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ABSTRACT

Background. Cellular heterogeneity within the tumor microenvironment is essential
to tumorigenesis and tumor development. A high-resolution global view of the tumor-
infiltrating immune and stromal cells in breast tumors is needed.

Methods. xCell was used to create a cellular heterogeneity map of 64 cell types in
1,092 breast tumor and adjacent normal tissues. xCell digitally dissects tissue cellular
heterogeneity based on gene expression. Integrated statistical analyses were then
performed.

Results. There were noticeable differences between the cell fractions in tumor tissues
and normal tissues. Tumors displayed higher proportions of immune cells, including
CD4+ Tem, CD8+ naive T cells, and CD8+ Tcm compared with normal tissues.
Immune inhibitory receptors (PD1, CTLA4, LAG3 and TIM3) were co-expressed on
certain subtypes of T cells in breast tumors, and PD1 and CTLA4 were both positively
correlated with CD8+ Tcm and CD8+ T cells. 28 cell types were significantly associated
with overall survival in univariate analysis. CD4+ Tem, CD8+ Tcm, CD8+ T-cells,
CD8+ naive T-cells, and B cells were positive prognostic factors but CD4+ naive T-
cells were negative prognostic factors for breast cancer patients. TDRD6 and TTK are
promising T cell and B cell targets for tumor vaccines. Endothelial cells and fibroblasts
were significantly less prevalent in tumor tissues; astrocytes and mesangial cells were
negatively correlated with the T stage. Mesangial cells and keratinocytes were found
to be favorable prognostic factors and myocytes were negative prognostic factors.
Five cell types were found to be independent prognostic factors and we used these
to create a reliable prognostic model for breast cancer patients. Cellular heterogeneity
was discovered among different breast cancer subtypes by Her2, ER, and PR status. Tri-
negative patients had the highest fraction of immune cells while luminal type patients
had the lowest. The various cells may have diverse or opposing roles in the prognosis
of breast cancer patients.

Conclusions. We created a unique cellular map for the diverse heterogeneity of immune
and stromal phenotypes within the breast tumor microenvironment. This map may lead
to potential therapeutic targets and biomarkers with prognostic utility.

Subjects Bioinformatics, Immunology, Oncology
Keywords Breast cancer, Immune, Stromal, Cellular heterogeneity
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INTRODUCTION

Breast cancer is a common cancer in women and drug resistance and distal metastasis
remain major causes of mortality despite improvements in the early diagnosis and treatment
of the disease (Cassetta ¢ Pollard, 2017). Tumors have complex microenvironments
composed of malignant cells, immune cells, and stromal infiltrate. Growing evidence
suggests that this microenvironment plays a fundamental role in the development of
malignancy and resistance to therapy (Noy ¢ Pollard, 2014). Tumor-infiltrating cells can
demonstrate either tumor-suppressing or tumor-promoting effects, depending on the
cancer type. For instance, regulatory T cells (Tregs) and tumor associated macrophages
(TAMs) are associated with pro-tumor functions (De Palma ¢ Lewis, 2013; Nishikawa &
Sakaguchi, 20145 Noy ¢ Pollard, 2014), but CD8+ T cells are associated with improved
clinical outcomes and better responses to immunotherapy (Tumeh et al., 2014). Research
in cancer immunology has led to the development and approval of checkpoint blockers.
These remarkably effective drugs augment T cell activity by blocking cytotoxic lymphocyte
antigen-4 (CTLA4), programmed cell death protein 1 (PD1), and PD1 ligand (PDL1).

A better understanding of the cellular heterogeneity within the tumor microenvironment
may reveal predictive biomarkers, improve existing treatments, and help to develop
novel therapeutic strategies. Cellular heterogeneity is traditionally determined using flow
cytometry and immunohistochemistry, however, these methods are extremely difficult
to apply to solid tumors with limited throughput (Gentles et al., 2015). Bioinformatics
advancements have created novel methods that dissect cellular heterogeneity based on gene
expression profiles (Abbas et al., 2009; Newman et al., 2015; Rooney et al., 2015; Shen-Orr
& Gaujoux, 2013). For instance, CIBERSORT can estimate the abundances of 22 immune
cell types (Newman et al., 2015). However, rare subsets of immune cells and stromal cells
recognized to be important in the promotion or inhibition of tumor growth, invasion, and
metastasis are ignored by CIBERSORT (Galon et al., 2006; Hanahan & Coussens, 2012).
xCell can define 64 cell types within tissues, including immune and stroma cells (Ararn, Hu
¢ Butte, 2017a; Aran, Hu ¢ Butte, 2017b). Recent analysis with xCell reveals that plasma
cells and CD4+ Tcm in the tumor microenvironment may play a role in the progression
of triple-negative breast cancer (Deng et al., 2019), although only immune cells were
investigated. We used xCell to digitally depict the cellular heterogeneity map within the
breast tumor microenvironment to reveal potential interactions and to uncover predictive
biomarkers or therapeutic targets for breast cancer.

METHODS AND MATERIALS

Data curation and cohort characteristics

The RNA-seq data and clinical parameters from 1,092 patients with breast cancer were
obtained from The Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.cancer.
gov/). Of the 1,092 breast cancer patients included in this study, 112 paired normal tissues
were identified and recurrent tumor tissues were excluded. The clinical characteristics of
the cohort are listed in Table 1. 276 known Cancer/Testis (CT) genes were downloaded
from CTDatabase (http://www.cta.Incc.br/).
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Table 1 Clinical characteristics of the 1,092 breast cancer patients from TCGA.

Characteristic TCGA BRCA
(N =1,092)
Age median (range) 59 (26-90)

Sex
Female
Male

Tumor stage
T1
T2
T3
T4

Lymph node stage
N(-)

N (+)

Metastasis stage
M(-)

M (+)

TNM stage
TNM I
TNM II
TNM III
TNM IV

Subtypes
Luminal
Her2+_ HR+
Her2+_HR-
Tri-negative
Unknown

Status
Living

Decreased

1,080 (98.9%)

12 (1.1%)

279 (25.5%)
635 (58.2%)
138 (12.6%)
40 (3.7%)

333 (30.5%)
759 (69.5%)

903(82.7%)
189(17.3%)

181 (16.5%)
637 (58.3%)
254 (23.3%)
20 (18.3%)

426 (39.0%)
59 (5.4%)
30 (2.7%)
97 (8.9%)
480(44.0%)

940 (86.1%)
152 (13.9%)

Bioinformatics analysis

xCell (http://xcell.ucsf.edu/) is a high-resolution gene-signature-based method for cell type

enrichment for up to 64 cell types, including immune and stroma cells. We used xCell
R package (Aran, Hu ¢ Butte, 2017a) (Beta version) from GitHub in R (version 3.3.1) to
deconvolute the cellular heterogeneity within the breast tumor microenvironment from

RNA sequencing data. We determined the cellular heterogeneity of 1,092 breast tumor

tissues and 112 normal tissues using the xCell method. The 64 cell types were divided into

four groups, including 34 immune cells, 13 stromal cells, 9 stem cells, and 8 other cells

(Table 2). Over half of the 64 cell types were immune cells, providing a full view of the

innate and adaptive immune status with detailed cell subtypes, including CD4+ naive cells,
CD4+ T-cells, CD4+ Tcm, and CD4+ Tem. Stromal cells, including fibroblasts, osteoblasts,
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and pericytes were also included. ImmuneScore and StromaScore were generated by the
xCell package using the sums of fractions of certain cell types (Aran, Hu ¢ Butte, 2017b).
Tests for differences and correlations were performed. We used the t-Distributed Stochastic
Neighbor Embedding (t-SNE) method with tsne package (version 0.1-3) to perform cluster
analysis based on cell fraction types.

Survival analysis

Univariate and multivariate COX regressions were performed using the survival package
(version 3.1-7) to search for survival-associated genes. The best cutoff value for each factor
was determined using the Survminer package (version 0.4.6). Significant prognostic factors
were displayed in a forest plot and the most significant factors were further evaluated using
multivariate analysis. The final prognostic model was built with five independent factors
including CD8+ T cells, mesangial cells, NKT, keratinocytes, and class-switched memory B
cells. We used the survivalROC package (Version 1.0.3) in R, which uses a time-dependent
ROC curve estimation with censored data (Heagerty, Lumley ¢ Pepe, 2000) to compare
the aptitude of the individual prognostic factors. The final prognostic model was used to
generate the area under the curve (AUC) of the receiver-operator characteristic (ROC)
curve for each parameter.

Statistical analysis

Differentially enriched cell types between groups were compared using the Student’s
t-test (two groups) or one-way ANOVA analysis (three groups). Correlation analyses
were performed using the Spearman method. The survival curves were compared using
the Kaplan—Meier method and log-rank test. All tests were two-sided and p < 0.05 was
considered to be statistically significant unless otherwise noted. Data were analyzed using
R (version 3.4.4).

RESULTS

Breast tumor tissues had higher fractions of immune cells than
normal tissues
The median fractions for each cell type were calculated for normal and breast tumor
tissues and the proportions of the 64 cells were found to differ between breast tumor and
normal tissues (Fig. 1A, Table 2). Breast tumor tissue had higher fraction of immune cells
with red to light blue markers whereas normal tissue had larger proportions of stem and
stromal cells with blue to red markers (Fig. 1A). Unsupervised cluster analysis revealed
that breast tumor tissues and the adjacent normal tissues were clustered into different
groups. Immune cells were also clustered into several subgroups (Fig. 1B), indicating that
the cellular heterogeneity in tumor vs. normal tissues was much greater than that in a single
sample. Dimensionality reduction and visualization by t-Distributed Stochastic Neighbor
Embedding (t-SNE) also suggested clear difference between the tumor and normal tissues
(Fig. 1C).

We compared the fractions of each cell type between breast tumor and normal tissues,
revealing dramatic differences in the number of cell types between the tumor and normal
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Table 2 Abbreviations and statistical summary of enriched fractions of the Sixty-four cell types.

Full name Abbreviations Group Tumor Normal Paired Tumor P value P value
N = 1,092 N =112 N =112 (paired)
(Mean % SD) (Mean % SD) (Mean % SD)

Activated dendritic cells aDC Immune  0.116 £0.110  0.016 =0.045 0.103+£0.104  <0.001 <0.001
B-cells / Immune  0.031 £0.085  0.004 £0.039  0.021 £ 0.052 <0.001 <0.001
Basophils / Immune 0.078 £0.056  0.058 £0.040 0.071 £0.054  <0.001 0.077
CD4+ naive T-cells / Immune  0.010£0.029  0.003 £0.015 0.008 £0.020  0.009 0.004
CDA4+ T-cells / Immune  0.003 £0.010 0.000 £0.003 0.001 £0.004 0.101 0.036
Central memory CD4+ T Cell CD4+ Tcm Immune  0.009 £0.015 0.016 £0.019  0.003 £0.007  0.006 <0.001
Effector memory CD4+ T cell CD4+ Tem Immune  0.013£0.022  0.000 £0.002  0.010+£0.018  <0.001 <0.001
CD4+ memory T-cells Immune  0.007 £0.017  0.000 £ 0.004  0.007 £0.012  <0.001 <0.001
CD8+ naive T-cells / Immune  0.012 £ 0.011 0.005 £ 0.007  0.011 £0.010  <0.001 <0.001
CD8+ T-cells / Immune 0.018 £0.039  0.006 £0.016 0.016 £0.032  <0.001 0.001
Central memory CD8+ T Cell CD8+ Tcm Immune  0.026 £0.049  0.005£0.015 0.027 £0.046  <0.001 <0.001
Effector memory CD8+ T cell CD8+ Tem Immune  0.001 £0.007  0.000 £ 0.000  0.000 +0.002  0.805 0.608
Conventional dendritic cells cDC Immune  0.037 £0.046  0.072£0.057  0.040 +0.043  <0.001 <0.001
Class-switched memory B-cells / Immune  0.026 £0.031  0.002+£0.014  0.020 +£0.023  <0.001 <0.001
Dendritic cells DC Immune  0.005+0.011 0.005=£0.011 0.004 £0.008 0.826 0.927
Eosinophils / Immune  0.000 &£ 0.001 0.000 £ 0.000  0.000 £ 0.001 0.737 0.763
Immature dendritic cells iDC Immune  0.042£0.073  0.167 £0.171  0.047 £0.053  <0.001 <0.001
Macrophages / Immune  0.038 £0.036  0.008 +=0.023  0.038 £0.034  <0.001 <0.001
Inflammatory (M1) macrophages =~ Macrophages M1 ~ Immune  0.022 £ 0.027  0.003 £0.010  0.019 +0.027  <0.001 <0.001
Reparative (M2) macrophages Macrophages M2~ Immune  0.031 £0.021  0.030 £0.034  0.031 £0.017  0.001 0.003
Mast cells / Immune  0.024 £0.012  0.015£0.008 0.025+0.010 <0.001 <0.001
Memory B-cells / Immune  0.006 £0.028  0.001 £ 0.011 0.003 £0.014  <0.001 0.083
Monocytes / Immune  0.004 £0.012 0.003 £0.013  0.004 £ 0.011 0.007 0.040
naive B-cells / Immune  0.004 £0.016 0.001 £ 0.009  0.003 £ 0.009 <0.001 0.004
Neutrophils / Immune  0.000 &£ 0.001 0.003 £0.005  0.000 £ 0.000  <0.001 <0.001
Nature killer cells NK cells Immune  0.000 £0.002  0.000 £ 0.000  0.000 & 0.001  0.342 0.759
Natural killer T cells NKT Immune  0.061 £0.039  0.028 £0.036  0.043 +0.028  <0.001 <0.001
Plasmacytoid dendritic cells pDC Immune  0.008 £0.019  0.000 £0.000  0.007 +0.017  <0.001 0.004
Plasma cells / Immune 0.019+£0.018 0.001 £0.003 0.015+£0.012  <0.001 <0.001
pro B-cells / Immune  0.009 £0.017  0.000 +0.000  0.006 £0.013  <0.001 <0.001
Gamma delta T cells Tgd cells Immune  0.003 £0.009  0.000 £0.000 0.004 +0.011  <0.001 0.003
Regulatory T cells Tregs Immune  0.012£0.016  0.004 +0.009 0.013 £0.016  <0.001 <0.001
Type 1 T helper (Thl) cells Th cells Immune  0.133£0.092 0.014 £0.026  0.101 £0.067  <0.001 <0.001
Type 2 T helper (Th2) cells Th2 cells Immune  0.075£0.096  0.002 £0.007 0.082+0.091  <0.001 <0.001
Astrocytes / Others 0.076 £0.069  0.110 £0.065  0.081 +0.064  <0.001 <0.001
Epithelial cells / Others 0.365+0.092  0.277 £0.146  0.354 £0.089  <0.001 <0.001
Hepatocytes / Others 0.001 £0.002  0.005=£0.003  0.0024+0.002 <0.001 <0.001
Keratinocytes / Others 0.047 £0.038  0.065 £ 0.037  0.046 £0.038  <0.001 <0.001

(continued on next page)

tissues (Fig. 1D—1W). Immune cells tended to be more diverse compared to stem or stromal

cells. For innate immune cells, neutrophils were more prevalent in normal tissues whereas

eosinophils were higher in tumor tissues (Fig. 1D—1LE). There was not a significant difference

in DC cells between normal and tumor tissues. However, iDC was significantly lower in

tumor tissues but pDC and aDC were significantly higher (Fig. 1F—11). This phenomenon
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Table 2 (continued)

Full name Abbreviations  Group Tumor Normal Paired Tumor P value P value
N =1,092 N =112 N =112 (paired)
(Mean+SD) (Mean=+SD) (Mean = SD)
Melanocytes / Others 0.010 £0.008  0.008 £0.008  0.010 £0.009  0.011 0.162
Mesangial cells / Others 0.014 £0.015 0.034 £0.013  0.015 £ 0.015 <0.001 <0.001
Neurons / Others 0.004 £ 0.008  0.004 £ 0.002  0.004 £ 0.006  <0.001 <0.001
Sebocytes / Others 0.016 £0.019  0.009 £0.009  0.017 £0.024  <0.001 <0.001
Common lymphoid progenitor CLP Stem 0.039+0.026  0.013£+0.015 0.041 £0.026  <0.001 <0.001
Common myeloid progenitor CMP Stem 0.001 £0.003  0.003 £0.004  0.001 +0.003  <0.001 0.008
Granulocyte-macrophage progenitor ~ GMP Stem 0.002 £0.006  0.002 £0.006  0.002 £0.008  0.001 0.025
Hematopoietic stem cells HSC Stem 0.150 £0.110  0.492£0.191 0.174+0.125  <0.001 <0.001
Megakaryocytes / Stem 0.004 £ 0.004  0.021 £ 0.009  0.005 £ 0.005 <0.001 <0.001
Multipotent progenitors MPP Stem 0.00 £ 0.001 0.000 4= 0.000  0.000 £ 0.000  <0.001 0.027
Erythrocytes / Stem 0.000 £ 0.000  0.000 £ 0.000  0.000 & 0.000  0.471 0.306
Megakaryocyte-erythroid progenitor =~ MEP Stem 0.0354+0.030  0.011 £0.017  0.027 £0.022  <0.001 <0.001
Platelets / Stem 0.000 £ 0.002  0.000 £ 0.001 0.000 £ 0.001 0.062 0.334
Adipocytes / Stromal  0.050 £0.088  0.382 +0.207  0.063 &+ 0.102 <0.001 <0.001
Chondrocytes / Stromal  0.035£0.037  0.053£0.022  0.040 +0.038  <0.001 <0.001
Endothelial cells / Stromal  0.058 £0.056  0.209 +0.104  0.066 % 0.059 <0.001 <0.001
Fibroblasts / Stromal  0.058 £0.068  0.172+0.078  0.063 £0.074  <0.001 <0.001
Lymphatic endothelial cells ly Endothelial Stromal  0.020 £0.027  0.110£0.071  0.021 +0.025  <0.001 <0.001
cells
Mesenchymal stem cells MSC Stromal  0.281£0.144 0.019+£0.054 0.252+0.139  <0.001 <0.001
Microvascular endothelial cells mv Endothelial = Stromal  0.032 £0.032  0.104 £0.062  0.029 +0.028  <0.001 <0.001
cells

Myocytes / Stromal  0.004 £0.010  0.009 +£0.042  0.005 % 0.008  0.012 0.387
Osteoblast / Stromal  0.025 £ 0.031 0.005+£0.013 0.018 £0.024  <0.001 <0.001
Pericytes / Stromal  0.053 £0.052  0.027 £0.035 0.057 £0.055  <0.001 <0.001
Preadipocytes / Stromal  0.024 £0.040  0.179 £0.090  0.032 & 0.045 <0.001 <0.001
Skeletal muscle / Stromal  0.001 £0.011  0.01040.101  0.001 4 0.003  0.442 0.365
Smooth muscle / Stromal  0.133 £ 0.091 0.125£0.067  0.175+£0.088  0.345 <0.001
ImmuneScore / / 0.082 £0.103  0.029 £0.049  0.074 £0.079  <0.001 <0.001
StromaScore / / 0.083 £0.088  0.382£0.174  0.096 £0.097  <0.001 <0.001

was also seen in macrophages, in which macrophage M1 was higher in tumor tissues while
macrophage M2 was lower (Fig. 1J-1K). CD4+ Tcm was found to be significantly lower
in tumor tissues, while CD4+ Tem, CD8+ naive T cells, and CD8+ Tcm were significantly
higher (Fig. 11-10). Plasma cells, pro B cells, Tgd, Th1, Th2 cells, and Tregs were also
found to be significantly higher in tumor tissues (Fig. 1P—1U). Representative stromal cells,
such as endothelial cells and fibroblasts, were found to be significantly lower in tumor
tissues (Fig. 1V=1W). Differential analysis with paired tumor and normal tissues showed
similar patterns (Table 2).

Inhibitory receptors were co-expressed on certain subtypes of T cells
Inhibitory receptors, including PD1, CTLA4, LAG3, and TIM3, expressed on T cells often
led to T-cell exhaustion allowing tumors to evade the immune response (Huang ef al.,
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Figure 1 Differences of cellular heterogeneity between breast tumor tissue and normal tissues. (A)
Median fractions of Sixty-four cell types in breast tumor and normal tissues. Sixty-four cell types were
grouped into four groups: immune, stem, stromal, and other cells. (B) Heatmap of fractions of 64 cell

types in 1,092 breast tumor tissues and 112 adjacent normal tissues. (C) Dimensionality reduction and vi-

sualization by t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering based on cell fractions.
(D) to W. Dot plots of fractions of certain cell types in breast tumor and normal tissues. Lines between

dots indicated paired tissues from the same breast cancer patient. *, P < 0.05. **, P < 0.01. ***, P < 0.001.
Full-size Bl DOI: 10.7717/peer;j.9478/fig-1
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2017; Nirschl & Drake, 2013). The use of specific antibodies to inhibit CTLA4 or PD1 and
overcome immune suppression and tumor regression is promising (Brahmer et al., 2012;
Callahan, Wolchok ¢~ Allison, 2010).

We investigated the correlations between these inhibitory receptors and CD4+/CD8+ T
cells. Heatmaps suggested that the expression patterns of the inhibitory receptors correlated
with specific subsets of T cells with distinctions between tumor tissues and normal tissues
(Fig. 2A and 2B). Correlation analyses also demonstrated that CD8+ T-cells, CD8+ Tcm,
CD8+ naive T-cells, CD4+ memory T cells, and CD4+ naive T cells were all positively
correlated with expressions of these inhibitory receptors in tumor tissues, especially with
PD1 and CTLA4 (P < 0.05) (Fig. 2C and 2D). CD8+ Tem, CD4+ Tcm, and CD4+ T-cells
were not strongly correlated with the expressions of the inhibitory receptors (Fig. 2C).
Only a few T cells were significantly correlated with these inhibitory receptors in normal
tissues; TIM3 expression was negatively correlated with CD4+ Tcm (Fig. 2C and 2F). We
observed a significant correlation among the expression of inhibitory receptors (Fig. 2E
and 2G).

Cancer/testis genes TDRD6 and TTK show promise as breast cancer
targets

Cancer/Testis (CT) genes are a cluster of tumor-associated proteins normally expressed in
germ cells and different cancers. However, they are not typically seen in normal somatic
cells (Scanlan et al., 2002). The limited expression of CT genes makes them ideal cancer
and immunotherapy biomarkers.

We studied the antitumor immunity response to antigens generated by CT genes by
examining 276 known CT genes (obtained from the CTDatabase) for their association with
immune components. The significant associations between immune cells and CT genes
(P <0.001) are shown in Fig. 3A. Most of the adaptive immune cells were significantly
correlated with CT genes. T cells, such as CD8+ T cells and aDC, which belonged to
adaptive and innate immune responses, were positively correlated with most of the CT
genes (Fig. 3A-3C). Moreover, two CT genes, TDRD6 and TTK, were positively correlated
with a number of immune cells, especially the CD4+/CD8+ T cells (Fig. 3D and 3E),
implying strong host immune reactions to these two cancer antigens.

Cellular heterogeneity correlated with clinical pathology of breast
cancer

Cellular heterogeneity is an important part of the tumor microenvironment and is necessary
for the growth and development of a tumor. We studied whether certain cell types were
significantly correlated with certain clinical parameters, including age, sex, T stage, N
stage, M stage, and TNM stage. A number of cell types were significantly correlated with
clinical parameters, especially T stage and M stage (Fig. 4A). Astrocytes, mesangial cells,
and mast cells were negatively correlated with the T stage and plasma cells were positively
correlated with the T stage (Fig. 4B—4E). CD4+ Tcm, CD4+ Tem, microvascular (mv)
endothelial cells, NKT, and MSC were all significantly higher at the M stage in patients
with distal metastasis (Fig. 4F—4]). CLP was significantly higher at the N stage in patients
with lymph node metastasis (Fig. 4K). Thl cells and MSC were both positively correlated
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with TNM stage (Fig. 4L—4M). The 12 male breast cancer patients studied tended to have
higher proportion of CLP and NKT compared with the female breast cancer patients (Fig.
4AN—40).

Prognostic model with survival associated cell types

Emerging evidence suggests that the number of tumor-infiltrating lymphocytes (TILs) of
primary tumors consistently predicts favorable outcomes for a number of tumor types,
including breast cancer. Therefore, survival analyses were performed to find survival-
associated cell types within the tumor microenvironment (Fig. 5A). Immune cells were
more strongly associated with overall survival, especially CD4+ and CD8+ T cells (Fig. 5A).
Most T cells, including CD8+ T cells, CD8+ Tcm, CD8+ naive T cells, and CD4 Tem, were
favorable prognostic factors. However, high CD4+ naive T cells were associated with worse
overall survival (Fig. 5A-5M). NKT, class switched memory B cells, NK cells, cDC, and
pDC were also significantly associated with overall survival (Fig. 5A-5M). A number of
stromal cells, including mesangial cells and keratinocytes, were favorable prognostic factors
but myocytes were adverse prognostic factors (Fig. 5A—5M). Multivariate COX regression
revealed that CD8+ T cells, mesangial cells, keratinocytes, NKT, and class switched memory
B cells were independent prognostic factors. We built a prognosis predictor model with
five independent prognostic factors. Our model more reliably determined the survival of
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Figure 3 Correlations between cancer/testis genes and immune cells. (A) Significant correlations be-
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tween CT genes and immune cells (P < 0.001) and red dots represented positive correlations while blue
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breast cancer patients with the highest AUC of ROC of 0.708, versus when the factors were

analyzed separately (Fig. 5N, 50).
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Subtypes of breast cancer had diverse phenotypes of cellular
heterogeneity

Emerging evidence suggests that the breast cancer transcriptome has a wide range of
intratumoral heterogeneity, as well as genomic heterogeneity based on ER, PR, and
Her2, which are determined by the tumor cells and immune cells in the surrounding
microenvironment (Chung et al., 2017). We explored cellular heterogeneity among
different subtypes of breast cancer by Her2, ER, and PR status. 1,092 breast cancer patients
were classified into five groups according the clinicopathological parameters provided
by TCGA, including 30 Her2+_HR- patients, 59 Her2+_HR+ patients, 426 Luminal type
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Figure 5 Survival associated tumor-infiltrating cells in breast cancer. (A) Forest plot of hazard ratios
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prognostic model and the five independent prognostic factors.

Full-size & DOLI: 10.7717/peerj.9478/fig-5

(Her2-_HR+) patients, 97 triple negative (Tri-negative) patients, and 480 unknown patients
(Table 1). The relative proportion of different cells varied widely among these five subtypes
(Fig. 6). Tri-negative patients had the highest fraction of immune cells while luminal type
patients had the smallest fraction of immune cells, especially CD4+ and CD8+ T cells (Fig.
6A, Fig. S1). Cluster analyses from ImmuneScore, StromaScore, and heatmap suggested the
absence of certain cell types used to distinguish these five subtypes (Fig. 6B). Furthermore,
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t-SNE cluster analysis suggested a large difference in tumor-infiltrating cells among these
five subtypes (Fig. 6C and 6D). B cells, T cells, macrophages, Th cells and stromal cells,
including keratinocytes, were significantly differentially enriched in these subtypes (Fig.
6E—6P and Fig. 52). Tri-negative breast cancer tissues had the highest fractions of plasma
cells, pro B cells, macrophages M1, Th1, and Th2 cells, but M2 cells had the lowest fraction
of macrophages (Fig. 6E—6L). Keratinocytes, sebocytes, and pericytes were found frequently
in Tri-negative breast cancer whereas MSC cells were found in low amounts (Fig. 6M—-6P).
Survival analysis revealed interesting differences between the five subtypes (Fig. 7). Each
subtype of breast cancer had a unique pattern of survival-associated tumor-infiltrating cells.
Different cell types may have different functions in the prognosis of breast cancer patients.
Keratinocytes had a favorable effect on the prognostic factors while neurons were associated
with adverse prognosis factors in luminal type patients (Fig. 7A). However, in Tri-negative
patients, keratinocytes predicted a worse overall survival and neurons predicted a better
overall survival (Fig. 7D). Taken together, the diversity of cellular heterogeneity among
the different subtypes of breast cancers suggested that tumor-infiltrating cells within the
tumor microenvironment were essential in shaping the intratumor heterogeneity of breast

cancer.

DISCUSSION

We observed distinct tumor-infiltrating cell types within the tumor microenvironment.
The abundance and activation status of these cell types is of interest to researchers for
their novel bioinformatic techniques. Tumor-infiltrating cells are known to play important
roles in the regulation of tumor proliferation, metastasis, and invasion (Galon et al.,
2006; Hanahan & Coussens, 2012). The rapid accumulation of high-throughput data and
the evolution of bioinformatics algorithms allows us to digitally dissect the interactions
between tumors cells and tumor-infiltrating cells, including immune cells and stromal cells
(Aran, Hu & Butte, 2017a; Hackl et al., 2016). The high-throughput approach may help
understand the complexity of the tumor microenvironment and lead to innovations in
breast cancer treatment and prognosis. xCell analysis reveals that plasma cells and CD4+
Tcm in the tumor microenvironment may play a role in the progression of triple-negative
breast cancer (Deng et al., 2019), although only immune cells were investigated.

We used the digital deconvolution from xCell to determine the cellular heterogeneity
within breast tumor and normal tissues. A total of 64 cell types with more than 30 immune
cell types were characterized at high resolution. This was the most studied set of cell types,
especially for tumor-infiltrating lymphocytes (TILs). We focused on immune cell types,
especially the CD4+/CD8+ T cells, and discovered differences between breast tumor tissues
and adjacent normal tissues with polarized enrichment of certain cell types. Our results
demonstrated that the expression of inhibitory receptors (including PD1, CTLA4, LAG3,
and TIM3) were positively correlated and were associated with certain types of T cells in
tumor tissues, especially CD8+ Tcm and CD8+ T cells. CD4+ Tem, CD8+ Tcm, CD8+
T-cells, CD8+ naive T-cells, and B cells were associated with better prognosis whereas CD4+
naive T-cells were negatively associated with prognosis for breast cancer patients. Innate
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Figure 6 Differences of cellular heterogeneity among different subtypes of breast cancer. (A) Median
fraction of 64 cell types in five subtypes of breast tumor. (B) Cluster analysis by ImmuneScore and Stro-
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cer. *, P <0.05.**, P < 0.01.**, P < 0.001, ****, P < 0.0001.

Full-size Gal DOI: 10.7717/peer;j.9478/fig-6

and adaptive immune cells had active immune responses to tumor antigens, including T
cells, B cells and DC. TDRD6 and TTK are promising targets for cancer vaccines that could
activate a number of immune cells, especially T cells and B cells. Stromal cells were also
widely involved in the development of breast cancer. Endothelial cells and fibroblasts were
not observed as frequently in tumor tissues. Astrocytes and mesangial cells were negatively
correlated with T stage. Mesangial cells and keratinocytes were favorable prognostic
factors and myocytes were adverse prognostic factors. We built a prognosis predictor with
survival-associated cell types to determine the overall survival of breast cancer patients.
Cellular heterogeneity was also profiled in different subtypes of breast cancer based on
Her2, ER, and PR status. Five subtypes of breast cancer demonstrated various phenotypes
and the cell types may have had different or opposing roles in each subtype of breast cancer.
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Figure 7 Survival associated tumor-infiltrating cells in five subtypes of breast cancer. (A to E) Forest
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Immunotherapies, including immune checkpoint blockers, therapeutic vaccines, and
engineered T cells are being intensively investigated (Schumacher ¢» Schreiber, 2015) to
determine how tumor cells interact with immune cells. The tumor-immune cell interaction
poses considerable challenges since the development of cancer and immune surveillance by
innate and adaptive immune cells with plasticity and memory are evolving ecosystems. The
complex interplay between solid tumors and host immunity has been widely studied but
is not well understood. Tumor infiltrating lymphocytes (TILs) have been associated with
clinical outcomes in many tumor types (Anagnostou ¢ Brahmer, 2015; Schoenfeld, 2015).
For example, CD8+ TILs are prognostically favorable in melanoma, colorectal, ovarian, and
non-small cell lung cancer. CD8+ TILs are able to kill tumor cells in specific cancers (Yee et
al., 2002). Immunity in breast cancer remains largely unstudied with only a few preliminary
evaluations on the prognostic value of CD4+/CD8+ T lymphocytes. The presence of TILs
is potentially predictive and prognostic in specific breast cancer subtypes, especially in
patients with human epidermal growth factor receptor 2 positive and triple-negative breast
cancer. Large adjuvant studies have shown that higher levels of TILs in primary biopsies
are associated with improved overall survival and fewer recurrences, regardless of therapy
(Adams et al., 2014; Dieci et al., 2015; Loi et al., 2013).

We provided detailed information about the immune cells in breast cancer with
numerous novel findings. Inhibitory receptors were expressed on certain types of T cells,
preferring CD8+ T cells and CD8+ Tcm. The co-expression of PD1, CTLA4, LAG3, and
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TIM3 were more commonly observed in tumor tissues compared with normal tissues,
which may explain the limited effects of a single immune checkpoint inhibitor and the
use of combined strategies. The simultaneous inhibition of PD1 and CTLA4 (Wolchok et
al., 2013) or TIM3 (Fourcade et al., 2010) in advanced melanoma patients show promise
in clinical trials. CD8+ naive T cells versus CD4+ naive T cells were favorable prognostic
factors for the overall survival of breast cancer patients, suggesting that not all T cells were
protective. These results suggest that the upregulated co-expression of multiple immune
inhibitory receptors may contribute to immune suppression. More attention should be
paid to subtypes of T cells when using immune checkpoint blockers since immune cells
are highly conditional and may have different or even opposing roles in response to tumor
cells.

Growing evidence suggests that immune cells and tumor cell-extrinsic factors, including
fibroblasts, endothelial cells, adipocytes within the tumor microenvironment have
important roles in inhibiting apoptosis, enabling immune evasion, and promoting
proliferation, angiogenesis, invasion, and metastasis (Whiteside, 2008). We found that
endothelial cells were significantly higher in adjacent normal tissues (Fig. 1V) and breast
cancer patients with metastasis had a higher fraction of microvascular (mv) endothelial
cells (Fig. 4H). A high level of mv endothelial cells was significantly associated with worse
overall survival (Fig. 5A). Recent studies have shown that endothelial cells may promote
triple-negative breast cancer cell metastasis via PAI-1 and CCLS5 signaling (Zhang et al.,
2018). The presence of endothelial cells significantly enhanced the angiogenic activity of
breast cancer cells (Buchanan et al., 2012). These results support our analysis and further
study of the clinical relevance of these cell types may provide novel insights into the
initiation and progression of breast cancer.

We analyzed and described the potential roles of different tumor-infiltrating cells.
Our study would benefit from additional analysis and experimental validations to further
investigate the roles of the 64 types of cells profiled in this study.

CONCLUSIONS

We revealed the landscape of cellular heterogeneity at high resolution and provided novel
insights into cell interactions within the tumor microenvironment in breast cancer. Our
results may assist in the development of future therapeutic and predictive strategies. Further
study should focus on the subtypes of immune cells and stromal cells identified in this
study.
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