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Abstract

Peripheral artery disease (PAD) is a common disorder and a major cause of morbidity and 

mortality worldwide. Therapy is directed at reducing the risk of major adverse cardiovascular 

events, and at ameliorating symptoms. Medical therapy is effective at reducing the incidence of 

myocardial infarction and stroke to which these patients are prone, but is inadequate in relieving 

limb-related symptoms, such as intermittent claudication, rest pain and ischemic ulceration. Limb 

related morbidity is best addressed with surgical and endovascular interventions that restore 

perfusion. Current medical therapies have only modest effects on limb blood flow. Accordingly, 

there is an opportunity to develop medical approaches to restore limb perfusion. Vascular 

regeneration to enhance limb blood flow includes methods to enhance angiogenesis, arteriogenesis 

and vasculogenesis using angiogenic cytokines and cell therapies. We review the molecular 

mechanisms of these processes; briefly discuss what we have learned from the clinical trials of 

angiogenic and cell therapies; and conclude with an overview of a potential new approach based 

upon transdifferentiation to enhance vascular regeneration in PAD.

Peripheral Arterial Disease and Its Management

Peripheral artery disease (PAD) is the third leading cause of atherosclerotic cardiovascular 

morbidity, following coronary artery disease and stroke1. PAD is a common disease that is 

underdiagnosed2, and which has significant adverse effects on over 8 million Americans3, 4 

and more than 200 million individuals worldwide1, 5. Age, tobacco use, diabetes, 

hypertension, hypercholesterolemia and sedentary state are the major risk factors for 

PAD1, 6. PAD may cause leg pain when walking (intermittent claudication, IC) which 

interferes with the cardiovascular benefit of regular exercise. Indeed, limitation of exercise 

capacity is a strong predictor of mortality in patients with PAD7. Critical limb ischemia 

(CLI)8 is the most advanced form of PAD, defined as chronic ischemic rest pain, ulcers, or 

gangrene of the lower extremity. CLI is a major cause of limb amputation9, and a harbinger 

of cardiovascular mortality in PAD10.
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Medical therapy for PAD effectively reduces major adverse cardiovascular events (MACE) 

in PAD, and includes exercise, smoking cessation, anti-platelet agents, and therapies to 

restore normal levels of blood lipids, blood sugar and arterial pressure11. Medical therapy to 

relieve IC and CLI is of modest benefit. Cilostazol increases walking distance by 50%, but 

does not reduce MACE. Prostanoids reduce rest pain and improve ulcer healing12, and 

iloprost may reduce the incidence of amputation in CLI. However, vascular surgery and 

endovascular intervention are more effective than medical therapy at improving limb 

perfusion, reducing symptoms, and preventing loss of limb11, 13, 14. Clearly, there are 

opportunities for novel medical therapies to improve limb blood flow.

Vascular regenerative strategies include restoration of vascular function (e.g. vasodilation) 

and structure (e.g. plaque regression) (Figure). Restoration of vascular function, in particular 

endothelial function, can improve limb blood flow by enhancing vasodilation, reducing 

vascular inflammation, suppressing platelet aggregation and thrombosis, and promoting 

endogenous thrombolysis15, 16. Lipid-lowering therapy induces plaque regression, and this 

effect, combined with its benefit on endothelial function, may explain the increase in 

walking distance in PAD patients treated with statins17. In this review however, we will 

focus on the regenerative processes of angiogenesis, arteriogenesis and vasculogenesis; and 

describe a new process termed angiogenic transdifferentiation that may participate in 

vascular regeneration.

Angiogenesis and PAD

Angiogenesis is the formation of new blood vessels from pre-existing vessels18–20 (Figure). 

The process begins with endothelial cell (EC) sprouting from existing capillaries, followed 

by EC migration, proliferation and lumen formation. In addition, intussusception of existing 

capillaries18, 21 also contributes to expansion of the microvasculature. In ischemic tissues, 

hypoxia activates the transcription factor hypoxia-inducible factor 1 (HIF-1), a basic-helix-

loop-helix-pas heterodimeric protein that is responsive to oxygen tension22. This 

transcription factor contains two subunits, HIF-1α and HIF-1β. HIF-1α has an oxidation 

dependent degradation domain. Under normoxic conditions, two prolyl residues in this 

domain are hydroxylated by prolyl hydroxylase, which leads to the ubiquitination and 

destruction of HIF-1α. In the setting of hypoxia, this degradation process is inactive, 

HIF-1α becomes stable, and accumulates in the nucleus. There HIF-1α dimerizes with 

HIF-1β to activate target genes including angiogenic cytokines such as vascular endothelial 

growth factor (VEGF), fibroblast growth factor (FGF), and angiopoietin, and matrix 

metalloproteinases MMP2 and MMP923.

In PAD animal models, VEGF24, FGF25, hepatocyte growth factor (HGF)26, platelet-derived 

growth factor (PDGF)27 and angiopoietins28, prokineticin 2 (PROK2)29, and other 

angiogenic cytokines have been shown to enhance angiogenesis and limb blood flow. VEGF 

is the most widely studied angiogenic cytokine and is essential for endothelial proliferation, 

migration and lumen formation mediated by its receptors VEGFR-1 and VEGFR-230.

Angiogenic cytokines have also been implicated in the effect of adult stem cell therapy to 

improve perfusion in preclinical models of PAD. Mesenchymal stem cells derived from bone 
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marrow or adipose tissue, mononuclear cells isolated from the bone marrow or peripheral 

blood, and endothelial cells derived from embryonic stem cells or induced pluripotent stem 

cells, have each been shown to generate angiogenic cytokines and home to sites of ischemia, 

where they increase microvascular density, and improve perfusion in the ischemic limb in 

murine models31–33.

Arteriogenesis

Arteriogenesis is the positive remodeling of preexisting collateral arterioles to generate 

larger conductance vessels that compensate for occluded arteries34, 35 (Figure). These 

preexisting collateral arterioles are narrow and high resistance channels that generally 

conduct little or no blood flow in healthy tissue36. However, severe arterial obstruction or 

occlusion creates a pressure gradient that favors blood flow through the collateral channels. 

The increase in blood flow, and shear stress, in the collateral channels induces a positive 

remodeling. This vascular remodeling process increases both diameter and wall thickness, 

and is accompanied by alterations in cellular proliferation and extracellular matrix 

degradation and deposition37, 38.

Early in the process, monocytes and macrophages are observed adhering to the endothelium 

and infiltrating into the subintimal space of collateral arterioles39–41. These cells play an 

essential role in the remodeling process by the secretion of growth factors, chemokines and 

metalloproteinases42. This pericollateral macrophage recruitment is mediated in part by an 

ICAM-1 dependent mechanism43. In addition, the CC-chemokine receptor-2 (CCR2) plays a 

critical role in monocyte/macrophage recruitment to the perivascular space of collateral 

vessels and is required for the increase in vessel diameter44. Monocyte differentiation and 

maturation into macrophages is required for arteriogenesis, and is controlled by Notch 

ligand Delta-like 1 (Dll1) expressed on vascular ECs and macrophage Notch effector Rbpj45. 

Granulocyte-colony stimulating factor (G-CSF)46, 47 and granulocyte macrophage-colony 

stimulating factor (GM-CSF)48, 49 also promote arteriogenesis. Other immune cells such as 

T cells50 and mast cells51 have also been reported to play a role in arteriogenesis.

During arteriogenesis, smooth muscle cells in the media of the collateral vessel transform 

from a contractile to a proliferative phenotype, and form a neo-intima41. The P2Y2 

nucleotide receptor, which mediates vascular cell proliferation and migration, also 

participates in this positive remodeling50. Importantly, the smooth muscle cells return to a 

contractile phenotype in the end stage of this remodeling process37. It is well known that 

there are species-specific variation in collateral arterioles35, 51. Furthermore, in patients with 

PAD, there is substantial heterogeneity in the generation of collateral channels in the limb, 

which may contribute to individual differences in the severity of limb symptoms.

Adult Vasculogenesis

Vasculogenesis refers to the establishment of primary vasculature from mesodermal 

progenitors during early development. The incorporation of circulating progenitor and stem 

cells into regenerating blood vessels after development is termed adult vasculogenesis 

(Figure). Asahara’s discovery of “endothelial progenitor cells” (EPCs) in 199752 galvanized 
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interest in adult stem cells for vascular regeneration. These cells originate in the bone 

marrow and can be isolated from the blood using cell surface markers such as CD34, CD133 

and VEGFR252. Ischemia and hypoxia triggers EPC mobilization from the bone marrow, 

mediated by VEGF53, stromal-derived factor 1 (SDF-1)54, 55, FGF and angiopoietin-1. G-

CSF and GM-CSF also stimulate mobilization of hematopoietic and progenitor cells from 

the bone marrow56. In the murine hind limb ischemia model, GM-CSF administered by 

injection or by plasmid transfer augments circulating levels of EPCs and increases capillary 

density57.

After mobilization, EPCs home to the ischemic tissue under the influence of VEGF and 

SDF-1, the latter binding to EPC chemokine receptor CXCR-455. Recently, it has been 

shown that GDF11 improves angiogenic function of EPCs in diabetic limb ischemia58. 

Inhibition of macrophage inflammatory protein-1β (MIP-1β) improves EPC homing and 

angiogenesis in diabetic models59.

In studies of their angiogenic effects, most investigators have used a small set of surface 

markers to define EPCs60. However, the surface markers that are commonly used for 

identification of human EPCs include markers that are not specific for endothelial lineage, 

such as CD133 and VEGFR261. Only a small subset of EPCs is of true endothelial lineage in 

humans62, most being of hematopoietic lineage. It is unlikely that EPCs differentiate into 

mature endothelium in vivo60, 63. Rather, they may promote angiogenesis by secreting 

angiogenic cytokines and matrix metalloproteinases64, 65. Still other bone marrow derived 

cells can form pericytes, which may associate with and stabilize endothelial networks66. 

Many progenitor cell types such as EPCs52, 67, 68, endothelial colony forming cells69, 70, 

circulating angiogenic cells (CACs)71, 72 may promote expansion of the microvasculature in 

preclinical models by generating angiogenic factors. Finally, under the influence of 

circulating factors generated by ischemia, mature endothelial cells from other sites may be 

mobilized into the systemic circulation and home to the ischemic tissue73.

What have we learned from clinical trials?

Angiogenic Cytokines

Administration of angiogenic cytokines (such as VEGF, FGF and HGF) and agents that can 

mobilize EPCs (such as SDF-1, G-CSF and GM-CSF) have shown benefit in pre-clinical 

models of PAD. These data precipitated small clinical studies which were encouraging. 

However, larger randomized clinical trials have been largely negative for their primary 

endpoints. Intra-arterial or intramuscular administration of adenoviral or plasmid VEGF 

gene therapy failed to increase walking distance in patients with IC, or reduce amputations 

in patients with CLI74–76. In one phase 2b/3 study in Russia, intramuscular injections of 

VEGFA-165 increased the primary endpoint of pain-free walking distance at 2 years77. 

However, this study was not blinded, and control subjects did not receive a vehicle injection. 

By contrast to the Russian study, all other large randomized controlled trials (RCTs) testing 

angiogenic therapies, whether delivered as gene therapy or recombinant proteins, have not 

achieved their primary endpoints of increasing walking distance (in IC) or reducing 

amputations (in CLI). These include trials testing the efficacy of therapies based on FGF, 
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HGF, HIF1α, SDF-1, G-CSF or GM-CSF78,79–80. Accordingly, there is currently no FDA-

approved angiogenic therapy for relieving intermittent claudication or ischemic ulcerations.

Cell Therapies: Since the first pilot clinical trial of cell therapy in PAD in 200281, 

numerous cell types have been examined in clinical trials for PAD, including bone marrow 

derived cells, peripheral blood derived cells, progenitor or stem cells isolated from bone 

marrow or blood using specific surface markers, adipose vascular stromal cell or 

mesenchymal stem cells. Whereas early uncontrolled series seemed promising, the initial 

excitement surrounding cell therapy for PAD has dimmed as larger randomized clinical trials 

failed to confirm the earlier results, as we and others have previously discussed63, 82, 83. 

However, because CLI is an unmet need, and because there have been some positive data 

with small trials84, clinical studies in CLI are ongoing with autologous bone marrow derived 

mononuclear cells (BM MNC), adipose derived stem cells, and umbilical derived 

mesenchymal stem cells (MSC)85,86.

Indeed, there is evidence to support further research into cell therapy for CLI82. A meta‐
analysis of 10 randomized, placebo‐controlled trials (499 CLI patients) showed that cell 

therapy provided significant improvements in ankle-brachial index, resting pain, and pain‐
free walking time, although there was no improvement in amputation rates or amputation 

free survival87. A more recent meta‐analysis of 19 RCT (837 CLI patients) concluded cell 

therapy modestly reduced the risk of amputation by 37%, improved amputation free survival 

by 18%, and improved wound healing by 59%88.

Lessons learned: In brief, angiogenic therapies have failed, whereas cell therapies may 

yet prove useful. The failure of angiogenic therapies may be related to the fact that we have 

limited knowledge regarding dosing, delivery and duration of angiogenic cytokines. 

Angiogenesis is a complex choreographed process that cannot be mimicked by 

administration of a single angiogenic cytokine. Furthermore, angiogenesis increases 

microvascular density, which may be insufficient for PAD patients who have long segments 

of occluded conduit arteries that impair perfusion. Accordingly, master regulators of both 

angiogenesis and arteriogenesis, such as transcriptional factors that regulate a cascade of 

genes involved in vascular regeneration, may have greater potential for efficacy.

Furthermore, angiogenic and cell therapies have been based upon flawed animal models. A 

significant limitation is that much preclinical work is performed in healthy mice subjected to 

ligation of a femoral or iliac artery. This model induces a very different pathobiology than 

that in our elderly patients with multiple cardiovascular risk factors, whose vascular disease 

has progressed over decades. The strengths and limitations of animal models of PAD have 

been recently reviewed89, and must be considered in the development of new therapeutics 

for vascular regeneration. In this regard, autologous cell therapy in a patient with vascular 

disease may be comprised of fewer and/or dysfunctional stem cells. For example, in 55 

patients transplanted with BM MNC, those that had a positive outcome (wound healing and 

limb salvage, n=33) received a significantly greater number of CD34+ cells with their 

transplantation compared to those individuals that required limb amputation (n=22)90.
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There is much we don’t know about the dosing and delivery of cell therapies. However, there 

is abundant evidence that cells injected into ischemic zones do not persist. Nevertheless, in 

the brief time that they survive in the tissue, they may generate angiogenic cytokines that 

contribute to an increase in microvascular density and improved perfusion. Alternatively or 

in addition, they may secrete exosomes containing biological activity, e.g. as in the form of 

angiogenic microRNA. Indeed, therapeutic effects have been observed in preclinical PAD 

models of exosomes derived from a variety of progenitor cells91, 92. In this regard, HIF-1α 
increases MSC-exosome secretion93. Finally, the effect of injected cells may also be due to 

the local inflammatory signaling that they induce as they undergo cell death in the ischemic 

zone94. In this regard, we have uncovered a novel mechanism by which inflammation may 

induce adaptive changes in cell identity that could promote angiogenesis.

New Insights into Vascular Regeneration

Inflammation and Transdifferentiation:

Lineage tracing studies indicate that endothelial-to-mesenchyme transition (EndoMT) may 

contribute to fibrosis95. EndoMT may explain the reduced vascular density and increased 

interstitial fibrosis seen in many fibrotic conditions. The existence of EndoMT begs the 

question of whether the reverse phenomenon occurs, i.e. the transdifferentiation of 

mesenchymal cells to endothelial cells (Figure). To be sure, the transdifferentiation of 

fibroblasts to endothelial cells occurs during development96. Whether this phenomenon 

plays a role in the adult is controversial97, 98. We and others have shown that under specific 

experimental conditions, human fibroblasts can be directly reprogrammed into endothelial 

cells in vitro and in vivo99–102. Furthermore, our unpublished data suggests that this process 

may play a role in the recovery from limb ischemia. Specifically, lineage tracing studies 

combined with single cell RNAseq have provided preliminary support for subsets of 

fibroblasts which may participate in angiogenic transdifferentiation.

The process of transdifferentiation from one somatic cell to a different lineage requires an 

increase in DNA accessibility so that new cell identity genes can be activated. We have 

shown that DNA accessibility is increased by signaling pathways known to be activated 

during injury and ischemia. In brief, pattern recognition receptors (PRRs; such as Toll-like 

receptors) can sense damage- or pathogen-associated molecular patterns (DAMPs or PAMPs 

respectively). Activation of PRRs induces inflammatory signaling, e.g. through NFκB, 

which subsequently promotes DNA accessibility through global changes in the expression 

and activity of epigenetic modifiers99, 100, 103–106. It is as though a cell, sensing a challenge, 
opens up its genetic toolbox so as to adapt and survive. Such adaptation may include a 

change in phenotype.

We have shown that this inflammatory signaling increases the expression of histone 

acetyltransferases and suppresses the expression of histone deacetylases103, 105 so as to 

promote epigenetic plasticity and cell fate transitions. Furthermore, inflammatory signaling 

causes inducible nitric oxide synthase (iNOS) to translocate to the nucleus. There iNOS S-

nitrosylates epigenetic modifiers, such as the polycomb100 and NURD complexes106, to 

antagonize their suppressive histone markings. Intriguingly, a glycolytic switch is activated 

by this inflammatory signaling, and is coupled to epigenetic changes. Specifically, 
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inflammatory signaling is associated with mitochondrial export of citrate to the nucleus, 

which increases nuclear acetyl-coA, the substrate for histone acetylation. These processes 

increase DNA accessibility as shown by micrococcal nuclease assay. In this state, the cell is 

rendered more tractable to reprogramming. The effect of inflammatory signaling to increase 

DNA accessibility and thereby facilitate changes in cell identity is called 

transflammation107.

Into what lineage the cell is reprogrammed is determined by the environmental milieu. For 

example, we observe that an inflammatory stimulus (the TLR3 agonist polyinosinic cytidilic 

acid) increases the epigenetic fluidity of fibroblasts so that they can transdifferentiate into 

endothelial cells under the influence of medium containing high levels of VEGF and other 

endothelial growth factors99, 100. Thus it seems possible that in the setting of ischemic 

injury, the local injury and inflammatory signaling, together with the release of angiogenic 

cytokines, might induce transdifferentiation of fibroblasts to endothelial cells, thereby 

enhancing angiogenesis. There is abundant evidence that an inflammatory response is 

necessary for tissue regeneration108. Future elucidation of this process may provide a novel 

therapeutic avenue for ischemic syndromes.

Summary

Since Judah Folkman’s early work on angiogenesis in the 1970s, much has been learned 

about angiogenesis and vascular regeneration. Although angiogenic therapy in preclinical 

models appeared to be very promising, the clinical trials of angiogenic factors have 

disappointed, failing to show a consistent effect on claudication distance, ischemic pain 

relief or ulcer healing78, 109. Cellular therapies to improve perfusion also showed promise in 

preclinical studies as well as small trials110, 111 but larger randomized clinical trials have 

been in general negative. The lack of benefit may be due to incomplete understanding 

regarding the appropriate dose, duration, delivery method and/or mechanisms of angiogenic 

or cell therapies. Angiogenic expansion of the microvasculature is probably insufficient to 

improve perfusion in human PAD, which is typically characterized by long segments of 

obstructed vessels. Combined with arteriogenesis, angiogenic therapies might be more 

effective. Finally, new insights into vascular regeneration, such as transdifferentiation, may 

provide for effective vascular regenerative strategies in PAD.
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Nonstandard Abbreviations and Acronyms

PAD peripheral artery disease

IC intermittent claudication

CLI critical limb ischemia

MACE major adverse cardiovascular events
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EC endothelial cell

EPC endothelial progenitor cell

CAC circulating angiogenic cell

RCT randomized controlled trial

BM MNC bone marrow derived mononuclear cell

MSC mesenchymal stem cell

EndoMT endothelial-to-mesenchyme transition

PRR pattern recognition receptor

DAMP damage-associated molecular pattern

PAMP pathogen-associated molecular pattern
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Highlights

• Vascular regeneration comprises angiogenesis, arteriogenesis and 

vasculogenesis.

• Clinical trials of angiogenic factors for peripheral arterial disease have failed, 

in part because of imperfect pre-clinical models and incomplete knowledge

• Clinical trials of cell therapies for critical limb ischemia suffer from similar 

limitations, but some positive results provide encouragement for continued 

development

• The role of inflammatory signaling and transdifferentiation in vascular 

regeneration merits further study
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Processes involved in Vascular Regeneration. Tx = Transcriptional. See text for additional 

details.
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