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Abstract

In this article, we present a novel stochastic algorithm called simultaneous sensor calibration and 
deformation estimation (SCADE) to address the problem of modeling deformation behavior of a 

generic continuum manipulator (CM) in free and obstructed environments. In SCADE, using a 

novel mathematical formulation, we introduce a priori model-independent filtering algorithm to 

fuse the continuous and inaccurate measurements of an embedded sensor (e.g., magnetic or 

piezoelectric sensors) with an intermittent but accurate data of an external imaging system (e.g., 

optical trackers or cameras). The main motivation of this article is the crucial need of obtaining an 

accurate shape/position estimation of a CM utilized in a surgical intervention. In these robotic 

procedures, the CM is typically equipped with an embedded sensing unit (ESU) while an external 

imaging modality (e.g., ultrasound or a fluoroscopy machine) is also available in the surgical site. 

The results of two different set of prior experiments in free and obstructed environments were used 

to evaluate the efficacy of SCADE algorithm. The experiments were performed with a CM 
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specifically designed for orthopaedic interventions equipped with an inaccurate Fiber Bragg 

Grating (FBG) ESU and overhead camera. The results demonstrated the successful performance of 

the SCADE algorithm in simultaneous estimation of unknown deformation behavior of the utilized 

unmodeled CM together with realizing the time-varying drift of the poor-calibrated FBG sensing 

unit. Moreover, the results showed the phenomenal out-performance of the SCADE algorithm in 

estimation of the CM’s tip position as compared to FBG-based position estimations.

Keywords

Continuum manipulators (CMs); fiber Bragg grating (FBG) sensor; medical robots and systems; 
sensor fusion

I. INTRODUCTION

CONTINUUM manipulators (CMs) and robots utilizing flexible instruments (FIs) (e.g., 

needles and catheters) have recently garnered attention due to their superior dexterity and 

enhanced accessibility in performing minimally invasive surgeries. Examples of these 

robotic systems include the use of an ablation catheter for treatment of atrial fibrillation [1], 

needle inserting robots for venipuncture [2], and brachytherapy [3]. Additionally, continuum 

robots have been deployed in endonasal skull base surgery [4], cardiac [5], and natural 

orifice transluminal endoscopic surgery [6]. Despite the advantages of using CMs/FIs, real-

time control of these systems in unstructured environments is a challenging problem. In 

particular, these challenges include the following:

1) an accurate and robust sensing system (external or embedded), which can 

undergo and capture large deflections;

2) pertinent robust model-based or model-independent algorithm to estimate their 

shape and tip position on the fly;

3) an adaptive model-based or model-independent control paradigm to accurately 

control various type of CMs/FIs in an unknown and obstructed environment [7].

Of note, the success of both shape/tip sensing and control algorithms depends on the efficacy 

of the utilized deformation model for CMs/FIs. Therefore, adaptive and versatile CM/FI 

deformation estimation approaches need to be developed that can be easily implemented 

using various types of external and embedded sensing modalities.

A. Prior Work

Various methods have been proposed in the literature for modeling and estimation of the 

deformation behavior of CMs and FIs. First group of methods is model-based approaches. 

This group typically utilizes analytical or computational methods (e.g., finite element) to 

model the deformation behavior of these flexible devices in free or obstructed environments. 

For instance, the literature reports various kinematics- or dynamics-based modeling 

approaches for CM/FI shape/tip estimations in free and obstructed environments (e.g., [3], 

[8]–[12]). The performance of this model-based methodology, however, does dramatically 

depend on the accuracy of the developed model and the assumptions made during the 

Alambeigi et al. Page 2

IEEE Trans Robot. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modeling procedure [13]. Due to the uncertainties caused by hysteresis, friction, backlash, 

and interaction with an unknown environment, a discrepancy between the expected and the 

actual behavior is typically observed in this group of modeling [9], [14], [15]. Moreover, 

these model-based approaches are often system specific and application specific, and are not 

easily extendable to the other forms of CMs/FIs.

Second group of studies is related to sensor-based deformation estimation using an external 

or embedded sensing unit (ESU). Examples of deployed external sensing units are infrared 

optical trackers, cameras, and medical imaging modalities such as fluoroscopy, ultrasound, 

and magnetic resonance imaging (MRI). Examples of embedded units include 

electromagnetic trackers, piezoelectric polymers, and recently fiber Bragg grating (FBG) 

optical sensors [16]. Each of these sensing units suffers from major shortcomings. For 

example, optical trackers and cameras typically have line-of-sight and occlusion issues [17]. 

Imaging modalities such as X-ray suffer from a large amount of radiation exposure, which 

limits their real-time use [18]. Magnetic trackers [19] and piezoelectric polymers [20] suffer 

from the presence of metals and hysteresis, respectively. More recently, FBG sensors have 

gained popularity due to their great features such as biocompatibility, small size, flexibility, 

and real-time feedback without requiring a direct line of sight. However, arduous and often 

manual sensor-assembly and fabrication procedure together with offline static calibration 

procedure are some of the shortcomings of this ESU [16]. These issues result in an uncertain 

change and drift in the offline calibration parameters of FBG sensors, which are mainly due 

to the discrepancy between the calibration procedure and the actual implementation of FBG-

equipped CM/FIs [21], [22]. While calibration is usually performed in a free environment 

with no obstacle, the real-world applications might involve interaction of CM/FIs with an 

obstructed environment. This may result in large uncalibrated deformation behaviors as well 

as dynamic bending motions, which may lead to a poor shape/position estimation [16], [21], 

[23].

Online filtering using an embedded electromagnetic tracking sensor has also been proposed 

for estimating the shape and end-effector pose of CMs. Using this model-based Kalman 

filter (KF) approach, Tully et al. [24] have shown that a single embedded sensor is sufficient 

for estimating the shape of a particular type of CM. However, the accuracy of the presented 

estimation approach might be adversely affected if the robot is acting upon a deformable or 

moving tissue. Recently, a data-driven and machine-learning-based approach has also been 

deployed to understand the deformation behavior of a CM/FI equipped with embedded FBG 

sensors [25]. However, the proposed method has only been trained and evaluated for a 

particular obstacle-free environment. Moreover, performance of this method is dramatically 

dependent on the training dataset, which is usually difficult and time-consuming to collect.

To address these issues, third group of studies has used model-based sensor fusion 
techniques to fuse the data streamed from two sensing units. For instance, to remedy the 

noisy measurements of sensors, Sadjadi et al. [26] used a Kalman filtering approach to fuse 

a kinematic needle deflection model with the position measurements of two embedded 

sensors (i.e., electromagnetic trackers) located at the base and the tip of the needle. The 

performance of this model-based technique was evaluated using extensive simulations. 

Recently, Jiang et al. [27] have extended this KF-based sensor fusion approach by using 
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measured data to estimate the tip position of a needle. They deployed an external optical 

sensor at the base and an embedded electromagnetic sensor in the middle of the semirigid 

needle. Despite encouraging results, both methods require continuous stream of data from 

both sensing units during the experiment and rely on a priori kinematics model of the 

needle. Last but not least, in a series of studies [28]–[30], combinations of a custom-

designed electromagnetic sensing module with inertial measurement units (IMUs), an 

optical tracker with an electromagnetic system, and an optical tracker with an IMU for 

motion tracking in surgical interventions, respectively, are deployed. Similar to other studies, 

however, their formulations relied on a priori model for the state evolution and a typical 

sensor fusion technique.

B. Motivation and Contribution

With the goal of enhancing dexterity and accuracy in or-thopedics, the focus of our group is 

on developing a surgical robotic system for treatment of various orthopedics problems (e.g., 

removing osteolytic lesions behind the hip acetabular implant [31] and treatment of 

osteonecrosis of femoral head [32], [33]) using a custom-designed continuum robot called 

“ortho-snake” (see Fig. 1). While conventional CMs (e.g., [4] and [34]) are commonly 

designed to interact with soft tissues, ortho-snake, thanks to its structural stability, can 

robustly interact with hard tissues and bear high external loads during bone milling [35] and 

drilling [32], [33]. As shown in Fig. 1, in this surgical system, ortho-snake and its actuation 

unit are integrated with a positioning robotic arm and simultaneously controlled to perform 

the assigned control objective. To accurately estimate the shape and tip of the ortho-snake in 

real time, this CM has been equipped with two embedded shape sensors with three FBG 

sensing nodes that pass through channels within the walls of the CM [21]. Similar to various 

surgical interventions, the shape and position of the CM inside the patient’s body can also be 

captured using an external imaging modality (i.e., intraoperative fluoroscopy of an on-site C-

arm machine) [18]. Previous efforts of our group for deformation estimation and shape 

sensing of ortho-snake include developing models for estimating the shape from cable-

length measurements [36], the intermittent use of fluoroscopic images for updating a CM 

model [18], and static [21] and dynamic [23] shape sensing of ortho-snake using FBG 

sensors in free and obstructed environments. Despite the promising results of these studies, 

they suffer from aforementioned limitations, which may jeopardize patient’s safety in a real 

clinical intervention.

To address the challenges associated with 1) the deformation estimation and shape 

reconstruction of ortho-snake using FBG sensors and 2) the safety concerns in the 

continuous use of an intraoperative fluoroscopy machine, we propose a model-independent 

sensor fusion approach called simultaneous sensor calibration and deformation estimation 
(SCADE). In SCADE, we implement a model-independent KF (mi-KF) to fuse real-time 

stream of an ESU data (with higher frequency and lower accuracy) with intermittent 

feedback from an external imaging unit (EIU) (with lower frequency and higher accuracy). 

This framework allows us to simultaneously estimate both CM/FI deformation model and 

tune the calibration parameters of an embedded sensor in real time.

With this article, our contributions are as follows.
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1) We introduce a priori model-independent formulation for stochastic dynamics 

modeling of a generic CM/FI.

2) Unlike the common KF sensor fusion approaches (e.g., [37]) in which a linear or 

nonlinear model of the system is required as a priori, we instead estimate this 

deformation matrix recursively and directly from the input–output data in real 

time.

3) We simultaneously close our estimation loop using this estimated model and 

dynamically recalibrate the inaccurate embedded sensors (i.e., FBG sensors) 

using the intermittent external images obtained from an external imaging source 

(i.e., fluoroscopy data). Of note, this specific feature makes our approach 

independent than the type of fabrication, offline calibration, and reconstruction 

procedure of the embedded sensors (e.g., FBG sensing units).

4) We evaluated the performance of the SCADE algorithm in both free and 

obstructed environments using a CM providing two-dimensional (2-D) planar 

bending motion.

Note that the results of this article, however, can be easily extended to other robotics systems 

utilizing a generic CM/FI with more DoF and using two different sensing units (with 

different update rates), e.g., magnetic sensors and MRI [27].

The remainder of this article is organized as follows. In Section II, we present the 

mathematical models needed for the proposed SCADE algorithm. Experimental setup and 

results are presented in Sections III and IV, respectively. In Section V, we discuss the results. 

Finally Section VI concludes the article.

II. PROBLEM FORMULATION

A. Problem Statement

As shown in Fig. 2, similar to various surgical robotic interventions, we consider a robotic 

system comprising a CM/FI with unknown deformation model equipped with two sensing 

units: 1) an ESU with high-frequency and low-accuracy measurements and 2) an EIU with 

low-frequency and high-accuracy outputs. The goal is to fuse the outputs of these sensing 

units for 1) online estimation of the CM/FI deformation model and 2) an accurate high-

frequency estimation of CM/FI tip position. It is worthwhile to emphasize that obtaining a 

prior CM/FI’s deformation model is not feasible in real-world medical applications due to its 

potential alteration during interaction with unknown obstructed environments. With these 

objectives in mind, we make the following assumptions/remarks.

Remark 1: In this article, we use FBG sensors as the ESU and a camera as the EIU. 

However, other types of embedding sensing units (e.g., magnetic or piezoelectric sensor) and 

external imaging modalities (e.g., MRI, X-ray, or ultrasound) are also applicable.

Remark 2: In this article, in order to fuse the FBG and camera data, we introduce an mi-KF 

approach. This method unlike the common filtering approaches does not require a priori 

state transition matrix (i.e., description of nominal expected deformation behavior of the 
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CM/FI state variables). Instead, we estimate this matrix in real time and use it for 

recalibration of the FBG sensors.

Remark 3: We assume the FBG sensors were calibrated offline; however, this calibration 

can dynamically change during bending motion of the CM/FI or interaction with an 

unknown environment. For CM/FI calibration and model-based shape reconstruction, we use 

inaccurate shape reconstruction and 2-D–3-D registration methods presented in [21] and 

[18], respectively. Hence, considering Remark 2, the main focus of this article is fusing these 

data in order to improve the accuracy of the FBG sensor shape reconstruction with an 

intermittent/low frequency use of an external imaging source.

Remark 4: The word “dynamics” used throughout the article refers to the “time evolution 

of the system states in KF.” We also used the term “deformation behavior” to indicate the 

unknown and unmodeled dynamics of a CM, which we formulated/linearized it using a 

“kinematic deformation Jacobian.”

B. CM/FI’s a Priori Model-Independent Deformation Formulation

As shown in Fig. 2, consider ract(t) ∈ ℝM, M ∈ {2, 3} represents the tip position of the CM/FI 

in Cartesian space, and θ(t) ∈ ℝN denotes the vector of actuation inputs of the CM/FI

ract(t) = r1(t) r2(t) … rM(t) ⊤

θ(t) = θ1(t) θ2(t) … θN(t) ⊤ .
(1)

Now, assume there is a smooth unknown nonlinear function K(t):ℝN ℝM expressing the 

deformation behavior of the CM/FI as a function of the actuation inputs in each time instant

ract(t) = K(θ(t)) . (2)

Since K(t) is unknown, at each time instant i, we can estimate it using the following first-

order linear model:

K(θ) ≈ K(θi) + J(θi)(θ − θi) + O( θ − θi )
Jp, q(θi) = ∂Kp

∂(θq) (θi)
(3)

where p ∈ {1, …, M} and q ∈ {1, …, N}, and J ∈ ℝM × N is the Jacobian of the CM/FI 

deformation behavior in each time instant i and Jp, q θi  is the value of its (p, q) element.

This linear model is locally valid around the vector of actuation inputs at time instant 

i (i.e., O( θ − θi ) is negligible) and therefore we can rewrite (2) as

Δriact ≈ J(θi)Δθi (4)

where Δθi = θ − θi and Δriact = K(θ) − K θi .
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Considering (4), we can formulate this problem as the following linear stochastic difference 

equation:

ri + 1
act = JiΔθi + riact + wimod (5)

where wimod ∈ ℝM is an independent additive white noise with zero mean and covariance of 

Wi
mod capturing the uncertainty in the dynamics model, and Ji, for the ease of notation, 

represents J(θi) .

In (5), we are looking for a real-time a priori model-independent method to estimate the 

deformation Jacobian J(θi) given the change in the vector of actuation inputs Δθi and 

displacements of the CM/IF tip position Δriact = ri + 1
act − riact .

C. mi-KF for Estimation of the Deformation Jacobian Matrix

The common discrete KF addresses the general problem of estimating a state vectors of a 

discrete-time controlled process defined by the following linear stochastic difference 

equation:

si + 1 = Φisi + Γiui + wi (6)

where si ∈ ℝn is the state at time i, ui ∈ ℝm is an input control vector, wi ∈ ℝn is additive 

process noise, Γi ∈ ℝn × m is the input transition matrix, and Φi ∈ ℝn × n is the state transition 

matrix.

In addition, the observation of the states or measurements (i.e., zi ∈ ℝt) is represented by the 

following linear equation:

zi = Hisi + νi (7)

where Hi ∈ ℝt × n is the observation matrix and νi ∈ ℝt is additive measurement noise [37].

In these equations, the goal is to estimate the state vector si, given known matrices of Φi, Γi,
and Hi, and Hi, inputs of ui, zi, and statistics of wi, νi. In this formulation, the process noise 

wi and measurement noise νi are random vectors assumed to be uncorrelated, zero mean 

with normal probability distributions and known covariance matrices W i ∈ ℝn × n and 

V i ∈ ℝt × t, respectively. Also, the initial system state s0 is a random vector that is 

uncorrelated with both the process and measurement noise, and has a known mean and 

covariance matrix.

As we mentioned in Remark 2, unlike the common use of a KF in estimation of a vector 
(i.e., state vectors), in this article, we introduce a novel mathematical formulation to 

simultaneously estimate a matrix (i.e., the state transition matrix Φ) along with a vector (i.e., 

the state vector s) in real time. Of note, estimating the state transition matrix in real time, 

which indeed defines the CM/FI’s deformation behavior, is the main reason that enables our 
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framework to be generic and implemented on various types of flexible robots/instruments. 

To this end, we first define the following operators.

1) Stack Operator [38]: The stack operator maps a p × q matrix in to a pq × 1 vector. 

The stack of the p × q matrix A, denoted by AS, is the vector formed by stacking the q 
columns of A on top of each other to form a pq × 1 column vector. For instance, if D is a p × 

q matrix comprising q column vectors {d1; d2; …; dq}, where each dj (j ∈ {1, 2, …, q}) is a p × 

1 vector, i.e.,

D = d1 d2 … dq p × q

then

DS =

d1
d2
⋅
⋅
⋅

dq pq × 1

Remark 5: The stack operator maps a column vector to itself (i.e., dS = d when d ∈ ℝn × 1), 

whereas it maps a row vector to its transpose (i.e., dS = dT  when d ∈ ℝn × 1).

2) Kronecker Product [38]: The Kronecker product is a binary matrix operator that 

maps two arbitrarily dimensioned matrices into a larger matrix with special block structure. 

Given A ∈ ℝr × s and ℬ ∈ ℝp × q, the Kronecker product of these matrices, denoted by 

A ⊗ ℬ, is an rp × sq matrix with the following block structure:

A ⊗ ℬ =

a1, 1ℬ a1, 2ℬ … a1, sℬ
a2, 1ℬ a2, 2ℬ … a2, sℬ

⋮ ⋮ ⋱ ⋮
ar, 1ℬ a2, 2ℬ … ar, sℬ rp × sq

where ai, j is the ijth element of matrix A .

Considering the defined operators, it can be easily proved that the stack of a matrix 

multiplication, given the dimensions are appropriate for the product AℬC to be well 

defined, is [38]

(AℬC)S = (C⊤ ⊗ A)ℬS . (8)

Using (8) and Remark 5, for the following special case, when dimensions are appropriate for 

a general matrix–vector multiplication Ax(A ∈ ℝm × n and x ∈ ℝn), we can write
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Ax = ImAx = (x⊤ ⊗ Im)AS (9)

where Im an m × m identity matrix.

Remark 6: From now on, we denote an identity matrix with dimension ℝα × α as Iα and a 

zero matrix with dimension ℝα × β as 0α × β .

Comparing (5) with (9) and applying the stack operator on both sides of (5), we can express 

this time difference equation at time instant i as

riact = ((Δθi − 1)⊤ ⊗ IM)Ji − 1
S + ri − 1

act + wi − 1
mod . (10)

In (10), thanks to the implemented mathematical operations, unknown position vector riact

and the stacked deformation Jacobin vector Ji − 1
S  are linearly dependent. This enables us to 

stack these two vectors and simultaneously estimate them using KF formulation. The 

following sections describe the mathematical details of this procedure.

D. Sensor Fusion for Simultaneous Sensor Calibration and CM/FI Deformation Estimation 
(SCADE)

The goal here is to introduce a method for estimating unknown position vector and the 

stacked deformation Jacobin vector when continuous measurements from the ESU and 

intermittent feedback from the EIU are available.

As mentioned in Remark 4, we assume that the embedded sensor was calibrated offline but 

this calibration may vary due to the bending motion of the CM/FI or its interaction with the 

environment. In this section, we derive the necessary equations for fusing the streamed 

sensing data of both ESU and EIU in the SCADE framework. The main idea here is that the 

data from a high speed but low-accuracy ESU (e.g., FBG or magnetic tracker) are used as a 

backbone providing real-time inaccurate position estimation of the CM/FI end-effector/tip. 

Whenever the low speed/intermittent but high-accuracy EIU (e.g., camera or X-ray) provides 

an accurate position update, the difference between the position estimated from the two 

sources is used to improve the robot’s deformation model as well as the position estimation.

1) ESU Signal Modeling: As mentioned in Remark 4, the ESU calibration is not 

accurate and is vulnerable to alteration during interaction of the CM/FI with the environment 

[16]. To capture this unknown time-varying alteration/bias, we model the position estimation 

signal provided by the ESU, riesu ∈ ℝM × 1, at each time instant i using the following 

stochastic difference equation:

riesu = riact + bi
esu + wiesu (11)
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where bi
esu ∈ ℝM × 1 is the unknown and time-varying bias in the calibrated ESU 

representing the alteration between the calibration results riesu and the real position vector 

riact. The wiesu denotes the ESU noise vector assumed to be additive white noise with zero 

mean and covariance of Wi
esu and independent from r0

esu[i.e., wiesu N(0, Wi
esu)] .

Considering (11), we model the slowly changing dynamics of the ESU bias as a random 

walk process [37] with Gaussian steps

bi
esu = bi − 1

esu + wi − 1
bias (12)

where wi − 1
bias  is assumed to be an additive white noise with zero mean and covariance of 

Wi − 1
bias [i.e., wi − 1

bias N(0, Wi − 1
bias )] .

Likewise, the slowly changing deformation Jacobian of the CM/FI can be modeled by the 

following stochastic difference equation:

Ji
S = Ji − 1

S + ηi − 1
jac + wi − 1

jac
(13)

where Ji
S and Ji − 1

S  denote the stacked deformation Jacobian at time i and i − 1, 

respectively. Also, ηi − 1
jac  is a general unknown and time-varying evolution term describing 

the dynamic change of the CM/FI Jacobian. Wi − 1
jac  is assumed to be additive white noise 

with zero mean and covariance of Wi − 1
jac [i.e., wi − 1

jac N(0, Wi − 1
jac )] .

We also assume that the slowly changing dynamics of the CM/FI Jacobian ηjac follows a 

Gaussian random process

ηi
jac = ηi − 1

jac + wi − 1
eta (14)

where wi − 1
eta  assumed to be additive white noise with zero mean and covariance of 

Wi − 1
eta [i.e., wi − 1

eta N(0, Wi − 1
eta )] .

2) EIU Signal Modeling: We assume that the EIU measurements of the CM/FI position 

have adequate accuracy and can be obtained by proper image processing and registration 

methods. Considering this assumption, the deployed model to represent the EIU signal is as 

follows:

rjeiu = rjact + vjeiu (15)

where rjeiu is the position estimations from the EIU at time instant j deteriorated by vector 

vjeiu denoting the EIU noise vector. This noise vector is assumed to be additive white noise 
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with a priori statistics of zero mean and covariance of Vj
eiu and independent from 

r0
eiu [i.e., vjeiu N(0, Vj

eiu)] .

Note that time indices in (11) and (15) are denoted differently (i.e., i versus j), emphasizing 

different sampling frequency for the ESU and EIU.

3) Derivation of Dynamics Model: We formulate the time difference dynamic 

equation by calculating the difference between the predicted position in (10) at time instant i 
and the ESU measurement (11) in time instant i − 1 to obtain

δri = (Δθi − 1
⊤ ⊗ IM)Ji − 1

S − bi − 1
esu − wi − 1

esu + wi − 1
mod (16)

where δri = riact − ri − 1
esu  is the CM/FI displacement obtained from the ESU position 

measurement at time i − 1 to the actual position at time i.

This formulation allows us to provide a modified dynamics equation with the coupled 

position error, the ESU bias, the stacked deformation Jacobian, and the evolution term in 

Jacobian as our new augmented states vector x

x = δr⊤ bbias⊤ JS ⊤ ηjac⊤ ⊤
(17)

where x ∈ ℝ2M(N + 1) × 1 .

Now, considering (14)–(17), the dynamics equation describing the evolution of the 

augmented states can be formulated as

xi = Φi − 1xi − 1 + Γi − 1wi − 1 (18)

where Φi − 1 ∈ ℝ2M(N + 1) × 2M(N + 1), Γi − 1 ∈ ℝ2M(N + 1) × M(2N + 3), and 

wi − 1 ∈ ℝM(2N + 3) × 1 are defined as follows:

Φi − 1 =

0M × M −IM Δθi − 1
⊤ ⊗ IM 0M × MN

0M × M IM 0M × MN 0M × MN
0MN × M 0MN × M IMN IMN
0MN × M 0MN × M 0MN × MN IMN

Γi − 1 =

IM 0M × M 0MN × M 0MN × M
−IM 0M × M 0MN × M 0MN × M

0M × M IM 0MN × M 0MN × M
0M × MN 0M × MN IMN 0MN × MN
0M × MN 0M × MN 0MN × MN IMN

wi − 1 = wi − 1
mod ⊤ wi − 1

esu⊤ wi − 1
bias⊤ wi − 1

jac⊤ wi − 1
eta⊤ ⊤ .

(19)
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The measurement noise of the ESU (wiesu), the process noise in the dynamics model (wi − 1
mod ),

the random walk process noise (wi − 1
bias ), the noise signal in the estimated Jacobian 

deformation (wi − 1
jac ), and the noise signal in the CM/FI Jacobian evolution term (wi − 1

eta ) are 

all assumed to be uncorrelated discrete-time white noise signals. Hence, the vector wi − 1 is 

an additive white noise with zero mean and covariance of Wi − 1 [i.e., wi − 1 N(0, Wi − 1)]

Wi − 1 = Diag(Wi − 1
mod , Wi − 1

esu , Wi − 1
bias , Wi − 1

jac , Wi − 1
eta ) (20)

where Diag(·) denotes a block diagonal matrix.

4) Derivation of Measurement Model: Considering the defined displacement state δrj
and to construct a proper measurement model for the SCADE algorithm, we constitute a 

measurement model by subtracting the position data obtained by EIU at time j from the 

position information obtained from ESU at time j − 1

zj = δrj + vj (21)

where zj = rjeiu − rj − 1
esu  is directly obtained from the information of the two sensing units. 

The noise vector vj is assumed to be an additive white noise with zero mean and covariance 

of Vj [i.e., vj N(0, Vj)] . Note that we assume the returned data by the EIU (i.e., rjeiu) is 

reasonably accurate and comparable to the true value of the CM/FI position (i.e., rjact) .
Hence, considering (7), the state-space model of the measurement can be obtained from the 

following equation:

zj = Hjxj + vj (22)

where Hj ∈ ℝM × 2M(N + 1) and vj ∈ ℝM × 1 are defined as follows:

Hj = IM 0M × M 0M × MN 0M × MN .

5) SCADE Algorithm: Equations (18) and (22) provide the state-space dynamics and 

measurement models of our system. Considering the different measurement frequencies of 

the ESU and EIU, we perform the estimation in two separate phases: 1) when only the ESU 

data are available (i.e., Phase I), and 2) when both ESU and EIU data are available (i.e., 

Phase II). Note that at a given time, the system is either in Phase I or Phase II. The following 

describes the iterative mi-KF estimation of states and error covariances in each phase.

In Phase I, when only the ESU data are available, the best estimate of state x and a priori 

covariance matrix M ∈ ℝ2M(N + 1) × 2M(N + 1) is propagated based on the following 

difference equations:
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xi = Φi − 1xi − 1
Mi = Φi − 1Mi − 1Φi − 1

⊤ + Γi − 1Wi − 1Γi − 1
⊤ (23)

where Φi − 1, Γi − 1, and Wi − 1 are obtained from (19) and (20).

In Phase II, when both ESU and EIU data are available, the best estimate of state x and a 

posteriori covariance matrix P ∈ ℝ2M(N + 1) × 2M(N + 1) is obtained from the following

Algorithm1:

The SCADE Algorithm

relations:
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xi = Φi − 1xi − 1
Mi = Φi − 1Mi − 1Φi − 1

⊤ + Γi − 1Wi − 1Γi − 1
⊤

Pj = (Mi
−1 + Hj

⊤Vj
−1Hj)

−1

Kj = PjHj
⊤Vj

−1

xj = xi + Kj(zj − Hjxi)

(24)

where Kj ∈ ℝ2M(N + 1) × M is called the Kalman gain and i − 1 denotes the most recent 

increment in Phase I (i.e., Φi − 1, xi − 1, Mi − 1, Wi − 1, and Γi − 1 are all the most recent 

updates calculated in Phase I).

For the next time step of the dynamics, when the system is again in Phase I (i.e., only the 

ESU data is available), the best estimate of state x and a priori covariance matrix M is 

calculated as follows:

xi = Φi − 1xj
Mi = Φi − 1PjΦi − 1

⊤ + Γi − 1Wi − 1Γi − 1
⊤ . (25)

From this time onward, (23) is used to propagate the state and covariance matrix until the 

system returns to Phase II and this iterative loop continues. Algorithm 1 summarizes the 

mentioned SCADE algorithm. Note that in this algorithm, we have dropped the time indices 

for the quantities that are time invariant. Moreover, M0, as the initial a priori error 

covariance matrix, is selected based on the combination of empirical estimations and 

preliminary experiments performed on the system [37]. The uncertainty variables are 

selected to minimize the uncertainty in the tip estimations using the SCADE algorithm.

III. EXPERIMENTAL SETUP

The experimental setup used for the evaluation of SCADE was also previously reported in 

[23]. As shown in Fig. 3, the experimental setup consists of a CM equipped with two 

embedded FBG shape sensors (as the ESU), the CM’s actuation unit, an FBG interrogator, 

an overhead camera (as the EIU) and a custom C++ software to control the CM and collect 

data from the shape sensors and the camera. The following briefly describes each module 

and its preparation before each experiment.

A. Ortho-Snake and Its Actuation Unit

The CM used for performing the experiments is a cable-driven CM, called “ortho-snake,” 

which has been specifically designed for orthopedic applications [36]. This CM has an outer 

diameter of 6 mm and a tool channel of 4 mm, and is fabricated from two nested pieces of 

superelastic Nitinol tubes. Post machining using a wire electrical discharge machining 

(EDM) creates the peripheral notches of the ortho-snake with 35 mm length enabling it to 

bend large curvatures up to 166.7 m−1 [39]. As shown in Fig. 3, there are four small 

channels with 0.6 mm diameter in the walls of ortho-snake; two of them are used for passing 

cables for bending control of this CM in a plane (i.e., Δθ ∈ ℝ2) . These cables are actuated 

antagonistically with an actuation unit consisting of two dc motors (RE10, Maxon Motor, 
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Inc., Switzerland) with spindle drives (GP 10 A, Maxon Motor, Inc., Switzerland). A 

commercial controller is used to power and connect individual Maxon controllers (EPOS 2, 

Maxon Motor, Inc., Switzerland) on a controller area network (CAN bus). Using libraries 

provided by Maxon, a custom C++ interface communicates over a single universal serial bus 

(USB) cable and performs position control of the motors.

B. FBG Sensing Unit

To obtain the shape of ortho-snake during its actuation, two FBG shape sensing units 

embedded in ortho-snake’s wall channels, was used as shown in Fig. 3. Each unit includes a 

fiber array (100 μm diameter) with three FBG sensing areas (Technica Optical Components, 

China) distributed 10 mm apart, which has been UV-glued (Henkel, Germany) to two 125 

μm Nitinol wires (NDC Technologies, USA). The detailed design and fabrication of this 

sensor assembly and its fabrication procedure can be found in [17] and [21]. To estimate and 

reconstruct the shape of ortho-snake using the FBG sensing unit, a two-step process was 

utilized [21]: 1) an offline curvature calibration for ortho-snake’s C-shaped bending 

motions, and 2) a model-based shape-reconstruction procedure developed based on a linear 

curvature assumption between each sensing node of the sensing assembly.

For an FBG optical sensor, the equation relating the wavelength shift Δλ of each sensing 

areas to their corresponding strain s can be calculated as

Δλ
λ = cϵϵ + cTΔT (26)

where ΔT is the temperature change, cϵ is the strain coefficient, and cT is the temperature 

coefficient.

Considering (26) and assuming negligible temperature variation (ΔT ≈ 0), we used a 

dynamic optical sensing interrogator (Micron Optics sm130, Micron Optics, Inc., USA) and 

performed an offline calibration procedure to map wavelength shift to the curvature κ of the 

ortho-snake during its C-shaped bending motions

κ = ψ(Δλ)

where ψ:ℝ3 ℝ3 relates the wavelength shift at the three sensing areas of each FBG sensor 

to the corresponding curvature values at these three points. The details of the calibration 

procedure can be found in [17].

To reconstruct the shape of ortho-snake using the calibration mapping function ψ for each 

shape sensor, we first assumed a linear relationship between the calibrated discrete 

curvatures and arc length L of each sensor and divided the sensor length to n sufficiently 

small segments. Using the interpolated curvature at each segment (κl for l = 1,...,n), the 

curvature angle of each segment Δϕl was calculated as follows:

Δϕl = κlΔL .
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The 2-D shape of each sensor can be then reconstructed sequentially using the following 

formulations:

xl + 1 = xl + 1
κl

sin(Δϕl)

yl + 1 = yl + 1
κl

(1 − cos(Δϕl)) .

The tip position of the ortho-snake along its center line is then calculated by averaging the 

position values for the shape sensors, which we refer to as riesu ∈ ℝ2 at each time instant i.

This model-based shape-reconstruction procedure often results in a poor and inaccurate 

position estimation in real-world application, where the CM may undergo large deflections 

or collide with the obstructed environment in a non-quasi-static motion [21], [23]. This is 

mainly due to a manual fabrication procedure, an offline static C-shaped calibration 

procedure based on limited and discrete wavelength shift readings and the linear 

interpolation assumption made during the shape reconstruction procedure [39].

C. External Imaging System

In the experiments, we simulated an intermittent external imaging system with an overhead 

PL-B741 camera (PixeLink, USA) mounted above the ortho-snake. The camera was 

mounted such that its focal plane was parallel with the bending plane of the CM. A 2-D–3-D 

registration method [18] was used on the taken intermittent images to compute the ortho-

snake’s outline and its shape curve in each image. In summary, using the cameras intrinsic 

and extrinsic parameters, the 3-D model and joint configuration of the CM, this registration 

algorithm fits a cubic spline with five control points to estimate the shape of the CM. This 2-

D–3-D registration method approximates the ortho-snakes tip position with an error less than 

0.4 mm. We refer to the output of this registration procedure as rieiu ∈ ℝ2 at each time instant 

i.

D. Setup Preparation

Before conducting the experiments, a manual calibration was performed to define the zero 

cable position for both cables and avoid any slack in the ortho-snake’s actuation mechanism. 

The camera was then calibrated using a standard square chessboard and obtained the 

intrinsic parameters. In the performed experiments, FBG data were streamed by an optical 

sensing interrogator at 15 Hz, whereas the camera images were collected at 0.5 Hz, 

obligated by the hardware and software limitations. It is worth noting that due to the 2-D 

bending nature of the utilized CM (i.e., M = 2) and using two cables for bending control of 

the CM (i.e., N = 2), the developed generic relations in Section II have the following reduced 

dimensions: 
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x ∈ ℝ12 × 1, JS ∈ ℝ4 × 1, Φ ∈ ℝ12 × 12, Γ ∈ ℝ12 × 14, w ∈ ℝ14 × 1, H ∈ ℝ2 × 12, v ∈ ℝ2 × 1, M
∈ ℝ12 × 12, P ∈ ℝ12 × 12,

 and 

K ∈ ℝ12 × 2 .

IV. EXPERIMENTAL RESULTS

The data from two sets of previous experiments [23] was used to evaluate the effectiveness 

of our model-independent SCADE algorithm. The experiments included deformation and 

shape estimation in 1) a free bending motion without the presence of an obstacle in the 

environment and 2) a bending motion in an obstructed environment. Of note, in both 

experiments, the ortho-snake’s cables were antagonistically actuated at different cable 

displacement rates. As reported in [16] and [23], due to an offline static calibration of the 

FBG sensing units, a dynamic actuation and obstacle collision in an unknown environment 

might change the calibration parameters resulting in an inaccurate tip position estimation.

Additionally, as we discussed in Section I, the main clinical motivation of the SCADE 

algorithm was to reduce the radiation exposure of a fluoroscopy machine by taking 

minimum number of X-ray images in various interventional radiology and orthopedics 

procedures (e.g., [36]). To this end, we fused high-frequency data of the ESU with low-

frequency EIU images within the SCADE framework. This enables to 1) mitigate the safety 

concerns of using fluoroscopy machines and 2) improve the estimation of the CM/FI 

position as compared to using the ESU data only. To study the effect of the EIU imaging 

frequency on the performance of the SCADE algorithm, we performed an experiment and 

analyzed the results.

A. Free Bending

As shown in Fig. 4(a), in this set of experiments, the ortho-snake’s cables were 

antagonistically actuated with continuous displacement rates of 0.5 and 1 mm/s in a free 

environment with no obstacle. It is worth noting that these displacement rates are clinically 

viable values, which are obtained experimentally for minimally invasive treatment of hard 

lesions by ortho-snake [32], [35]. To ensure repeatability, each experiment included various 

cycles of free bends with the maximum cable displacement of 3 mm, short stays at this 

bending configuration to study the effect of calibration bias and hysteresis on the position 

estimations, and subsequently returns to the initial straight position. This scenario was also 

repeated in the opposite bending direction.

Figs. 5 and 6 demonstrate the results of the experiments performed with 0.5 and 1 mm/s 

cable displacement rates, respectively. These figures demonstrate the ortho-snake’s 

estimated tip position (i.e., the X and Y coordinates) using the following:

1) only the streamed FBG data and the model-based reconstruction method 

described in Section III-B;

2) the instances of recorded and registered images by the camera;

3) our proposed model-independent sensor fusion algorithm (i.e., the SCADE 

algorithm).
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To better represent the bending configurations of the ortho-snake and repeatability of the 

SCADE’s results, various bending cycles of the experiment are shown in these figures.

B. Bending in an Obstructed Environment

For these experiments, the ortho-snake’s cables were antagonistically actuated with 

continuous displacement rates of 0.5 and 1 mm/s for a maximum cable displacement of 2 

mm. Fig. 4(b) demonstrates snapshots of this set of experiments, taken by the overhead 

camera, when the ortho-snake collides with a rigid circular obstacle with 25 mm diameter 

during its bending motion. Similar to the previous free-bending experiments, to ensure 

repeatability of the results, these experiments included various cycles of bending motions in 

the presence of the obstacle and returning to the straight configuration.

Figs. 7 and 8 demonstrate the results of these experiments performed with continuous 

displacement rates of 0.5 and 1 mm/s, respectively. Similar to the free-bending experiments, 

these figures represent the ortho-snake’s estimated tip positions (i.e., the X and Y 
coordinates) using the following:

1) only the streamed FBG data and the online model-based reconstruction method 

described in Section III-B;

2) the instances of recorded and registered images by the camera at 0.5 Hz 

frequency;

3) our proposed model-independent sensor fusion SCADE algorithm.

These figures also show different bending cycles of these experiments to better represent the 

bending configurations of the ortho-snake and repeatability of the SCADE’s estimation 

results.

C. Effect of the EIU Imaging Frequency on the SCADE Performance

In this experiment, we studied ten decreasing frequencies from 0.5 (i.e., every 2 s) to 0.05 

Hz (i.e., every 20 s) representing a wide range of the rate of images obtained by the EIU 

during the procedure. We performed our analysis when the ortho-snake was bending in the 

obstructed environment with 1.0 mm/s displacement rate and the FBG reading rate was 

identical to all other experiments (i.e., 15 Hz). Fig. 8 and Table II summarize the results of 

this experiment. Of note, only three representative frequencies of 0.5, 0.125, and 0.05 Hz 

have been shown in Fig. 8 for brevity and better representation of data.

V. DISCUSSION

To evaluate the performance of the SCADE algorithm, we used data of an FBG-equipped 

CM. As discussed throughout the article, the overall performance of an FBG sensing unit 

depends on four main attributes. First, the fabrication of the FBG sensor assembly, which is 

very difficult due to the size and delicacy of the FBG optical sensors, and highly depends on 

the user’s expertise [22]. Second, the locations and numbers of sensing nodes, which are 

application specific with no generic standard to define these parameters [40], [41]. Although 

using more sensing nodes can increase the estimation accuracy, it in return increases the 

fabrication costs [16]. Third, the shape reconstruction procedure, which is typically 
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performed using a model-based approach [16], [17]. For instance, assumptions such as a 

linear relationship between the sensing nodes of a sensing unit [21] that typically used in the 

shape reconstruction procedure directly affect the results of shape/tip estimation [25]. 

Fourth, the CM’s contact with the environment, which might result in a time-varying and 

hard-to-model bias [23]. Investigation of Figs. 5 and 6 clearly demonstrates the inferior 

results of solely using the FBG sensing unit and a model-based approach in estimation of the 

ortho-snake’s tip position (i.e., X and Y coordinates) compared to the ground truth value 

obtained by the EIU. As summarized in Table I, the obtained results for free-bending 

experiments show mean tip position error (MTPE), i.e., the absolute error between the 

ground truth and the FBG-based estimation of 1.0895 ± 0.780 and 3.421 ± 1.077 mm for the 

0.5 and 1 mm/s cable displacement rates, respectively. For the experiments performed in the 

obstructed environment and shown in Figs. 7 and 8, an MTPE of 2.719 ± 0.839 and 0.961 ± 

0.271 were calculated for the FBG-based estimations with 0.5 and 1 mm/s cable 

displacement rates, respectively. These analyses clearly demonstrate the sensitivity of the 

FBG-based estimations (i.e., calibration parameters of the ESU) to the change in the 

experimental conditions (i.e., the displacement rates and bending cycles) even in an identical 

obstructed/free environment. As described, the main attributes of this estimation error for 

both set of experiments are the manual fabrication of the FBG sensing unit, static 

calibration, as well as the hysteresis due to the friction between the ESU and the CM 

channels [21], [39].

In contrast to the results obtained by merely using the FBG, as observed in all four 

experiments, the proposed sensor fusion algorithm could substantially improve the CM 

deformation and subsequently tip position estimation without utilizing a priori deformation 

model of the ortho-snake. The fusion of the streamed FBG data with the intermittent low-

frequency EIU not only may eliminate the tip position estimation errors by using solely the 

ESU data but it can also capture the dynamic offset between the ESU and EIU when the EIU 

data are not available. As summarized in Table I, the MTPE of 0.016 ± 0.009 mm between 

the camera and the SCADE algorithm was obtained in both free-bending experiments. For 

the experiments performed in the obstructed environment, these errors were 0.017 ± 0.010 

and 0.001 ± 0.001 mm for the 0.5 and 1 mm/s cable displacement rates, respectively. This is 

mainly due to the described two-phase sensor fusion algorithm, which simultaneously 

estimates the unknown deformation behavior of the CM and calibrates the unknown bias of 

the FBG sensing unit on the fly. Additionally, investigation of the initial iterations of all four 

experiments clearly reveals the appropriate and punctual performance of the SCADE 

algorithm. This is mainly because the SCADE algorithm suddenly improves the tip position 

estimation once EIU data are available and are fused with the FBG data. Similarly, this 

sudden drop/overshoot in the estimation error is also observed through the experiments 

where a transition between Phases I [i.e., propagation based on (23)] and II [i.e., a sensor 

fusion based on (24)] of the SCADE algorithm occurs.

Analysis of Fig. 8 shows the effect of the EIU imaging frequency on the SCADE 

performance. First, as can be observed, the SCADE algorithm outperforms the FBG-based 

estimations for all considered EIU frequencies. As summarized in Table II, the MTPE of the 

lowest imaging frequency (i.e., 0.05 Hz) is 0.255 ± 0.247 mm, which is still approximately 

four times better than the FBG-based estimation with MTPE of 0.961 ± 0.271 mm. Second, 
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as expected, by reducing the imaging frequency to ten times slower rates, the estimation 

error increases from 0.001 ± 0.001 mm for the 0.5 Hz (i.e., the highest frequency) to 0.255 ± 

0.247 mm for the lowest considered frequency. Of note, although this feature may 

compromise the estimation accuracy, from the clinical aspect it can result in a safe and low 

radiation exposure in fluoroscopic procedures. Third, a similar pattern to the other 

experiments for the estimation tip position and error is observed. This pattern is referred to 

the transition from Phases I to II of the SCADE algorithm at the beginning and through the 

experiments, which proves the robust performance of the proposed algorithm.

Fig. 9 shows the stacked FBG-based and SCADE-based position estimation errors during 

bending motion in free environment with 1 mm/s cable displacement rate. This error was 

calculated at instances when the ground truth data were available from the EIU with 

frequency of 0.5 Hz (i.e., Phase II of the SCADE algorithm). As observed in this figure, the 

estimated positions in both X and Y coordinates using only FBG sensing unit are much 

larger than the ones obtained from the SCADE algorithm. The absolute estimation error in 

the X coordinate is 3.310 ± 1.117 mm, which is one order of magnitude larger than 0.620 ± 

0.529 mm error associated with the Y coordinate. The relative error of estimations along the 

X and Y coordinates was calculated as 10.73% and 8.72% of the range of motion along 

these axes, respectively. These errors might be due to the poor manual fabrication procedure 

and/or heterogeneous friction or hysteresis distribution along the FBG sensing unit and the 

ortho-snake channels. However, as can be seen in Table I, these adverse effects and errors 

have been eliminated by the deployed model-independent sensor fusion algorithm.

Fig. 10 shows the corresponding FBG-based and SCADE-based position estimation errors of 

the results presented in Fig. 8. To calculate these errors, the obtained positions by the highest 

frequency rate of the EIU (i.e., every 2 s) were considered as the ground truth. We then 

calculated the corresponding absolute estimation errors of the FBG and the SCADE 

algorithms at various imaging frequencies and identical instances with respect to this ground 

truth. It is worth noting that the stacked estimation errors demonstrated in Fig. 9 were only 

calculated at Phase II of the SCADE algorithm. However, the presented errors in Fig. 10 

show the error of estimations in both Phases I and II of the SCADE algorithm and obtained 

based on different imaging frequencies (i.e., 0.5, 0.125, and 0.05 Hz). To emphasize, Phase I 

refers to the estimations solely obtained by the state transition matrix, whereas Phase II 

refers to the estimations calculated based on the state transition matrix and camera images. 

The magnified region in Fig. 10 shows the instances when the MTPE error has been 

calculated based on Phase I or Phase II of the SCADE algorithm in each imaging frequency. 

As can be observed in this figure and summarized in Table II, similar to the results shown in 

Fig. 9, the estimated positions in both X and Y coordinates using only FBG sensing unit are 

much larger than the ones obtained from the SCADE algorithm with different frequencies. 

Complementary to the results obtained from Fig. 10, analysis of Table II and Fig. 10 conveys 

that the estimation accuracy of the SCADE algorithm decreases with reducing the frequency 

of imaging by the EIU. Quantitatively, according to Table II, the MTPE of the estimated 

positions increases from 0.001 ± 0.001 to 0.255 ± 0.529247 mm by making the imaging 

frequency ten times slower. Nevertheless, the MTPE of the SCADE at lowest imaging 

frequency is still approximately four times less than the FBG-based estimations. Further, 

Fig. 10 clearly shows the significance and capability of the SCADE algorithm in reducing 
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the MTPE when the EIU and ESU data are fused. These instances can be distinguished by 

different markers in Fig. 10, when the MTPE of all frequencies suddenly drops due to the 

sensor fusion.

The presented experimental results also demonstrate the capability and performance of the 

SCADE algorithm in capturing the deformation behavior of a CM without having a prior 

knowledge about its deformation behavior. It is worth emphasizing that other sensor fusion 

methods in the literature (e.g., [24], [26], and [27]) require a known kinematics or dynamics 

model of the CM/FI, which makes their usage very limited to a particular type of robot. In 

addition, most of these models have been derived or experimentally tuned for a specific 

experimental condition and often are not generic. One of the main advantages of the 

presented model-independent approach, however, is its independence to the experimental 

condition together with its expandability to different type of CMs/FIs. As presented in Figs. 

5–7, the SCADE can successfully estimate the deformation behavior of the ortho-snake both 

in the free-bending and obstructed environments.

To address the mentioned limitations of the FBG-based shape/position estimation of 

CMs/FIs and with the goal of increasing the resolution of curvature estimation along the 

CM/FI length, a group of researchers (e.g., [40]–[42]) has proposed the use of more shape 

sensing units or sensing areas on each shape sensing unit [16]. Although this approach may 

potentially improve the estimation accuracy, it dramatically increases the cost of fabrication 

of each sensing unit. Another advantage of our proposed sensor fusion method, however, is 

its potential to improve the estimation accuracy with minimum number of sensing areas and 

subsequently lower fabrication costs when fused with another external imaging modality. As 

described, there exist various surgical interventions (e.g., breast and brain biopsy, and 

orthopedic surgeries) that already using an external imaging modality during a surgical 

procedure. Hence, these devices can potentially be utilized as an EIU within the SCADE 

framework.

VI. CONCLUSION

In this article, we presented a model-independent sensor fusion framework based on a novel 

mathematical formulation. This framework enables us to estimate a linearized state 

transition matrix, which represented the unknown deformation behavior of a generic CM/FI. 

It also enables detection, estimation, and compensation of the time-varying bias of a poorly 

calibrated ESU. Unlike the typical KF-based estimation, which requires a CM/FI’s dynamic 

model as a priori, the SCADE algorithm solely relies on the known actuation input and 

measurement output obtained by an embedded and external sensing units to perform tip 

position estimation. Not only does the SCADE framework address the estimation issues due 

to manual imperfect fabrication, offline calibration, and corrupted measurements of various 

ESUs (e.g., FBG optical sensors) but also it can be adapted for different types of CM/FIs in 

both free and obstructed environments. The latter enables the use of SCADE without having 

a comprehensive kinematics/dynamics deformation model of a CM/FI including complex 

phenomenons such as friction and hysteresis.
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We evaluated the aforementioned features of the SCADE algorithm using data from two 

different sets of experiments in free and obstructed environments. The experiments were 

performed with a CM, i.e., ortho-snake, with planar bending motion developed for 

orthopedic applications. Although the experiments were based on 2-D bending motions of 

the ortho-snake, as described in Section II and [23], the developed SCADE algorithm can be 

easily extended to 3-D motions and CMs with more degrees of freedom. In the reported 

experiments an intermittent external imaging feedback using an overhead camera was used, 

as the accurate and low-frequency measurement source. On the other hand, a CM equipped 

with embedded FBG sensing units was used as an inaccurate measurement source with 30 

times faster readings (i.e., 15 Hz FBG reading versus 0.5 Hz EIU imaging frequency). Using 

the results of these experiments, we successfully showed the estimation capability of the 

proposed algorithm without using a priori deformation model of the utilized CM and in the 

presence of a time-varying bias in the FBG calibration parameters.

We also studied the effects of the EIU imaging frequency on the accuracy of the SCADE 

estimations. Our results indicated the out-performance of the SCADE versus FBG-based tip 

position estimations even when the FBG readings are 300 times faster than the imaging 

frequency (i.e., 15 Hz FBG reading versus 0.05 Hz EIU imaging frequency). This feature 

helped to mitigate the radiation exposure concerns of using fluoroscopy machines for 

interventional radiology (e.g., angiography) and orthopedics procedures (e.g., internal 

fracture fixation and screw placement) while providing tip estimations with proper accuracy.

Some limitations of this article are as follows. Despite the presented generic mathematical 

formulation, we limited the shape/position estimation of the used CM to only 2-D C-shape 

configurations. The success of S-shape as well as the 3-D shape/position estimation of a 

generic CM will need additional investigations. The SCADE algorithm was evaluated using 

an overhead camera. As a more relevant medical application, future studies will focus on 

implementing this sensor fusion algorithm on the images acquired by a fluoroscopic 

machine. Further, we will also perform ex-vivo cadaveric experiments to mimic more 

realistic clinical settings.

Another potential extension of this article can be model-independent real-time control of 

soft robots (e.g., [43]) or CMs/FIs (e.g., [3]) using the SCADE algorithm in which we 

initially estimate the deformation behavior of the robot; and then, we use this estimation for 

position or shape control of the CM/FI to accomplish a predefined control objective. 

SCADE can also be used within the context of automating surgical subtasks such as suturing 

[44] and tissue manipulation [45]–[47] to simultaneously estimate the tissue deformation 

along with the system states in real time. The study of osteolysis will also require addressing 

the constrained combined control of CMs in integration with robotic manipulators [31].
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Conceptual illustration of the proposed robotic workstation for orthopedic applications. It 

comprises a positioning robot, a CM (i.e., ortho-snake) equipped with FBG optical sensing 

unit, and proper flexible cutting tools. The shape and position of the CM inside the patient’s 

body can also be captured using intermittent intraoperative fluoroscopy.
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Fig. 2. 
Conceptual illustration of the SCADE algorithm for position estimation of a CM/FI working 

in an obstructed environment. In the SCADE, using an EIU providing intermittent external 

position feedback and an ESU (e.g., FBG or magnetic sensors) with continuous feedback, a 
priori model-independent sensor fusion algorithm is used to simultaneously recalibrate the 

ESU and estimate the deformation behavior of the CM/FI. In this figure, 

ract, rESU, rEIU ∈ ℝM represent the position of the CM/FI’s tip position with respect to a 

Cartesian space {act}, embedded sensing unit {ESU}, and external imaging unit {EIU} 

frames, respectively. Also, θ ∈ ℝN denotes the vector of actuation inputs of the CM/FI.
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Fig. 3. 
Experimental setup including the ortho-snake with lateral notches providing planar bend for 

the CM and equipped with embedded FBG shape sensors (as the ESU), the ortho-snake’s 

actuation unit, FBG interrogator, and an overhead camera (as the EIU) [23].
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Fig. 4. 
(a) Snapshots of the ortho-snake’s bending motion in the free-environment experiments 

taken by the overhead camera. To ensure repeatability, each experiment included various 

cycles of bending in one direction, short stay at the bending configuration, and subsequently 

a return to the initial straight position. This scenario is also repeated in the opposite bending 

direction. (b) Snapshots of the ortho-snake’s bending motion in the obstructed environment 

experiments taken by the overhead camera. To ensure repeatability, each experiment 

included various cycles of bending and colliding with the obstacle [23].
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Fig. 5. 
Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were 

antagonistically actuated with continuous displacement rates of 0.5 mm/s in the free 
environment and without the presence of obstacles using 1) only the streamed FBG data and 

the online model-based reconstruction method described in Section III-B, 2) the instances of 

recorded and registered images by the camera with frequency of 0.5 Hz, and 3) the SCADE 

algorithm. The bending configurations of the CM have been shown in each cycle. The tip 

position is considered at the distal end point of the center line of the robot.
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Fig. 6. 
Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were 

antagonistically actuated with continuous displacement rates of 1 mm/s in the free 
environment and without the presence of obstacles using 1) only the streamed FBG data and 

the online model-based reconstruction method described in Section III-B, 2) the instances of 

recorded and registered images by the camera with frequency of 0.5 Hz, and 3) the SCADE 

algorithm. The bending configurations of the CM have been shown in each cycle. The tip 

position is considered at the distal end point of the center line of the robot.
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Fig. 7. 
Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were 

antagonistically actuated with continuous displacement rates of 0.5 mm/s in the obstructed 
environment using 1) only the streamed FBG data and the online model-based 

reconstruction method described in Section III-B, 2) the instances of recorded and registered 

images by the camera with frequency of 0.5 Hz, and 3) the SCADE algorithm. The bending 

configurations of the CM have been shown in each cycle. The tip position is considered at 

the distal end point of the center line of the robot.
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Fig. 8. 
Ortho-snake’s estimated tip position (i.e., the X and Y coordinates) when its cables were 

antagonistically actuated with continuous displacement rates of 1 mm/s in an obstructed 
environment using 1) only the streamed FBG data and the online model-based 

reconstruction method described in Section III-B, 2) the instances of recorded and registered 

images by the camera, and 3) the SCADE algorithm performed with three different EIU 

imaging frequencies of 0.5, 0.125, and 0.05 Hz. The bending configurations of the CM have 

been shown in each cycle. The tip position is considered at the distal end point of the center 

line of the robot.
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Fig. 9. 
Stacked FBG-based and SCADE-based absolute position estimation errors during free-

bending experiments with continuous displacement rate of 1 mm/s. The errors have been 

calculated at iterations when the ground truth data are available from the EIU (with 

frequency of 0.5 Hz (i.e., Phase II of the SCADE algorithm).
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Fig. 10. 
Comparison of absolute estimation errors performed by the FBG-based and SCADE-based 

methods during bending in an obstructed environment with continuous displacement rate of 

1 mm/s. The SCADE-based estimations have been performed in three different frequencies 

(i.e., 0.5, 0.125, and 0.05 Hz). The absolute errors have been calculated at iterations when 

the ground truth data are available from the EIU. The magnified region shows the instances 

when the error has been calculated based on Phase I or Phase II of the SCADE algorithm for 

the corresponding imaging frequency.
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