has been often linked with pollution 
episodes in winter (Hama et al., 2020; Kanawade et al., 2020). Stubble 
burning of wheat residue also occurs in surrounding states of Delhi 
during pre-monsoon season, including April and May (Nair et al., 
2020), which is also the period of the lockdown considered in this work. 
However, unlike rice crop residue, which is usually not utilised to feed 
animals and consequently burnt during winters, the wheat crop residue 
during pre-monsoon seasons is mostly stocked and utilised to feed do
mestic animals throughout the year (Kanawade et al., 2020). Moreover, 
dispersion conditions during April and May are expected to be better 
than during the winter. While such contributions during the lockdown 
period in Delhi are expected to be minimal, detailed source appor
tionment studies coupled with regional-scale dispersion modelling are 
needed to accurately confirm and quantify the contributions of crop 
residue burning during these months. 

It is interesting to note that despite the lockdown, Mumbai recorded 
the least reductions. Mumbai is a coastal city, and unlike landlocked 
cities such as Delhi, may benefit from the flushing of city emissions by 
sea breezes (Kumar et al., 2015). Recent source apportionment studies 
suggest that PM2.5 concentrations in Mumbai are dominated by an
thropogenic sources (Police, Sahu, Tiwari, & Pandit, 2018), including 
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crustal material (∼9%), sea-salt spray (∼6%), coal/biomass combus
tion (∼26%), fuel/oil combustion (∼19%), road traffic (∼18%) and 
metal industry (∼11%), with and the remainder unknown. During the 
lockdown, household coal/biomass burning is expected to increase as 
people spend more time indoors, while most other sources are expected 
to remain operational and at relatively normal levels. Road traffic and 
metal industry emissions are expected to decline but constitute less than 
one-third of total contributions to PM2.5 concentrations in Mumbai, 
possibly explaining a comparatively low impact of the lockdown on 
observed concentrations. 

Despite the switch-off of the majority of commercial/industrial and 
vehicular emission sources (e.g. –79% and –80% driving in Delhi and 
Mumbai, respectively, as per Apple mobility trends), which are con
sidered to be dominant sources of emissions in Indian cities (Chen et al., 
2020), up to half of the concentration levels remain. This highlights the 
significance of additional PM2.5 sources, such as biomass burning in 
residential households, roadside waste or municipal solid waste land
fills, thermal power plants, electricity generators and regional transport 
(Hama et al., 2020; Kumar et al., 2013, 2015), and that holistic source- 
control measures are needed for improved air quality in post-lockdown 
environments. 

3.1.1. PM2.5 frequency analysis 
Fig. 2 shows the distribution of PM2.5 concentrations in different 

concentration ranges and the peaks during the lockdown, as compared 
with earlier years in each city, and was carried out using the GEV model 
(Eq. 1). Additionally, the frequency histograms of PM2.5 concentration 
during lockdown with the fitted density curve are presented in Fig. S2. 
The PDF of PM2.5 concentrations were consistently lower for all cities 
during the lockdown period, and their shapes are less skewed to the 
right when compared with the other periods, indicating the expected 
PM2.5 decline due to lockdown restrictions. The extreme PM2.5 con
centration in the upper tail of the distribution is lower and converges 
asymptotically to the Gumbel distribution (light tailed). For instance, 
the GEV model estimated that 1% quantiles of Delhi’s PM2.5 con
centration in the upper tail were 293 μg m−3 in the pre-lockdown 
periods and 135 μg m−3 during lockdown, with a 158 μg m−3 differ
ence. It also demonstrates that extreme PM2.5 (high concentration) 
values were less frequent during lockdown in all cities, and particularly 
in Delhi (Fig. 2b). Fig. 2f shows a comparison of PM2.5 PDF among all 
five Indian cities during lockdown. Delhi experienced the greatest 

benefit, with a ∼53% reduction in PM2.5 concentrations and more 
distributed around the central moment. 

In order to understand the behaviour of PM2.5, mean variation in the 
distribution of PM2.5 concentrations, and the mean difference in PM2.5 

concentrations during lockdown, the current lockdown period and re
lative preceding periods at all cities were compared, as listed in Table 3. 
Among the cities, Delhi showed the highest percentage reduction in 
PM2.5 concentrations (over 50%) and Mumbai had the lowest at about 
12%, with a p-value of < 0.01 (1%), which indicates that the percen
tage of reductions were statistically significant (Table 3). The mean 
values of PM2.5 concentration estimated by the GEV model varied from 
20 to 85 μg m−3 in the preceding year and 13–40 μg m−3 during lock
down in Chennai and Delhi, respectively. The percentage reduction for 
the other cities ranged from 24 to 32%, which were slightly smaller 
than the measured values for Delhi and Mumbai. The most frequent 
(mode) value varied from 2 μg m−3 (Chennai) to 28 μg m−3 (Delhi) 
during the lockdown period. The most frequent PM2.5 concentration 
ranges in each city during the lockdown period were: 2−6 μg m−3 in 
Chennai, 21−28 μg m−3 in Delhi, 24−27 μg m−3 in Hyderabad, 
17−19 μg m−3 in Kolkata and 19−22 μg m−3 in Mumbai. Overall, the 
GEV model is in agreement with observed PM2.5 and properly re
produced the distribution of PM2.5 during the two study periods. 

3.1.2. Temporal and diurnal trends 
Fig. 3 shows a boxplot for PM2.5 during the lockdown period for six 

years for all cities. To further assess the impact of lockdown on PM2.5 

trends in five major cities, a smoothed time series of 2020 PM2.5 con
centrations was compared with that of the previous five years (Fig. S3). 
PM2.5 gradually decreased over the lockdown period in all five cities. 
These observations were more pronounced when the previous five-year 
average was compared to the lockdown period of 2020 (Fig. S3). While 
all cities showed greater improvements towards the end of the lock
down period, landlocked cities (Delhi and Hyderabad) reported less 
than half the PM2.5 levels of those of the previous five-year average. 
Finally, the trend of PM2.5 percentage reduction in 2020 compared to 
the past five years reported similar variations across cities, with fluc
tuations in the early lockdown period preceding a comparatively steady 
percentage reduction in PM2.5 concentrations as the lockdown con
tinued (Fig. S4). 

The diurnal variation of PM2.5 during the lockdown period was 
plotted against 2019 (Fig. 4) and the previous five years (Figs. S5−8) 

Table 2 
Overview of summary statistics of hourly PM2.5 concentration for five cities during lockdown period (25 March to 11 May 2020) for each year. n is the number of 
hourly averaged concentration data points for the above-noted duration after cleaning the data (Section 2.3). We estimated p-value using t-tests based on the hourly 
PM2.5 dataset for each year and they were found to be statistically significant (p-value < 0.0001).          

Cities Year 2020 2019 2018 2017 2016 2015  

Chennai Mean  ±  SD 13  ±  10 19  ±  13 16  ±  12 23  ±  10 19  ±  11 19  ±  12 
Med (max) 11 (95) 17 (79) 13 (370) 22 (63) 17 (165) 16 (80) 
n 1084 1095 1104 1063 909 923 
ΔC1 (%) – –32 –19 –43 –32 –32 

Delhi Mean  ±  SD 40  ±  24 84  ±  54 71  ±  43 84  ±  57 85  ±  79 68  ±  45 
Med (max) 34 (195) 71 (519) 63(286) 67 (470) 62 (865) 55 (395) 
n 1152 1150 1145 1068 1150 1144 
ΔC (%) – –52 –44 –52 –53 –41 

Hyderabad Mean  ±  SD 31  ±  11 42  ±  17 54  ±  19 68  ±  26 52  ±  24 53  ±  22 
Med (max) 30 (106) 39 (137) 50 (206) 62 (207) 49 (228) 48 (222) 
n 1142 1142 1066 1017 1123 907 
ΔC (%) – –26 –43 –54 –40 –42 

Kolkata Mean  ±  SD 29  ±  17 38  ±  16 43  ±  16 45  ±  13 42  ±  15 38  ±  19 
Med (max) 25 (107) 36 (115) 40 (138) 44 (172) 39 (102) 34 (129) 
n 1151 1149 1031 1075 1121 1125 
ΔC (%) – –24 –33 –36 –31 –24 

Mumbai Mean  ±  SD 28  ±  11 31  ±  16 44  ±  22 46  ±  25 34  ±  19 44  ±  26 
Med (max) 26 (74) 28 (118) 39 (195) 39 (165) 30 (217) 38 (377) 
n 1044 1141 947 980 977 1092 
ΔC (%) – –10 –36 –39 –18 –36 

1 ΔC = [(C2020 - C201x)/C201X] ×100 is the percent change of average PM2.5 in 2020 against the previous years.  
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for all cities to show the impact of lockdown on PM2.5 levels. Lockdown 
implementation flattened the diurnal PM2.5 concentration trend in all 
cities (Fig. 4). Most of the PM2.5 peaks observed during daytime 
(0600−1800 h) were less prominent in 2020 when compared with 
previous years in all cities, indicating fewer anthropogenic activities as 
discussed above. The maximum comparative reduction in PM2.5 con
centrations during lockdown was noted to occur at around 0900 h, 
coinciding with morning traffic peak hours. 

In order to further understand PM2.5 trends during lockdown, 
average daily PM2.5 concentrations were normalised using average 
daily PM2.5 preceding 23 March 2019 (Fig. 4) and the previous years as 
reference values (Figs. S5−8). In all cities except Delhi, PM2.5 con
centrations gradually reduced during the studied period in all six years 
when compared to the preceding reference day, and the ratio was 
further lowered towards the end of study period. In Delhi, however, 
2020 PM2.5 concentrations were unchanged when compared to 

preceding reference days (Ratio = 1) while higher PM2.5 concentrations 
were recorded in previous, non-lockdown years. 

3.2. Lockdown impact on PM2.5 across cities 

In order to understand the spatial variation of declines in PM2.5 

concentrations during lockdowns in cities across the world, a review of 
recent relevant studies was undertaken (Table S8), visualisation of 
which is presented in Figs. 5 and 6. The Indian cities studied here 
showed a significant impact of lockdown on air quality. For example, 
Delhi saw a reduction of up to 52% in average PM2.5 concentration 
when compared with the same time period of the previous year 
(Table 2). These reductions were expected due to enforced self-isolation 
and restricted daily activities, with inevitably reduced emissions from 
traffic and industrial sources (Section 3.1). Our estimated PM2.5 re
duction was greater for Delhi (-52%) than the -39% reported by Mahato 

Fig. 2. Density plot of hourly PM2.5 concentration before and during lockdown for (a) Chennai, (b) Delhi, (c) Hyderabad (d) Kolkata, (e) Mumbai, and (f) all cities 
only during the lockdown period. 

Table 3 
Sample and GEV model estimated means, percentage of mean reduction in PM2.5 and p-values before (2019) and during lockdown periods.          

25 March to 11 May 2019 25 March to 11 May 2020 

City Sample mean 
(μg m−3) 

GEV estimated mean (μg m−3) Sample mean 
(μg m−3) 

GEV estimated mean (μg m−3) % of mean reduction (2019−2020) p-value  

Chennai 20 20 13 13 32 2.2e−16 

Delhi 84 85 40 40 53 2.2e−16 

Hyderabad 42 42 31 31 26 2.2e−16 

Kolkata 38 38 29 29 24 2.2e−16 

Mumbai 31 31 28 28 12 1.5e−09    
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et al. (2020) and -35% by Chauhan and Singh (2020), and was also 
slightly higher for Mumbai (-14%) than the -10% reported by Chauhan 
and Singh (2020). This may be attributed to the greater duration of 
lockdown considered by our study (Table S8). Indeed, other cities 

across the world, such as Paris (-53%), Amsterdam (-47%) and London 
(-45%), have shown similarly marked declines in PM2.5 concentrations 
(Shrestha et al., 2020). Kolkata, Hyderabad and Chennai saw 22, 26 and 
28% reductions in PM2.5 concentrations, respectively. These results are 

Fig. 3. Variability of PM2.5 concentrations (μg m−3) during lockdown period (25 March to 11 May 2020) for (a) Chennai, (b) Delhi, (c) Hyderabad, (d) Kolkata, and 
(e) Mumbai. The plot represents the mean PM2.5 (diamonds), the median (horizontal bars in the centre of boxes), the 25th and 75th percentiles (the bottom and top 
edge of the boxes), and minimum and maximum concentration (the bottom and the top edge of the whiskers). The plot also shows extreme observations, which are 
much larger and lie above the rest of the data as black dots). 
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Fig. 4. (a) Diurnal variation of PM2.5 during lockdown period in 2019 (blue) and 2020 (red) at five Indian cities; and (b) daily change in relative concentrations of 
PM2.5 during lockdown period in 2019 (blue) and 2020 (red) against the daily average concentration on 25 March of corresponding years. The broken lines show 
missing datasets. 
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very similar to those for other Asian cities, such as Hunan, Guangdong 
and Guizhu of China, with PM2.5 reductions ranging between 20% and 
30% (Table S8). Delhi’s nearly 50% reduction in PM2.5 is very similar to 
results from studies into two other Asian megacities: Shanghai and 
Beijing (Chauhan & Singh, 2020). In general, relatively large reductions 
were seen for high-population cities because anthropogenic PM2.5 

emissions are typically higher in these cities during normal working 

days than in smaller and less urbanised cities or towns (Zhao et al., 
2009). 

PM2.5 concentration reductions due to lockdown have varied in 
different cities across the world (Fig. 5). Minimal reductions were seen 
in Rome, where there has been little change in the volume of traffic, a 
primary source of PM2.5 in Rome (Dimitriou & Kassomenos, 2014), and 
in the city centre of Sao Paulo, where public transportation continued 
during a partial lockdown (Nakada & Urban, 2020). In China, estimated 
PM2.5 reductions vary from a minimum of 9% in Sichuan to a maximum 
of 50% in Beijing and Shanghai, due to differences in levels of urba
nisation and in the timing of halts in human activities (Huang et al., 
2020). Meteorology also plays a significant role in pollution dispersion, 
and rain or storms during the study period may have enhanced dis
persion and deposition (Yang, Yao, Li, & Fan, 2013). For example, in the 
US, New York experienced a ∼35% reduction, compared with only 4% 
in Los Angeles, due to rainfall over the lockdown period (Chauhan & 
Singh, 2020). However, the effect of lockdown on air quality is per
ceptible in most cities of the world. While the intensity of anthro
pogenic pollutant sources (discussed in Section 3.1), their switch-off 
period, lockdown strictness and local meteorological conditions were 
all influencing factors for variation in the impact of lockdowns on PM2.5 

across cities (Fig. 6), changes in on-road traffic was one clear and major 
factor. This substantiates our earlier observation (Section 3.1) that 
decreasing traffic volume showed a proportionally decreasing trend in 
PM2.5 concentrations (Fig. S1), explaining why cities with higher ve
hicular populations tend to show higher reductions in PM2.5 con
centrations during lockdown, when transportation activities were re
stricted. 

3.3. Spatial distribution of AOD 

We used the AOD index to analyse whether an increase or decrease 
of aerosol loadings in Indian cities was related to the lockdown. The 
AOD index at 0.1° pixel of regional scale offers a different perspective 
regarding the complexity involved in the spatial distribution of aerosol 
loadings. It also enables visualisation of aerosol hotspots globally, re
gionally or for a specific city. To do so, we generated 12 AOD maps 
equally covering the months of March and April of each year from 2015 
to 2020 (Figs. S9−10). These maps were compared in terms of AOD 
variation (Section 2.3.2) for all the studied Indian cities. 

Fig. 7 shows the spatial distribution of AOD over India and across all 
five cities before and during lockdown (March and April 2020). It is 
known that AOD is related to topography (Fig. 1), with maximum va
lues usually found in lowlands (Dong et al., 2013). We observed a si
milar pattern in the before-lockdown period and during previous years 
(Fig. 7a–c). However, as expected, an opposite pattern was seen for the 
during-lockdown period (Fig. 7d), implying a decrease in aerosol 
loadings in these lowland cities. The spatial distribution of AOD during 
March 2019, April 2019 and March 2020 is shown in Fig. 7a–c, where 
values in the 0.4−0.8 range can be observed in northern India and 
0.6−0.8 in northeast India. Conversely, these values were in the 
0.2−0.4 range during April 2020 (Fig. 7d) in northern India, with a 
reduction in aerosol loadings mirroring the lockdown period. 

The AOD variations demonstrated an increase or a decrease in 
aerosol loadings in different regions of India. The AOD variation for 
March 2020 compared to March 2019 (Fig. 8a) shows an increase 
(20–100%) in aerosol loadings in north India. Conversely, April 2020 
(Fig. 8b) saw a decrease in north, east and south India, which could be 
linked to the lockdown. The AOD variation results are in line with those 
reported by Sharma et al. (2020), who found the highest air quality 
index (AQI) reductions in north (44%) and south (33%) India and the 
lowest in central India (15%), where AOD variation showed high spa
tial-horizontal variation. 

AOD variation in five Indian cities during March and April 2020 was 
compared against that of previous years (Fig. 9). When compared to 
data from 2019, a reduction in aerosol loadings in Hyderabad (5%) and 

Fig. 5. PM2.5 concentration reduction in percentage due to COVID-19 lockdown 
in various global cities during Feb-May 2020 compared to the same period in 
previous years (Table S8). The cities considered in this study are shown in 
orange. Source: 1Average of this study and Chauhan and Singh (2020); 2This 
study; 3Average of this study, Mahato et al. (2020) and Chauhan and Singh 
(2020); 4Huang et al. (2020); 5Zambrano-Monserrate et al. (2020); 6Average of  
Huang et al. (2020) and Chauhan and Singh (2020); 7Shrestha et al. (2020);  
8Chauhan and Singh (2020); 9Average of Shrestha et al. (2020) and Chauhan 
and Singh (2020); 10Nakada and Urban (2020). 
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an increase in Mumbai (57%) was observed for the before-lockdown 
period (March 2020; Fig. 9a). These fluctuations in the form of a city- 
specific decrease or increase could be related to other regional inputs/ 
outputs, such as commercial/industrial emissions and meteorological 
conditions. It is worth noting that AOD variation can be large and that 
differences can be complex at regional scale, and the same applies for 
aerosol properties (Li et al., 2009). Conversely, during lockdown (April 
2020), as presented by Fig. 9b, a reduction in aerosol loadings was 
observed for Chennai (29–57%), Delhi (11–29%), Kolkata (2–14%) and 
Mumbai (1–48%). However, Hyderabad showed fluctuations, with an 
increase of 25% in aerosol loadings in April 2020 compared to 2019, 
and a decrease of 8% with respect to 2018. 

The AOD relationship with topography was not seen to continue 
during the lockdown period, particularly in north India, showing a 
different pattern to that of previous years (Fig. S11). Furthermore, four 
cities (Chennai, Delhi, Kolkata, and Mumbai) showed an AOD decrease 
in line with the analysis performed in Section 3.2. However, Hyderabad 

showed an AOD increase, which is not in line with the reduction dis
cussed in Section 3.2. This variation may be partly related to the dif
ferent resolution of the dataset involved in this work (e.g. monthly AOD 
data used here and hourly data used in Section 3.2). Due to the ‘switch- 
off’ of most commercial/industrial and vehicular emissions, the AOD 
increase may also be attributable to other sources related to regional 
conditions. Some regional sources that may have contributed include 
cloud formation in late-afternoon to evening hours and mineral dust 
transport (from the Thar Desert) during the pre-monsoon period 
(March-May) (Kaskaoutis, Badarinath, Kumar Kharol, Rani Sharma, & 
Kambezidis, 2009). These topographical and geographical character
istics illustrate that not only anthropogenic but also natural emissions 
are important sources in this region. 

3.4. Averted health burden and associated economic cost 

We quantified the health and economic impacts of lockdown- 

Fig. 6. Decline in PM2.5 concentration in percentage due to COVID-19 lockdown in various cities across the world during Feb-May 2020 compared to the non- 
lockdown period in the past (Table S8). Declines in Mumbai, Delhi, Beijing, Shanghai and New York are from the average of different studies, as noted in Fig. 5 and 
also detailed in Table S8. 
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induced reductions in PM2.5 concentrations across selected Indian cities 
(Fig. 10 and Table S9). The health impacts are presented in terms of ER 
and averted HB (i.e. reduced number of premature deaths) associated 
with daily mean PM2.5 exposure during periods with lockdown (HBLP20) 
and without lockdown (HBLEP15−19). The mean daily ER reduced by 
36.4% over all five cities, with 30, 50, 42, 30 and 30% reductions in 
Chennai, Delhi, Hyderabad, Mumbai and Kolkata when compared with 
the previous five years, respectively (Table S9). The reduction in ER 
during lockdown was greatest for Delhi (20% greater than Chennai, 
Mumbai and Kolkata, and 8% greater than Hyderabad) when compared 
with similar periods of previous years. The mean ER averaged across 
the five Indian cities (36%) was lower than the 52% value reported by  
Sharma et al. (2020), who estimated PM-related risk reduction between 
16 March and 14 April 2020 by comparing against the same duration in 
2017−19 in 22 cities of different regions of India. The reduction in HB 
during lockdown, as compared against lockdown equivalent periods of 
the previous five years, was greatest for Delhi (49%) and exceeded 
Chennai, Hyderabad, Mumbai and Kolkata by 19, 8, 19 and 20%, re
spectively. Combined estimates for all cities indicates that a total of 630 
premature deaths have been avoided across five cities during the 
lockdown period. These estimates of avoided premature deaths due to 

PM2.5 are within the 12% range of the averaged estimate of 5300 
(1000–11700) for India during the first two weeks of lockdown (Feb
ruary/March 2020) as compared to similar periods of 2017−2019, 
conducted by Venter et al. (2020). However, these differences may be 
linked to variations in the considered time domain and number of cities. 

The averted HB, using the principle of VSL (Section 2.3.3), is 
monetised at 0.69 billion USD (Table S9). In other words, during the 
2020 lockdown period, India benefited by as much as 0.69 billion USD, 
which is 14% of India’s total allocated healthcare spending for the fiscal 
year 2020–2021 (i.e. 5.09 billion USD). This is also roughly 11% higher 
than India’s planned outlay (USD 622.78 million) towards the en
vironment and climate change as per the Indian Union Budget for the 
financial year 2020−21 (IBEF, 2020). Additionally, a linear correlation 
(R2 = 0.84) between changes in prevented premature deaths and 
averted economic cost was observed among all cities, which may sup
port the economic value of lockdown restrictions. However, this ana
lysis does not infer or endorse lockdown as a strategy to promote sus
tainable development but merely highlights the potential health and 
associated economic co-benefits of reduced business activities and 
human mobility. The analysis does not account for COVID-19 lockdown 
impacts on other macroeconomic indicators, such as gross domestic 

Fig. 7. Spatial distribution of AOD over India: (a) March-2019, (b) March-2020, (c) April-2019, (d) April-2020.  
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product, inflation or employment, which might have much more ser
ious and wider implications for the Indian economy (Barua, 2020). In 
particular, restrictive measures during lockdown have dis
proportionately affected the livelihood and socio-economic activities of 
poorer communities (Buheji et al., 2020). Nevertheless, such analyses 
may contribute towards an understanding of the annual health and 
economic impacts of lockdown, to support a holistic assessment of 
impacts and inform relevant policy measures. 

4. Conclusions 

We studied the impact of the ‘anthropogenic emissions switch-off’ 
during COVID-19 lockdown on ambient PM2.5 in five Indian cities, by 
comparing 2020 data with that of preceding years and contextualising 
our results with those from other cities. We also analysed the PDF of 
PM2.5, the spatial distribution of AOD using satellite imagery, and 
health and economic valuations of the impact of decreased PM2.5 con
centrations. Conclusions include: 

• The analysis of relative reductions in PM2.5 due to lockdown re
strictions showed the highest (52%) and lowest (10%) reductions for 
Delhi and Mumbai, respectively, as compared against the same 
period in 2019. Chennai (32%), Hyderabad (26%), and Kolkata 
(24%) also showed promising reductions over similar periods. 
Although the correlation between PM2.5 concentrations and the 
decrease in vehicular traffic across these cities was found to be 
linear (R2 = 0.69), the potential contribution of commercial/in
dustrial sectors and other PM2.5 sources (biomass burning in re
sidential households, thermal power plants, electricity generators, 
and secondary particle formation) are also considered to be im
pactful.  

• During the lockdown period, extreme PM2.5 concentrations were 
less frequent in all five cities. Delhi benefited the most, with a 
greater than 50% reduction in concentrations, as also estimated by 
the GEV model. The GEV model also performed well in capturing the 
distribution and reproducing the mean percentage reduction in 
PM2.5 for the two study periods. Statistically significant p-values 
(< 0.01) were observed when comparing PM2.5 reductions between 

the current lockdown period and relative preceding periods in all 
cities, with Delhi showing the highest concentration reductions 
(over 50%) and Mumbai the lowest (12%). Therefore, the lockdown 
period affected PM2.5 associated risks by reduction of their onset 
probability, in particular during peak (day) time. 

• During the lockdown period, all five cities displayed a gradual de
crease in PM2.5 concentrations, resulting in greater improvements 
towards the end of study duration. Analysis of diurnal variation of 
PM2.5 in these cities revealed that the implementation of lockdown 
helped to suppress PM2.5 peaks during the daytime, and especially in 
the morning, when compared to previous years. Diurnal PM2.5 

variation showed generally lower concentrations during the lock
down period in 2020 when compared with the same period of pre
vious years. 

• Indian cities showed up to 50% reductions (Delhi) in PM2.5 con
centrations, compared with up to 60% in Europe (Vienna and 
Zaragoza), and other global cities ranged from 4% in Los Angeles to 
42% in Shanghai. The lockdown-induced PM2.5 reduction in India 
was distinct and depended on various factors. Large and densely 
populated cities with high traffic volumes seemed to correlate with 
high PM2.5 reductions. Other influencing factors included the in
tensity of other anthropogenic pollutant sources (e.g. indoor), 
lockdown strictness and duration, and meteorological fluctuations. 

• The spatial distribution of AOD during lockdown (April 2020) de
monstrated that aerosol loadings decreased in Chennai (29%), Delhi 
(11%), Kolkata (4%), and Mumbai (1%), with respect to April 2019. 
AOD variation analysis showed a remarkable reduction in north, 
east, and south India, with mitigation related to the switch-off of 
most commercial/industrial and vehicular emissions. Conversely, 
central India showed an increase in aerosol loadings and high hor
izontal spatial variation of AOD, which may be linked to different 
sources (e.g. sea aerosol) or the presence of clouds in the area, po
tentially leading to an overestimation of AOD.  

• An appreciable reduction in daily mean PM2.5 concentrations due to 
lockdown led to a decrease in both ER (30–50%) and EV (29–49%) 
values, which avoided 630 premature deaths across five Indian ci
ties, valued at 0.69 billion USD. While the reduced levels of air 
pollution during lockdowns indicate clear health and associated 

Fig. 8. AOD variation over India for: (a) March 2020 compared to March 2019; (b) April 2020 compared to April 2019. Decrease and increase in aerosol loadings are 
shown as green- and red-shaded regions, respectively. 
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Fig. 9. AOD variation using (a) March 2020 and (b) April 2020 as a reference comparison period, respectively.  
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economic co-benefits, and that cities should plan more rigorous 
strategies to control air pollution, we do not infer or endorse such 
benefits at the cost of such pandemics, which have brought devas
tating impacts on communities, businesses, economies, human mo
bility and so on. 

We demonstrated a reduction in PM2.5 during the COVID-19 lock
down period in Indian cities, similar to reductions seen in cities else
where. A multi-pollutant assessment, considering primary and sec
ondary pollutants over a majority of the lockdown period, is 
recommended for future work to obtain a holistic picture of the impact 
of lockdown period on air pollutants. Generally, cities with larger traffic 
volumes showed higher reductions in PM2.5 during the lockdown. Our 
study also highlighted that other emissions sources contributed to a 
permeation in albeit subnormal PM2.5 concentrations during the lock
down period. Source apportionment studies, disentangling the con
tributions of underpinning operational emission sources, are therefore 
desirable in order to understand their relative impacts during the ‘an
thropogenic emissions switch-off’ of COVID-19 lockdown. 
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