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Abstract

BACKGROUND: Many individual echocardiographic variables have been associated with heart 

failure in patients with stable coronary artery disease (CAD), but their combined utility for 

prediction has not been well studied.

METHODS: Unsupervised model-based cluster analysis was performed blinded to the study 

outcome in 1000 patients with stable CAD on 15 transthoracic echocardiographic (TTE) variables. 

We evaluated associations of cluster membership with HF hospitalization using Cox proportional 

hazards regression analysis.

RESULTS: The echo-derived clusters partitioned subjects into 4 pheno-groupings: phenogroup 1 

(n=85) had the highest levels, phenogroups 2 (n=314) and 3 (n=205) displayed intermediate levels 

and phenogroup 4 (n=396) had the lowest levels of cardiopulmonary structural and functional 

abnormalities. Over 7.1±3.2 years of follow-up, there were198 HF hospitalizations. After 

multivariable adjustment for traditional cardiovascular risk factors, phenogroup 1 was associated 

with a nearly 5-fold increased risk (HR 4.8; 95%CI: 2.4–9.5), phenogroup 2 was associated with a 

nearly 3-fold increased risk (HR 2.7; 95%CI: 1.4–5.0), and phenogroup 3 was associated with a 

nearly 2-fold increased risk (HR 1.9; 95%CI: 1.0–3.8) of HF hospitalization, relative to 

phenogroup 4.

CONCLUSIONS: TTE variables can be used to classify stable CAD patients into separate pheno-

groupings that differentiate cardiopulmonary structural and functional abnormalities, and can 

predict HF hospitalization, independent of traditional cardiovascular risk factors.
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Introduction

Transthoracic echocardiography (TTE) provides multiple measurements, such as left 

ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), left ventricular 

outflow tract velocity-time integral (VTILVOT) and severity of mitral regurgitation (MR) and 

diastolic dysfunction (DD), that predict adverse outcomes in coronary artery disease (CAD)

(1–5). We previously published a TTE heart failure index (HFI) based on 5 measurements 

(LVMI, left atrial volume index (LAVI), MR, VTILVOT and DD) that predicted heart failure 

(HF) hospitalizations in a large cohort of participants with stable, ambulatory CAD(6). 

These 5 measurements were selected from 15 echocardiographic variables and weighted 

according to their prognostic value using Cox proportional hazard models.

However, additive risk scores such as this do not capture the potentially complex, joint 

associations of variables that may interact and move together or separately. An alternative 

method to incorporate information from potentially discordant variables is unsupervised 

cluster analysis, an agnostic multivariable method that segregates similar cases without the 

constraint of an a priori diagnostic system (7). This type of analysis has been successfully 

applied to various areas in cardiology, including phenotypic clustering of DD parameters, 

pheno-grouping heart failure patients to identify responders to cardiac resynchronization 

therapy and identifying cardiopulmonary structural and functional phenotypes in patients 

with HIV (7–9). Therefore, we sought to (i) use an unsupervised, model-based clustering 

method to generate pheno-groupings that are prognostically meaningful, using all 15 TTE 

variables; (ii) compare the prognostic value of these pheno-groups against the HFI to predict 

HF hospitalizations.

Methods

The Heart and Soul Study is a prospective cohort study evaluating the impact of 

psychosocial factors on cardiovascular outcomes. The study methods have been previously 

described in detail(10). Participants were enrolled between 2000 and 2002 from 2 Veterans’ 

Affairs hospitals, an academic medical center, and 9 public health clinics in the San 

Francisco area. All participants had CAD defined by either a history of myocardial 

infarction, angiographic evidence of ≥50% stenosis in a coronary vessel, evidence of 

inducible ischemia by treadmill electrocardiography or nuclear perfusion stress imaging, or 

a history of coronary revascularization. Patients were excluded if they were unable to walk 

>1 block, had a history of acute coronary syndrome within the prior 6 months, or intended to 

move out of the local area within 3 years. A total of 1,024 study participants provided 

informed consent and completed baseline echocardiographic and laboratory testing, 

including 549 (54%) with a history of myocardial infarction, 237 (23%) with a history of 

revascularization but not myocardial infarction, and 238 (23%) with a diagnosis of coronary 

disease that was documented by their physician (on the basis of a positive angiogram or 

treadmill test in >98% of cases). Of the 1,024 participants, 1,000 participants with all the 

requisite echocardiographic measurements were included in this analysis. The institutional 

review boards at the University of California San Francisco, the San Francisco Veterans 

Affairs Medical Center, the Veterans Affairs Palo Alto Health Care System, and the 

Community Health Network of San Francisco approved this protocol. All participants 

Mishra et al. Page 2

J Am Soc Echocardiogr. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provided written informed consent. The investigation was performed in accordance with the 

Declaration of Helsinki.

Echocardiographic measurements

A complete resting 2-dimensional echocardiogram with an Acuson Sequoia ultrasound 

system (Siemens Medical Solutions, Mountain View, California) with a 3.5-MHz transducer 

and Doppler ultrasound examination was performed in all patients. Standard 2-dimensional 

parasternal short-axis and apical 2- and 4-chamber views during quiet respiration or held 

expiration were obtained. Two highly experienced sonographers made all sonographic 

measurements, and a single cardiologist reader (N.B.S.), who was blinded to clinical and 

laboratory information, evaluated, confirmed, and—when needed—corrected each 

measurement.

The fifteen candidate echocardiographic variables chosen a priori by the investigators were 

the same as the variables chosen to create the HFI(6):

1. left ventricular end-systolic volume index (LVESVI)

2. left ventricular end-diastolic volume index (LVEDVI)

3. left ventricular ejection fraction (LVEF)

4. left atrial volume index (LAVI)

5. right atrial volume index

6. left ventricular mass index (LVMI)

7. pulmonary artery peak systolic pressure (PASP)

8. right ventricular outflow tract velocity-time integral (VTIRVOT)

9. left ventricular outflow tract velocity-time integral (VTILVOT)

10. aortic valve area

11. right atrial pressure

12. diastolic dysfunction (DD)

13. mitral regurgitation (MR) severity

14. tricuspid regurgitation severity

15. resting wall motion score index

Standard apical 2- and 4-chamber views were obtained. LV end-systolic and end-diastolic 

volumes were obtained by planimetry with the biplane method of discs as described (11). 

The LVEF was calculated as (end-diastolic volume - end-systolic volume)/end-diastolic 

volume.

Left and right atrial volumes were obtained at end-ventricular systole by manual planimetry 

with the biplane method of discs for the left atrium and single plane method of discs for the 

right atrium, as previously described and validated (11). All chamber volumes were 

subsequently indexed to body surface area. LV mass was calculated with a truncated 
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ellipsoid equation and indexed to body surface area as previously described and validated 

(11, 12). The tricuspid regurgitation jet was visualized with color flow mapping, and 

continuous wave Doppler was used to capture the flow signal from measurement of peak 

tricuspid regurgitant velocity. The peak tricuspid regurgitant velocity for the current study 

was the highest measurement obtainable by Doppler imaging among the parasternal, apical, 

and subcostal views. The right ventricular systolic pressure was estimated with the modified

Bernoulli equation (p = 4v2) and added to the estimated right atrial pressure to obtain the 

pulmonary artery systolic pressure (13).

The VTIRVOT was obtained by placing a pulsed wave Doppler sample volume in the 

proximal right ventricular outflow tract at the level of the pulmonic valve, in the parasternal 

short-axis view and tracing the outer boundaries of the spectral Doppler signal to obtain the 

VTI. The sample volume was placed such that the opening valve Doppler signal was greater 

than or equal to the closing signal. The VTILVOT was obtained by placing a pulsed wave 

Doppler sample volume in the left ventricular outflow tract (LVOT) immediately proximal to 

the aortic valve in the anteriorly angulated apical 4-chamber view and tracing the outer 

boundaries of the peak spectral Doppler signal to obtain the VTILVOT. Proper location in the 

LVOT was confirmed by visualization of the aortic valve closure signal (14). The LVOT 

diameter was measured at the level of the aortic annulus from the parasternal long-axis view 

in mid-systole. The aortic valve area was derived from the velocity-time integrals of the 

aortic valve and the LVOT tract with the continuity equation (15).

Diastolic dysfunction was defined as the presence of at least 1 of the following: impaired 

relaxation defined as a ratio of peak mitral early diastolic to atrial contraction velocity (E/A) 

of ≤0.75 with systolic dominant pulmonary vein flow; pseudonormal defined as 0.75 <E/A 

<1.5 with diastolic dominant pulmonary vein flow; restrictive filling defined as an E/A ≤1.5 

with diastolic dominant pulmonary vein flow(16). Diastolic dysfunction was only 

determined if both pulmonary vein flow and E/A were both recorded. Pulmonary vein flow 

was recorded in 1,011 patients, and E/A was recorded in 971 patients.

The severity of mitral and tricuspid regurgitation was determined semi-quantitatively 

according to American Society of Echocardiography guidelines (17). The right atrial 

pressure was obtained by inspection of the inferior vena cava during respiration as 

previously described(18).

Regional LV function was assessed with a standard 16-segment model (11). Segmental 

scores were assigned as follows: normal or hyperkinesis = 1; hypokinesis = 2; akinesis = 3; 

dyskinesis = 4; and aneurysmal = 5. The wall motion score index (WMSI) was derived as 

the sum of all scores divided by the number of segments visualized.

Construction of clusters

The goal of the clustering procedure was to simplify the data from 15 distinct 

echocardiographic measurements to partition subjects into a small number of pheno-groups 

based on the totality of echocardiographic information. These groupings were made based 

solely on the aggregate echocardiographic data and did not utilize clinical characteristics or 
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subsequent outcomes. We first examined unadjusted Spearman correlations between 

markers. We standardized each TTE measure (to a mean of zero and variance of one) so that 

variables with larger variances would not have more effect on the clusters. We used finite 

Gaussian mixture modeling with the EM algorithm to perform unsupervised clustering of 

TTE variables, using the Bayesian Information Criterion (BIC) to determine the number of 

clusters(19). Groups of participants having similar patterns of echocardiographic 

measurements can be identified as “pheno-groups”. We handled missing TTE variables 

using multiple imputation, generating 10 imputed datasets to ensure high relative efficiency. 

For each participant, cluster membership was defined as the consensus assignment across the 

10 imputed datasets(20). Our clustering procedure identified 4 distinct subgroups of 

participants, which we call phenogroups, based on the solution yielding the optimal BIC.

Management of Missing Data

Rates of missing data were low (<3%) for all parameters with the exception of LV diastolic 

function (6.2% missing) and PASP (19% missing; supplemental table 1). We handled 

missing TTE variables using multiple imputation, generating 10 imputed datasets to ensure 

high relative efficiency. For each participant, cluster membership was defined as the 

consensus assignment across the 10 imputed datasets(20) as shown in supplemental table 2. 

Overall agreement across imputed datasets was moderate to good (κ = 0.61).

Transthoracic Echocardiographic Heart Failure Index

The derivation of the transthoracic echocardiographic heart failure index (HFI) has been 

previously described(6). Briefly, the association of the aforementioned 15 TTE 

measurements with subsequent HF hospitalization was evaluated using Cox proportional 

hazard models. The 5 TTE measurements that independently predicted HF - left ventricular 

mass index (LVMI), left atrial volume index (LAVI), mitral regurgitation (MR), left 

ventricular outflow tract velocity-time integral (VTILVOT), diastolic dysfunction (DD) - were 

combined into an index. Variables were defined as normal or abnormal on the basis of 

dichotomous cutoffs determined from the American Society of Echocardiography. Abnormal 

variables in each measurement were assigned points, ranging from 0 to 8, based on the 

strength of association with HF: 3 points for LVMI, 2 points for DD, 1 point for VTILVOT, 

MR, and LAVI. Furthermore, the HFI was categorized as follows: low <3 points, medium 3–

4 points, high 5–6 points, very high 7–8 points.

Candidate Co-variates

Each participant completed a detailed questionnaire that included age, gender, race or 

ethnicity, medical history (including history of HF), level of physical activity and current 

smoking. Study personnel recorded all current medications and measured height and weight. 

Total, low-density and high-density lipoprotein cholesterol, creatinine, C-reactive protein 

(CRP), high-sensitivity troponin T (hs-TnT) and N-terminal pro-brain natriuretic peptide 

(NT-proBNP) were measured from fasting serum samples. Estimated glomerular filtration 

rate (eGFR) was calculated using Modification of Diet in Renal Disease equation (21). 

Covariates used in multivariable models were selected if there was a statistically significant 

difference among the clusters (p<0.05).
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Outcomes

To ascertain the primary outcome of HF hospitalization, we conducted annual telephone 

follow-up interviews and questioned participants or their proxies regarding recent 

emergency room visits and hospital stays. Medical records, death certificates, and coroner’s 

reports were retrieved. Participants were censored at point of the first HF admission, when 

lost to follow-up, or upon death. Admission for HF was defined as a clinical syndrome with 

a minimum 1-night hospital stay and involving at least 2 of the following: paroxysmal 

nocturnal dyspnea, orthopnea, elevated jugular venous pressure, pulmonary rales, a third 

heart sound, cardiomegaly on chest radiography, or pulmonary edema on chest radiography. 

These clinical signs and symptoms must have represented a clear change from the normal 

clinical state of the patient and must have been accompanied by either failing cardiac output 

as determined by peripheral hypoperfusion (in the absence of other causes such as sepsis or 

dehydration) or peripheral or pulmonary edema treated with intravenous diuretics, inotropes, 

or vasodilators.

Two blinded physician adjudicators reviewed each event, and if there was agreement, the 

outcome classification was binding. If there was disagreement, a third blinded physician 

adjudicator reviewed the event and determined the outcome classification.

Statistical analyses

We compared the demographic, anthropometric, laboratory and echocardiographic variables 

and co-morbidities and medication use across phenogroups using chi-square and ANOVA 

tests for categorical and continuous variables, respectively. To study the association of the 

phenogroups with HF hospitalization, we generated Kaplan-Meier curves and used 

unadjusted and multivariable-adjusted Cox proportional hazards models. To compare the 

prognostic value of the addition of phenogroup membership vs. the HFI to a reference 

model, we estimated discrimination using Harrell’s c statistic for concordance and, in 

addition, calculated the integrated discrimination index (IDI) (22). A 2-sided P value of 

<0.05 was considered statistically significant. All statistical methods were implemented in 

StataIC 13 (StataCorp LP, College Station, Texas), R package of mclust for cluster 

memberships, and survIDINRI for IDI.

Results

Construction of Echocardiographic Pheno-Groupings

We identified four distinct echocardiographic phenogroups using an unsupervised (i.e. 
agnostic of outcomes) automated clustering method. We started with generating Spearman 

correlations among the 15 echocardiographic variables. In unadjusted analysis, we found 

moderately strong correlations (r≥0.5) among LVEDVI, LVESVI, LVEF and WMSI and 

between VTILVOT and VTIRVOT (Figure 1); all other correlations were moderate (r<0.5) to 

weak (r<0.3). The strongest correlation was between LVEDVI and LVESI (r=0.89), as 

expected.

On average, persons in phenogroup 4 had smaller LVEDVI and LVESVI and normal LVMI 

and WMSI (Table 1). Phenogroups 1–3 had lower VTILVOT and VTIRVOT and phenogroup 1 
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had borderline LVEF. Thirty seven percent and 50% of participants had greater than mild 

MR in phenogroups 1 and 2, respectively, and 34% and 60% of participants had greater than 

mild TR in phengroups 1 and 2, respectively; no participant in phenogroup 3 or 4 had 

greater than mild MR or TR. Though every phenogroup had a mean calculated aortic valve 

area of >2cm2, it increased stepwise from phenogroup 1 to 4. No participants in phenogroup 

4 had pseudonormal or restrictive DD while 34% of participants in phenogroup 1 did. RA 

pressure and PASP were also elevated in phenogroup 1. LAVI and RAVI were increased in 

phenogroups 1 and 2. Consistent with the stratification of the phenogroups by LVMI, LAVI, 

MR, VTILVOT and DD, there was an incremental decrease in the HFI from phenogroup 1 

(4.4±2.1) to 4 (2.2±1.7).

Cohort Characteristics

Overall, the cohort was of older age, predominantly male and mostly white (Table 1). There 

was a high prevalence of hypertension (71%). As is to be expected in a CAD cohort, a 

majority of participants had a history of myocardial infarction (54%) and coronary 

revascularization (59%). A sizeable proportion also had a history of CHF (18%).

Phenogroup 4 was younger on average (p<0.0001) and had the greatest proportion of women 

(p=0.002; Table 1). Phenogroups 1 and 3 had a greater proportion of diabetes (p=0.014) and 

history of CHF (p<0001). The percentage of participants with myocardial infarction 

(p<0.0001) and coronary revascularization (p<0.0001) rose incrementally from phenogroup 

4 through 1. eGFR decreased while serum creatinine increased from phenogroup 4 through 1 

(p<0.0001). Phenogroups 3 and 4 had higher total cholesterol (p=0.017) and LDL (0.01) 

than phenogroups 1 and 2. Serum NT-proBNP levels (p=0.0001) increased stepwise from 

phenogroup 4 through phenogroup 1 while phenogroup 1 had the highest hs-TnT levels 

(p<0.0001). There was no significant difference in β-blocker (p=0.19) or statin (p=0.24) use 

among the phenogroups, but aspirin (p=0.026) use was lowest and ACE-inhibitor use was 

highest in phenogroup 4 (p<0.0001).

Association of Echocardiographic Pheno-Groupings with Heart Failure

During a mean follow-up of 7.1±3.2 years, the rate of HF hospitalizations was highest in 

phenogroup 1 (86 per 1000 person-years, 95%CI 78–94) and lowest in phenogroup 4 (10 per 

1000 person-years, 95%CI 9–11), with phenogroups 2 and 3 showing intermediate event 

rates (Figure 2a). Similarly, in unadjusted analyses, phenogroup 1 had a greater than 8-fold 

risk (HR 8.4; 95%CI 4.1 – 17.1), phenogroup 2 had a 4-fold risk (HR 4.3; 95% CI 1.9 – 9.6), 

and phenogroup 3 had a 3-fold risk of HF hospitalization (HR 3.0; 95% CI 1.6 – 5.3), 

compared to phenogroup 4 (Table 2). After multivariable adjustment for traditional CVD 

risk factors, including demographics, comorbidities, laboratory values and medications, the 

elevated risk of HF hospitalization among those in phenogroups 1 and 2 persisted (Table 2). 

In the Kaplan-Meier analysis, there was a stepwise decrease in survival from phenogroup 4 

to phenogroup 1 (Figure 2b).
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Performance of Pheno-Groupings versus the Heart Failure Index in Predicting Heart 
Failure

The integrated discrimination index (IDI) for HF hospitalization was significant when 

adding either the heart failure index (HFI; 6.4%, 95% CI 1.5 – 11.9%; p=0.03) or the 

phenogroups (5.1%, 95% CI 2.0 – 8.9%; p=0.01; Table 3) to a reference model that included 

demographic variables, comorbidities including a history of MI, HF, angina and 

revacularization, laboratory values including NT-proBNP and hs-TnT and medications. The 

C-statistic was the same for HFI and phenogroup membership added to a reference model 

(0.84; 95% CI 0.81 – 0.87).

For each category of the HFI (low, medium, high and very high), phenogroup 1 had highest 

event rates for HF hospitalization (Figure 3). For the high and low HFI, the event rates 

decreased stepwise from phenogroup 3 to 1. The medium HFI did not exhibit such a trend.

Discussion

In this cohort of 1,000 participants with stable CAD, we found that automated model-based 

unsupervised clustering based on 15 echocardiographic measures identifies four distinct 

pheno-groupings, which successfully partition subjects into categories of risk of HF 

hospitalization. Our group had previously used multivariable Cox proportional hazard 

models to select 5 of these 15 echocardiographic measures to create a heart failure index 

(HFI) that independently predicted HF hospitalizations in the same cohort(6). We found that 

the machine learning-derived phenogroups performed as well as the HFI in predicting HF 

hospitalization.

Machine learning algorithms can discover hidden patterns in complex and heterogeneous 

data. In addition, unsupervised learning, such as cluster analysis, analyzes the intrinsic 

structure within data and can evaluate complex nonlinear interaction among variables, 

without the a priori consideration of outcomes(7). Unsupervised machine learning 

algorithms have been used to analyze left ventricular function to characterize heart failure 

with preserved ejection fraction(23), discover phenotypic clustering of left ventricular 

diastolic function (7), classify prognostic categories using exercise echocardiography in 

heart failure with preserved ejection fraction(24) and pheno-group patients with heart failure 

to identify response to cardiac resynchronization therapy(8). Ours is the first study to apply 

an unsupervised machine learning algorithm to TTE measurements among patients with 

stable CAD, a population known to be at elevated risk of HF, to successfully derive clusters 

of risk for HF hospitalization.

The HFI was created initially using a group of 15 historically and intuitively promising 

echocardiographic measurements. From these, after eliminating the measurements that were 

statistically redundant in linear models, 5 measurements were selected to create the HFI: 

LVMI, LAVI, MR, VTILVOT, and DD. Some candidate variables that have a rich history as 

predictors of poor cardiovascular outcomes, mortality and HF such as LVEDVI, LVESVI 

and PASP were not selected to form the HFI either because they were either strongly inter-

correlated or were not independent predictors (25–27). In contrast to traditional methods of 

risk stratification, based on selection of predictors based on their association with outcomes, 
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in the current study, participants were separated into four distinct pheno-groupings based 

upon an unsupervised machine-learning algorithm, which considered all 15 TTE variables.

These pheno-groupings exhibited distinct baseline demographic characteristics, 

comorbidities and laboratory features, demonstrating that they represent distinct phenotypes 

of participants with stable CAD. Furthermore, the pheno-groupings demonstrated varying 

risk of HF hospitalization from low risk (phenogroup 4) to high (phenogroup 1) risk groups. 

Of relevance to subsequent HF hospitalization, phenogroup 1 had the highest rates of history 

of HF, MI and revascularization, lowest eGFR and the highest levels of CRP, hs-cTnT and 

NT-proBNP (28). These pheno-groupings also partitioned the TTE measurements into 

meaningful groups; the high risk (phenogroup 1) group had the highest LVEDVI, LVESVI, 

LVMI and WMSI and the lowest LVEF. Moreover, the HFI increased from the lowest risk 

(phenogroup 4) to the highest risk (phenogroup 1) group. In summary, the four pheno-

groupings generated by a machine learning algorithm have clinical, laboratory and 

echocardiographic values (i.e. history of HF, higher values of hs-TnT and NT-proBNP, lower 

eGFR, higher LVEDVI, LVESVI, LVMI and WMSI and lower LVEF), which are consistent 

with informal risk assessment for HF performed by physicians treating patients with stable 

CAD in the clinic.

Pheno-groupings were prognostically meaningful in predicting HF hospitalization. As 

expected, the high risk (phenogroup 1), with all the high-risk demographic, comorbid, 

laboratory and echocardiographic features, had the highest risk of HF hospitalization. Many 

of the features of the high risk pheno-grouping such as elevated LAESVI, PASP, LVESVI 

and LVMI, LV diastolic dysfunction and reduced LVOT and RVOT VTI have been 

previously shown to be associated with adverse outcomes in this and other cohorts(1–3, 16, 

26, 27). While individual TTE measures showed statistically significant associations with 

adverse outcomes, the full panel was not simultaneously predictive, making it difficult to 

reconcile the findings of multiple measures. The unsupervised clustering method used in the 

current study were likely able to identify the complex associations between the TTE 

variables and, thereby, successfully distinguish pheno-groupings with different HF risk 

profiles.

As evaluated by the IDI analysis and Harrell’s c-statistic, the pheno-groupings of TTE 

variables performed equally as well as the HFI for the prediction of HF hospitalizations. 

This indicates that an unsupervised machine learning algorithm that is agnostic of outcomes 

can partition the cohort into prognostically meaningful categories of risk as well as standard 

regression methods that rely on the inclusion of outcomes in creating their models of risk. 

This is the first study to directly compare unsupervised machine learning clustering of TTE 

variables with a score derived from linear methods, dependent on outcomes, applied to the 

same variables to evaluate risk of HF hospitalization among participants with stable CAD.

Study Limitations

The primary outcome is HF hospital stay, which might be prone to error despite rigorous 

adjudication, depending on clinical assessment, coding, and accuracy of chart review. In 

particular, the clinical assessment of physical findings like the determination of jugular 

venous pressure are fraught with significant variability in its evaluation and, therefore, are 
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prone to error(29). In addition, TTE measurements were limited to those available at the 

time of the initial echocardiographic examination. Therefore, we were not able to 

incorporate newer techniques that are widely available now such as tissue Doppler. In 

addition, we no longer have access to the original echocardiograms to perform speckle 

tracking strain analysis.

The objective of our study was to provide a proof of principle of the prognostic value of 

using unsupervised clustering, agnostic of outcomes, to identify clinically relevant 

phenogroups. Therefore, the specific phenogroups we derive are not intended to generalize 

to other cohorts, but instead we demonstrate that a similar approach can be taken to derive 

phenogroups in other cohorts. An additional limitation is that missing TTE data were 

handled using multiple imputation, resulting in some uncertainty in the phenogroup 

assignments. However, we found moderate to good agreement in cluster assignment across 

the imputed datasets, despite this missing data.

The distribution of participants across the phenogroups is unequal and this may result in 

under-or overestimation of the point estimates. Most of the participants enrolled in the study 

had preserved LVEF (≥50%) and, therefore, our conclusions may not apply to participants 

with heart failure with reduced LVEF. Furthermore, we cannot comment on how this 

clustering method would apply to individual patients without stable CAD.

Conclusions

Automated unsupervised clustering of echocardiographic measures successfully partitioned 

a population with stable CAD into pheno-groupings of risk for HF hospitalization. This 

machine learning algorithm performed as well as the HFI, derived previously in the same 

cohort using traditional scalar methods. This suggests the possibility that automated machine 

learning algorithms could be applied to echocardiographic measurements to derive pheno-

groupings by being incorporated into echocardiographic platforms or the electronic medical 

record.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heatmap showing Spearman correlation coefficients between TTE variables.

Abbreviations: TTE = transthoracic echocardiography; LAVI = left atrial end-systolic 

volume index; RAVI = right atrial end-systolic volume index; MRS = severity of mitral 

regurgitation; PASP= Pulmonary artery systolic pressure; TRS = severity of tricuspid 

regurgitation; RAP = right atrial pressure; DD = diastolic dysfunction; LVEDVI = left 

ventricular end-diastolic volume index; LVESVI = left ventricular end-systolic volume 

index; WMSI = wall motion score index; LVMI = left ventricular mass index; VTI RVOT= 

right ventricular outflow tract velocity-time integral; VTI LVOT = left ventricular outflow 

tract velocity-time integral; LVEF = left ventricular ejection fraction; AVA = aortic valve 

area.
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Figure 2. 
(A) Clinical outcome event rates, stratified by TTE-derived phenotype. py, Person-years. (B) 

Kaplan-Meier curves of HF hospitalizations by phenogroupings.

Abbreviation. TTE = transthoracic echocardiography; HF = heart failure; py = person-years.
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Figure 3. 
HF hospitalizations Stratified by Pheno-Grouping in Each Heart Failure Index Category.

*number of patients with heart failure hospitalizations in each heart failure index category, 

stratified by phenogroup.

Abbreviations: py = person-years.
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Table 1.

Summary of baseline characteristics, stratified by TTE-derived pheno-groupings.

Overall Phenogroup I Phenogroup II Phenogroup III Phenogroup IV

N=1000 85 (9%) 314 (31%) 205 (21%) 396 (40%) p value

Age (y) 67±11 67±11 71±11 68±10 63±10 <0.0001

Male 816 (82%) 67 (79%) 265 (84%) 181 (88%) 303 (77%) 0.002

Race (non white) 401 (40%) 30(35%) 116(37%) 80 (39%) 175 (44%) 0.17

BMI (kg/m2) 28±5 29±7 27±5 29±5 29±5 <0.0001

Medical history and Behavior risk 
factosr

Hypertension 704 (71%) 61 (72%) 214 (68%) 149 (73%) 280 (71%) 0.70

Diabetes 260 (26%) 26 (31%) 63 (20%) 65 (32%) 106 (27%) 0.014

CHF 178 (18%) 22 (26%) 65 (21%) 46 (23%) 45 (11%) <0.0001

Stroke 143 (14%) 11 (13%) 47 (15%) 33 (16%) 52 (13%) 0.72

Myocardial infarction 537 (54%) 53 (63%) 187 (60%) 124 (61%) 173 (44%) <0.0001

Revascularization 587 (59%) 56 (67%) 209 (67%) 130 (64%) 192 (49%) <0.0001

Physically inactive 363 (36%) 38 (45%) 116 (37%) 67 (33%) 142 (36%) 0.31

Smoking 196 (20%) 23 (27%) 42 (13%) 42 (21%) 89 (23%) 0.005

Laboratory values

eGFR (ml/min/1.73m2) 71±22 62±24 66±21 69±22 77±22 <0.0001

LDL (mg/dL) 104±34 99±35 100±33 108±33 107±34 <0.01

HDL (mg/dL) 46±14 46±15 46±14 46±13 45±14 0.72

Total Cholesterol (mg/dL) 178±42 173±47 172±42 181±39 181±42 0.017

NT-proBNP (pg/mL) 175 (73 453) 478 (184 1103) 296 (136 751) 204 (99 465) 94 (41 200) <0.0001

hs-cTroponin T (pg/mL) 5.7 (0 13.4) 9.9 (4.1 20.3) 6.7 (0.2 16.2) 8.3 (0.2 15.3) 8.3 (0.2 15.3) <0.0001

CRP (ug/mL) 3.4 (1.6 8.9) 3.7 (1.8 12.5) 3.5 (1.6 9.0) 3.6 (1.8 9.5) 3.2 (1.5 8.5) 0.28

Medications

Medications Beta blocker 578 (59%) 48 (58%) 198 (63%) 113 (55%) 219 (56%) 0.19

ACE-inhibitor 512 (52%) 59 (72%) 163 (52%) 111 (54%) 179 (46%) <0.0001

Statin 640 (65%) 52 (63%) 215 (69%) 134 (65%) 239 (62%) 0.24

Aspirin 723 (73%) 49 (59%) 233 (75%) 153 (75%) 288 (74%) 0.026

TTE measurements

LAVI 33±12 39±13 38±15 31±11 29±8 <0.0001

RAVI 23±10 30±13 26±12 21±9 21±8 <0.0001

MR

None to trace 812 (81%) 54 (64%) 157 (50%) 205 (100%) 396 (100%)

Mild 179 (18%) 27 (32%) 152 (48%) 0 0 <0.0001

Moderate or severe 9 (1%) 4 (5%) 5 (2%) 0 0

PASP 32±9 41±15 34±10 31±7 29±6 <0.0001

TR

None to trace 784 (78%) 56 (66%) 127 (40%) 205 (100%) 396 (100%)

Mild 206 (21%) 24 (28%) 182 (58%) 0 0 <0.0001
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Overall Phenogroup I Phenogroup II Phenogroup III Phenogroup IV

N=1000 85 (9%) 314 (31%) 205 (21%) 396 (40%) p value

Moderate or severe 10 (1%) 5 (6%) 5 (2%) 0 0

Right atrial pressure 5.3±1.4 8.6±3.7 5±0 5±0 5±0 <0.0001

Diastolic Function

Normal 604 (64%) 36 (51%) 164 (58%) 54 (27%) 350 (90%)

Impaired relaxation 224 (24%) 11 (15%) 69 (24%) 107 (54%) 37 (10%) <0.0001

Pseudonormal or restrictive 110 (12%) 24 (34%) 50 (18%) 36 (18%) 0

LVEDVI 52±18 65±32 57±17 54±19 44±10 <0.0001

LVESVI 22±16 40±39 24±12 22±13 15±4 <0.0001

LVMI 100±34 119±78 102±27 109±32 89±17 <0.0001

Wall motion score Index 1.2±0.4 1.4±0.6 1.3±0.5 1.1±0.2 1.0±0.1 <0.0001

VTIRVOT 0.19±0.04 0.20±0.05 0.19±0.04 0.19±0.04 0.21±0.04 <0.0001

VTILVOT 0.22±0.05 0.22±0.09 0.21±0.05 0.21±0.04 0.23±0.04 <0.0001

LVEF 62±10 54±16 59±10 61±10 66±5 <0.0001

Aortic valve area 2.5±0.6 2.3±0.7 2.4±0.7 2.5±0.7 2.6±0.5 0.004

Heart Failure Index 3.2±2.0 4.4±2.1 3.9±2.0 3.7±1.6 2.2±1.7 <0.0001

Data are summarized as N (%) for categorical variables. Continuous variables are summarized as mean ± SD or median (IQR).

Abbreviations: TTE = transthoracic echocardiography; BMI = body mass index; eGFR = estimated glomerular filtration rate; LDL = low density 
lipoprotein; HDL = high density lipoprotein; NT-proBNP = N-terminal pro-brain natriuretic peptide; hs-cTroponinT = high sensitivity cardiac 
troponin T; CRP = C-reactive protein; ACE = angiotensin converting enzyme.

Data are summarized as N (%) for categorical variables; Continuous variables are summarized as mean ± SD or median (IQR).

Abbreviations: LAVI = left atrial end-systolic volume index; RAVI = right atrial end-systolic volume index; MR = mitral regurgitation; PASP= 
Pulmonary artery systolic pressure; TR = tricuspid regurgitation; LVEDVI = left ventricular end-diastolic volume index; LVESVI = left ventricular 
end-systolic volume index; LVMI = left ventricular mass index; VTILVOT = left ventricular outflow tract velocity–time integral; VTIRVOT= right 

ventricular outflow tract velocity– time integral; LVEF = left ventricular ejection fraction.
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Table 2.

Associations of TTE-derived pheno-groupings with HF hospitalizations

Phenogroup I Phenogroup II Phenogroup III Phenogroup IV

Outcome HR (95%CI) HR (95%CI) HR (95%CI) (reference)

HF hospitalizations

Event rate (per 1000, 95%CI) 85.7 (78.4 93.6) 42.3 (39.4 45.3) 28.7 (26.3 31.3) 10.3 (9.3 11.4)

Unadjusted HR (95% CI) 8.4 (4.1, 17.1), p<0.001 4.3 (1.9, 9.6), p=0.001 3.0 (1.6, 5.3), p<0.001 Reference

Model 1: demographics 7.7 (4.0, 14.6), p<0.001 3.6 (1.6, 7.9), p=0.003 2.6 (1.3, 5.4), p=0.011 Reference

Model 2: + comorbidities 6.5 (3.2, 13.2), p<0.001 3.5 (1.7, 6.9), p=0.001 2.2 (1.2, 4.1), p=0.012 Reference

Model 3: + laboratory values 5.0 (2.6, 9.7), p<0.001 2.9 (1.5, 5.3), p=0.001 2.0 (1.0, 3.9), p=0.045 Reference

Model 4: + medications 4.8 (2.4, 9.5), p<0.001 2.7 (1.4, 5.0), p=0.002 1.9 (1.0, 3.8), p=0.056 Reference

Hazard ratios with 95% confidence intervals (CI) from Cox proportional hazards models. Multivariable adjusted models control sequentially for 
demographics (age, sex, race, body mass index), comorbidities (current smoking, diabetes, history of heart failure, history of myocardial infarction, 
history of angina or revascularization), laboratory values (total cholesterol, LDL, eGFR, NT-proBNP, hs-cTroponin T), and medication use 
(antihypertensive therapy and aspirin).

Abbreviations. CI = confidence interval; TTE = transthoracic echocardiography; HF = heart failure; HR = hazard ratio.
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Table 3.

Comparison of model fit for TTE-derived Pheno-groupings versus Heart Failure Index score for HF 

Hospitalization

Outcome Harrell’s C-statistic (95% CI) Integrated Discrimination Index (95%CI)

HF hospitalization

 0. Reference model* 0.81 (0.78–0.84) reference

 1. Reference + HFI 0.82 (0.79–0.85), p=0.053
†

+6.4% (1.5%, 12.5%), p=0.033
†

 2. Reference + Phenogroup 0.83 (0.80–0.85), p=0.025
‡

+5.1% (2.0%, 9.3%), p=0.007
‡

1 vs. 2. Ref. + HFI vs. Ref. + Phenogroup p=0.69 −1.2% (−6.3% 4.0%), p=0.69

*
Reference model includes demographics (age, sex, race, body mass index), comorbidities (current smoking, diabetes, history of heart failure, 

history of myocardial infarction, history of angina or revascularization), laboratory values (total cholesterol, LDL, eGFR, NT-proBNP, hscTroponin 
T), and medication use (antihypertensive therapy and aspirin)

†
p-value for model 1 vs. 0;

‡
p-value for model 2 vs. 0

Abbreviations. TTE = transthoracic echocardiography; CI = confidence interval.
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